
Lecture 19

Compression and Huffman Coding
Supplemental reading in CLRS: Section 16.3

19.1 Compression

As you probably know at this point in your career, compression is a tool used to facilitate storing
large data sets. There are two different sorts of goals one might hope to achieve with compression:

• Maximize ease of access, manipulation and processing
• Minimize size—especially important when storage or transmission is expensive.

Naturally, these two objectives are often at odds with each other. In this lecture we will focus on the
second objective.

In general, data cannot be compressed. For example, we cannot losslessly represent all m-bit
strings using (m−1)-bit strings, since there are 2m possible m-bit strings and only 2m−1 possible
(m−1)-bit strings. So when is compression possible?

• If only a relatively small number of the possible m-bit strings appear, compression is possible.

• If the same “long” substring appears repeatedly, we could represent it by a “short” string.

• If we relax the requirement that every string have a unique representation, then compression
might work but make “similar” strings identical.

19.1.1 Lossless and lossy

Initial
Document

D

Compress−−−−−−−−−−−→
Compressed
Document

C

Decompress−−−−−−−−−−−−→
Reconstituted

Document
D′

In lossless compression, we require that D = D′. This means that the original document can always
be recovered exactly from the compressed document. Examples include:

• Huffman coding
• Lempel–Ziv (used in gif images)

In lossy compression, D′ is close enough but not necessarily identical to D. Examples include:

• mp3 (audio)
• jpg (images)
• mpg (videos)

19.1.2 Adaptive and non-adaptive

Compression algorithms can be either adaptive or non-adaptive.

• Non-adaptive – assumes prior knowledge of the data (e.g., character frequncies).

• Adaptive – assumes no knowledge of the data, but builds such knowledge.

19.1.3 Framework

For the remainder of this lecture, we consider the following problem:

Input: Known alphabet (e.g., English letters a,b,c,. . .)
Sequence of characters from the known alphabet (e.g., “helloworld”)

We are looking for a binary code—a way to represent each character as a binary string
(each such binary string is called a codeword).

Output: Concatenated string of codewords representing the given string of characters.

19.1.4 Fixed-length code

In a fixed-length code, all codewords have the same length. For example, if our alphabet is{
a, b, c, d, e, f, g, h

}
,

then we can represent each of the 8 characters as a 3-bit string, such as
a b c d e f g h
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

000 001 010 011 100 101 110 111

 .

Such a code is easy to encode and decode:

baba= 001
∣∣000

∣∣001
∣∣000

Just as in DNA encoding and decoding, it is important to keep track of register: the deletion or inser-
tion of a single bit into the binary sequence will cause a frame shift, corrupting all later characters
in the reconstituted document.

19.1.5 Run-length encoding

Imagine you are given the string of bits

000000︸ ︷︷ ︸
6

111︸︷︷︸
3

000︸︷︷︸
3

11︸︷︷︸
2

00000︸ ︷︷ ︸
5

.

Rather than create codewords, we could simply store this string of bits as the sequence 〈6,3,3,2,5〉.
This strategy is used in fax-machine transmission, and also in jpeg.

Lec 19 – pg. 2 of 7

19.1.6 Variable-length code

If we allow our codewords to have different lengths, then there is an obvious strategy:

Use shorter codewords for more frequent characters; use longer codewords for rarer char-
acters.

For example, consider a six-letter alphabet with the following character frequencies:

Character a b c d e f
Frequency 45% 13% 12% 16% 9% 5%
Codeword 0 101 100 111 1101 1100

(1 bit) (3 bits) (4 bits)

Using this code, the average number of bits used to encode 100 characters is

(45)1+ (13)3+ (12)3+ (16)3+ (9)4+ (5)4= 224.

Compare this to a 3-bit fixed-length code, in which it would take 300 bits to encode 100 characters.
Notice that I didn’t use 1, 01, or 10 as codewords, even though they would have made the encoding

shorter. The reason for this is that we want our code to be uniquely readable: it should never
be ambiguous as to how to decode a compressed document.1 One standard way to make uniquely
readable codes is to use prefix coding: no codeword occurs as a prefix (initial substring) of another
codeword. This allows unambiguous, linear-time decoding:

101
b

111
d

1100
f

0
a

100
c

1101
e

Prefix coding means that we can draw our code as a binary tree, with the leaves representing code-
words (see Figure 19.1).

19.2 The Huffman Algorithm

The problem of §19.1.3 amounts to the following. We are given an alphabet {ai} with frequencies{
f (ai)

}
. We wish to find a set of binary codewords C = {

c(a1), . . . , c(an)
}

such that the average number
of bits used to represent the data is minimized:

B(C)=
n∑

i=1
f (ai)

∣∣c(ai)
∣∣ .

Equivalently, if we represent our code as a tree T with leaf nodes a1, . . . ,an, then we want to minimize

B(T)=
n∑

i=1
f (ai) d(ai),

where d(ai) is the depth of ai, which is also equal to the number of bits in the codeword for ai.
The following algorithm, due to Huffman, creates an optimal prefix tree for a given set of char-

acters C = {ai}. Actually, the Huffman code is optimal among all uniquely readable codes, though we
don’t show it here.

1 For an example of non-unique readibility, suppose we had assigned to “d” the codeword 01 rather than 111. Then the
string 0101 could be decoded as either “ab” or “dd.”

Lec 19 – pg. 3 of 7

a= 0

c= 100 b= 101 d= 111

f= 1100 e= 1101

0 1

0 1

0 1 0 1

0 1

100%

45% 55%

25% 30%

12% 13% 14% 16%

5% 9%

Figure 19.1. Representation of a binary code as a binary tree.

Algorithm: HUFFMAN-TREE(C)
1 n ←|C|
2 Q ← C B a min–priority queue keyed by frequency
3 for i ← 1 to n−1 do
4 Allocate new node z
5 z.left← x ← EXTRACT-MIN(Q)
6 z.right← y← EXTRACT-MIN(Q)
7 z.freq← x.freq+ y.freq
8 Q.INSERT(z)
9 B Return the root of the tree

10 return EXTRACT-MIN(Q)

19.2.1 Running time

Initially, we build a minqueue Q with n elements. Next, the main loop runs n−1 times, with each
iteration consisting of two EXTRACT-MIN operations and one INSERT operation. Finally, we call
EXTRACT-MIN one last time; at this point Q has only one element left. Thus, the running time for Q
a binary minheap would be

Θ (n)︸ ︷︷ ︸
BUILD-QUEUE

+ Θ (n lgn)︸ ︷︷ ︸
Loop

+ O(1)︸︷︷︸
EXTRACT-MIN

=Θ (n lgn) .

If instead we use a van Emde Boas structure for Q, we achieve the running time

Θ (n lglgn) .

Lec 19 – pg. 4 of 7

f: 5% e: 9% c: 12% b: 13% d: 16% a: 45%

c: 12% b: 13% 14%

f: 5% e: 9%

d: 16% a: 45%

14%

f: 5% e: 9%

d: 16% 25%

c: 12% b: 13%

a: 45%

25%

c: 12% b: 13%

30%

14%

f: 5% e: 9%

d: 16%

a: 45%

a: 45% 55%

25%

c: 12% b: 13%

30%

14%

f: 5% e: 9%

d: 16%

100%

a: 45% 55%

25%

c: 12% b: 13%

30%

14%

f: 5% e: 9%

d: 16%

Figure 19.2. Example run of the Huffman algorithm. The six rows represent the state of the graph each of the six times
line 3 is executed.

Lec 19 – pg. 5 of 7

y

a b

x

y

x b

a

b

x y

a

T T ′ T ′′

Figure 19.3. Illustration of the proof of Lemma 19.1.

19.2.2 Correctness

The Huffman algorithm is a greedy algorithm: at each stage, we merge together the two nodes of
lowest frequency.

Lemma 19.1 (CLRS Lemma 16.2). Suppose x, y are the two most infrequent characters of C (with ties
broken arbitrarily). Then there exists an optimal prefix code for C with codewords for x and y of the
same length and differing only in the last bit. (In other words, there exists an optimal tree in which x
and y are siblings.)

Proof. Let T be an optimal tree. Let a be a leaf of maximal depth. If a has no sibling, then deleting
a from the tree (and using a’s parent to represent the character formerly represented by a) produces
a better code, contradicting optimality. So a has a sibling b, and since a has maximum depth, b is a
leaf. So a and b are nodes of maximal depth, and without loss of generality we can say a.freq≤ b.freq.

Also without loss of generality, say x.freq ≤ y.freq. Switch the leaves a and x; call the resulting
tree T ′ (see Figure 19.3). Then B(T ′) ≤ B(T), seeing as x.freq ≤ a.freq. So it must be the case that
x.freq= a.freq and T ′ is optimal as well. Similarly, switch the leaves b and y in T ′; call the resulting
tree T ′′. It must be the case that y.freq = b.freq and T ′′ is optimal. In T ′′, the leaves x and y are
siblings.

Lemma 19.2 (CLRS Lemma 16.3). Given an alphabet C, let:

• x, y be the two most infrequent characters in C (with ties broken arbitrarily)
• z be a new symbol, with z.freq← x.freq+ y.freq
• C′ = (

C \{x, y}
)∪ {z}

• T ′ be an optimal tree for C′.

Then T is an optimal tree for C, where T is a copy of T ′ in which the leaf for z has been replaced by
an internal node having x and y as children.

Proof. Suppose T is not optimal. By Lemma 19.1, let T be an optimal tree for C in which x and y
are siblings. Delete x and y from T , and label their parent (now a leaf) with the symbol z. Call the

Lec 19 – pg. 6 of 7

resulting tree T ′. Notice that T ′ is a tree for C′, and furthermore,

B(T ′)= B(T)− x.freq− y.freq

< B(T)− x.freq− y.freq

= B(T ′).

This contradicts the optimality of T ′. We conclude that T must have been optimal in the first place.

Corollary 19.3. The Huffman algorithm is correct.

Proof sketch. Let T be the tree produced by the Huffman algorithm. Construct a new tree U as
follows. Initially, let U consist of just one vertex. Then, perform a series of transformations on U .
In each transformation, append two children to what was previously a leaf node. In this way, we
can eventually transform U into T. Moreover, Lemma 19.2 guarantees that, at each stage, U is an
optimal tree for the alphabet formed by its leaves.

Lec 19 – pg. 7 of 7

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Compression and Huffman Coding
	Compression
	The Huffman Algorithm

