Problem Set 3 Solutions

This problem set is due at 9:00pm on Wednesday, February 29, 2012.

Problem 3-1. Electric Potential Problem

According to Coulomb's Law, the electric potential created by a point charge q, at a distance r from the charge, is:

$$
V_{E}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r}
$$

There are n charges in a square uniform grid of $m \times m$ points. For $i=1,2, \ldots, n$, the charge i has a charge value q_{i} and is located at grid point $\left(x_{i}, y_{i}\right)$, where x_{i} and y_{i} are integers $0 \leq x_{i}, y_{i}<m$. For each grid point (x, y) not occupied by a charge, the effective electric potential is:

$$
V(x, y)=\frac{1}{4 \pi \epsilon_{0}} \sum_{i=1}^{n} \frac{q_{i}}{\sqrt{\left(x-x_{i}\right)^{2}+\left(y-y_{i}\right)^{2}}} .
$$

The electric potential problem is to find the effective electric potential at each of the $m^{2}-n$ grid points unoccupied by a charge.
(a) Describe a simple $O\left(m^{2} n\right)$ time algorithm to solve the problem.

Solution: The following naive algorithm iterates through all of the points (x, y) on the $m \times m$ grid and computes the electric potential at that point according to the formula given above:

Electric-Potential-Naive (m, x, y, q)

1 create an $m \times m$ table V

for $x=0$ to $m-1$	$/ / \Theta(m)$ iterations
for $y=0$ to $m-1$	$/ / \Theta(m)$ iterations
$V(x, y)=0$	$/ / \Theta(1)$
for $i=1$ to n	$/ / \Theta(n)$ iterations
if $x_{i}=x$ and $y_{i}==y$	$/ / \Theta(1)$
$V(x, y)=$ NIL	$/ / \Theta(1)$

else

$$
V(x, y)=V(x, y)+\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{q_{i}}{\sqrt{\left(x-x_{i}\right)^{2}+\left(y-y_{i}\right)^{2}}} \quad / / \Theta(1)
$$

return V

The total runtime of this code is $\Theta\left(m^{2}\right)+\Theta(m) \cdot \Theta(m) \cdot(\Theta(1)+\Theta(n) \cdot \Theta(1))=$ $\Theta\left(m^{2}\right)+\Theta\left(m^{2}\right) \cdot(\Theta(1)+\Theta(n))=\Theta\left(m^{2} n\right)$.
(b) Let $\mathbb{Z}_{2 m-1}=\{0,1, \ldots, 2 m-2\}$. Find two functions $f, g: \mathbb{Z}_{2 m-1} \times \mathbb{Z}_{2 m-1} \rightarrow \mathbb{R}$ such that the potential at (x, y) equals the convolution of f and g :

$$
\begin{aligned}
V(x, y) & =(f \otimes g)(x, y) \\
& =\sum_{x^{\prime}=0}^{2 m-2} \sum_{y^{\prime}=0}^{2 m-2} f\left(x^{\prime}, y^{\prime}\right) \cdot g\left(x-x^{\prime}, y-y^{\prime}\right) .
\end{aligned}
$$

Importantly, in this definition $x-x^{\prime}$ and $y-y^{\prime}$ are computed in the additive group $\mathbb{Z}_{2 m-1}$, which is a fancy way of saying they are computed modulo $2 m-1$.

Solution: We will use f to contain the locations of the charges, multiplied by a constant:

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{q_{i}}{4 \pi \epsilon_{0}} & \text { if there is a charge } q_{i} \text { with }\left(x_{i}, y_{i}\right)=(x, y) \\
0 & \text { if }(x, y) \text { has no charge } \\
0 & \text { if }(x, y) \text { lies outside the } m \times m \text { grid }
\end{array}\right.
$$

To match up with the formula for $V(x, y)$, we want $g(x, y)$ to take as input the coordinate differences between a pair of points and we want $g(x, y)$ to produce the inverse of the distance between the original two points. However, we cannot simply use the formula for the inverse distance, because the numbers passed into g will be taken mod $2 m-1$. So any negative difference in coordinates will wrap around to become a value $>m-1$. Squaring that positive value will not produce the correct result. To handle this correctly, we need to map the numbers in $\mathbb{Z}_{2 m-1}$ so that any number greater than $m-1$ becomes negative again. We do this with the following intermediate function:

$$
r(z)=\left\{\begin{array}{cl}
z & \text { if } z \leq m-1 \\
z-(2 m-1) & \text { otherwise }
\end{array}\right.
$$

With this definition in place, we can now write a definition for g :

$$
g(x, y)=\left\{\begin{array}{cl}
\frac{1}{\sqrt{(r(x))^{2}+(r(y))^{2}}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { otherwise }
\end{array}\right.
$$

To see why this is correct, we must plug our formulae for f and g into the equation for convolution:

$$
(f \otimes g)(x, y)=\sum_{x^{\prime}=0}^{2 m-2} \sum_{y^{\prime}=0}^{2 m-2} f\left(x^{\prime}, y^{\prime}\right) \cdot g\left(x-x^{\prime}, y-y^{\prime}\right)
$$

First, note that $f\left(x^{\prime}, y^{\prime}\right)$ is only nonzero at the locations $\left(x_{i}, y_{i}\right)$ on the grid that have some charge q_{i}. In other words, we can rewrite the summation in the following way:

$$
\begin{aligned}
(f \otimes g)(x, y) & =\sum_{i=1}^{n} f\left(x_{i}, y_{i}\right) \cdot g\left(x-x_{i}, y-y_{i}\right) \\
& =\sum_{i=1}^{n} \frac{q_{i}}{4 \pi \epsilon_{0}} \cdot g\left(x-x_{i}, y-y_{i}\right)
\end{aligned}
$$

The differences $\left(x-x_{i}\right)$ and $\left(y-y_{i}\right)$ will be taken mod $2 m-1$ before they are passed into g. However, once they are passed into g, g will undo the effect of the modulus by passing those differences through the function r, and so the final formula for $(f \otimes g)(x, y)$ will be:

$$
(f \otimes g)(x, y)=\sum_{i=1}^{n} \frac{q_{i}}{4 \pi \epsilon_{0}} \cdot \frac{1}{\sqrt{\left(x-x_{i}\right)^{2}+\left(y-y_{i}\right)^{2}}}=V(x, y)
$$

Hence, we can use the convolution of these functions to compute the effective electric potential at all points that do not contain charges.

For positive integer k, the discrete Fourier transform of a function $h: \mathbb{Z}_{k} \times \mathbb{Z}_{k} \rightarrow \mathbb{R}$ is the function $\widehat{h}: \mathbb{Z}_{k} \times \mathbb{Z}_{k} \rightarrow \mathbb{C}$ defined as follows:

$$
\widehat{h}(a, b)=\frac{1}{k^{2}} \sum_{x=0}^{k-1} \sum_{y=0}^{k-1} h(x, y) \omega_{k}^{-a x-b y},
$$

where ω_{k} is a k th root of unity.
The corresponding inverse discrete Fourier transform of $\widehat{h}: \mathbb{Z}_{k} \times \mathbb{Z}_{k} \rightarrow \mathbb{C}$ is defined as follows:

$$
h(x, y)=\sum_{a=0}^{k-1} \sum_{b=0}^{k-1} \widehat{h}(a, b) \omega_{k}^{a x+b y} .
$$

(c) Prove that for any two functions $f, g: \mathbb{Z}_{k} \times \mathbb{Z}_{k} \rightarrow \mathbb{R}$ and for any point $(a, b) \in \mathbb{Z}_{k} \times \mathbb{Z}_{k}$, we have

$$
(\widehat{f \otimes g})(a, b)=k^{2} \cdot \widehat{f}(a, b) \cdot \widehat{g}(a, b) .
$$

Solution: To see that this is true, we begin by writing out the formula for $k^{2} \cdot \widehat{f}(a, b)$. $\widehat{g}(a, b)$ and substituting in the definition for $\widehat{f}(a, b)$:

$$
\begin{aligned}
k^{2} \cdot \widehat{f}(a, b) \cdot \widehat{g}(a, b) & =k^{2} \cdot\left(\frac{1}{k^{2}} \sum_{x^{\prime}=0}^{k-1} \sum_{y^{\prime}=0}^{k-1} f\left(x^{\prime}, y^{\prime}\right) \cdot \omega_{k}^{-a x^{\prime}-b y^{\prime}}\right) \cdot \widehat{g}(a, b) \\
& =\sum_{x^{\prime}=0}^{k-1} \sum_{y^{\prime}=0}^{k-1}\left(f\left(x^{\prime}, y^{\prime}\right) \cdot \omega_{k}^{-a x^{\prime}-b y^{\prime}} \cdot \widehat{g}(a, b)\right)
\end{aligned}
$$

Next we want to substitute for $\widehat{g}(a, b)$. But to more closely match the formula for convolution, we would like to rewrite $\widehat{g}(a, b)$ to include the term $g\left(x-x^{\prime}, y-y^{\prime}\right)$. To do so, we set $s=x-x^{\prime}$ and $t=y-y^{\prime}$. We will write the formula for g in terms of s and t, then substitute in the values $s=x-x^{\prime}$ and $t=y-y^{\prime}$. This means that $x=s+x^{\prime}$ and $y=t+y^{\prime}$.

$$
\begin{aligned}
\widehat{g}(a, b) & =\frac{1}{k^{2}} \sum_{s=0}^{k-1} \sum_{t=0}^{k-1} g(s, t) \cdot \omega_{k}^{-a s-b t} \\
& =\frac{1}{k^{2}} \sum_{x=x^{\prime}+0}^{x^{\prime}+k-1} \sum_{y=y^{\prime}+0}^{y^{\prime}+k-1} g\left(x-x^{\prime}, y-y^{\prime}\right) \cdot \omega_{k}^{-a\left(x-x^{\prime}\right)-b\left(y-y^{\prime}\right)}
\end{aligned}
$$

The values x and y are drawn from \mathbb{Z}_{k}, so the values will wrap around. The order of the summation doesn't matter. So we can rewrite those summations as sums from 0 to $k-1$:

$$
\widehat{g}(a, b)=\frac{1}{k^{2}} \sum_{x=0}^{k-1} \sum_{y=0}^{k-1} g\left(x-x^{\prime}, y-y^{\prime}\right) \cdot \omega_{k}^{-a\left(x-x^{\prime}\right)-b\left(y-y^{\prime}\right)}
$$

When we plug this formula for $\widehat{g}(a, b)$ into the formula for $k^{2} \cdot \widehat{f}(a, b) \cdot \widehat{g}(a, b)$, we get the following:

$$
\begin{aligned}
& k^{2} \cdot \widehat{f}(a, b) \cdot \widehat{g}(a, b) \\
& =\sum_{x^{\prime}=0}^{k-1} \sum_{y^{\prime}=0}^{k-1}\left(f\left(x^{\prime}, y^{\prime}\right) \omega_{k}^{-a x^{\prime}-b y^{\prime}}\left(\frac{1}{k^{2}} \sum_{x=0}^{k-1} \sum_{y=0}^{k-1} g\left(x-x^{\prime}, y-y^{\prime}\right) \omega_{k}^{-a\left(x-x^{\prime}\right)-b\left(y-y^{\prime}\right)}\right)\right) \\
& =\frac{1}{k^{2}} \sum_{x^{\prime}=0}^{k-1} \sum_{y^{\prime}=0}^{k-1} \sum_{x=0}^{k-1} \sum_{y=0}^{k-1}\left(f\left(x^{\prime}, y^{\prime}\right) \omega_{k}^{-a x^{\prime}-b y^{\prime}} g\left(x-x^{\prime}, y-y^{\prime}\right) \omega_{k}^{-a\left(x-x^{\prime}\right)-b\left(y-y^{\prime}\right)}\right) \\
& =\frac{1}{k^{2}} \sum_{x=0}^{k-1} \sum_{y=0}^{k-1} \sum_{x^{\prime}=0}^{k-1} \sum_{y^{\prime}=0}^{k-1}\left(f\left(x^{\prime}, y^{\prime}\right) g\left(x-x^{\prime}, y-y^{\prime}\right) \omega_{k}^{-a x^{\prime}-b y^{\prime}-a\left(x-x^{\prime}\right)-b\left(y-y^{\prime}\right)}\right) \\
& =\frac{1}{k^{2}} \sum_{x=0}^{k-1} \sum_{y=0}^{k-1}\left(\sum_{x^{\prime}=0}^{k-1} \sum_{y^{\prime}=0}^{k-1} f\left(x^{\prime}, y^{\prime}\right) g\left(x-x^{\prime}, y-y^{\prime}\right)\right) \omega_{k}^{-a x-b y} \\
& =\frac{1}{k^{2}} \sum_{x=0}^{k-1} \sum_{y=0}^{k-1}(f \otimes g)(x, y) \cdot \omega_{k}^{-a x-b y} \\
& =\widehat{(f \otimes g)}(a, b)
\end{aligned}
$$

This is precisely what we wanted to show.
(d) Design an $O\left(k^{2} \lg k\right)$ time algorithm to compute the discrete Fourier transform and its inverse.

Solution: For the purposes of this problem, we will be using the definition of the FFT that matches the definition more commonly used outside of CS - the inverse of the FFT seen in class. More formally, we say that \widehat{h} is the one-dimensional FFT of h if:

$$
\widehat{h}(a)=\frac{1}{k} \cdot \sum_{x} h(x) \cdot \omega_{k}^{-a x}
$$

Hence, for this problem, the result h of inverting the FFT on \widehat{h} is defined to be:

$$
h(a)=\sum_{x} \widehat{h}(x) \cdot \omega_{k}^{a x}
$$

With these definitions in place, we can derive algorithms for two-dimensional FFT using the one-dimensional algorithm as a black box.
The algorithm that we will use to compute the two-dimensional FFT involves reducing the problem to computing $\Theta(k)$ different FFTs for one-dimensional functions. More specifically, we use the following algorithm to compute the two-dimensional FFT:

1. Use $f(x, y)$ to create k different functions f_{x} that operate on the domain \mathbb{Z}_{k}. The function $f_{x}(y)$ is defined to be $f(x, y)$.
2. Run one-dimensional FFT k times, once on each function f_{x}. This yields k functions \widehat{f}_{x} that operate on the domain \mathbb{Z}_{k}.
3. Use the computed functions \widehat{f}_{x}, to create k different functions g_{b} that operate on the domain \mathbb{Z}_{k}. The function $g_{b}(x)$ is defined to be $\widehat{f}_{x}(b)$.
4. Run one-dimensional FFT k times, once on each function g_{b}. This yields k functions $\widehat{g_{b}}$ that operate on the domain \mathbb{Z}_{k}.
5. Define the function \widehat{f} such that $\widehat{f}(a, b)=\widehat{g_{b}}(a)$. Return the function \widehat{f}.

We begin by analyzing the runtime of this algorithm. Step 1 requires us to create k functions with domains of size k, and calculating each value requires $\Theta(1)$ time, so the total runtime required is $\Theta\left(k^{2}\right)$. Step 2 requires us to run FFT k times, each time on a function with domain k. Each time we run FFT requires $\Theta(k \log k)$ time, for a total of $\Theta\left(k^{2} \log k\right)$. Step 3, like Step 1, requires us to construct k functions with domains of size k. Calculating each value only requires a lookup, for a total of $\Theta\left(k^{2}\right)$ time. Step 4 has the same runtime as Step $2, \Theta\left(k^{2} \log k\right)$. Finally, step 5 requires us to construct a function with domain of size k^{2}, and each value of the function is looked up elsewhere. So the total runtime is $\Theta\left(k^{2} \log k\right)$, just as we wanted.
Next, we must examine the correctness of this algorithm. We may do so by starting with step 5 and gradually expanding the definition of \widehat{f} using the definition of the FFT
and the equalities resulting from the various steps in our algorithm.

$$
\begin{aligned}
\widehat{f}(a, b) & =\widehat{g_{b}}(a) & & \text { (definition from step 5) } \\
& =\frac{1}{k} \sum_{x=0}^{k-1} g_{b}(x) \cdot \omega_{k}^{-a x} & & \text { (FFT performed in step 4) } \\
& =\frac{1}{k} \sum_{x=0}^{k-1} \widehat{f}_{x}(b) \cdot \omega_{k}^{-a x} & & \text { (definition from step 3) } \\
& =\frac{1}{k} \sum_{x=0}^{k-1}\left(\frac{1}{k} \sum_{y=0}^{k-1} f_{x}(y) \cdot \omega_{k}^{-b y}\right) \cdot \omega_{k}^{-a x} & & \text { (FFT performed in step 2) } \\
& =\frac{1}{k^{2}} \sum_{x=0}^{k-1} \sum_{y=0}^{k-1} f(x, y) \cdot \omega_{k}^{-b y} \cdot \omega_{k}^{-a x} & & \text { (definition from step 1) } \\
& =\frac{1}{k^{2}} \sum_{x=0}^{k-1} \sum_{y=0}^{k-1} f(x, y) \cdot \omega_{k}^{-a x-b y} & & \text { (rearranging terms) }
\end{aligned}
$$

This is precisely the definition of two-dimensional convolution, so our algorithm will compute the correct results.
How can we compute the inverse two-dimensional FFT? It's possible to compute it by using ω_{k}^{-1} instead of ω_{k} in all of the FFT calculations, and multiplying by a constant. For completeness, we give a more detailed algorithm, closely resembling the algorithm for two-dimensional FFT. More formally, the following algorithm can be used to compute the inverse FFT of a two-dimensional function \widehat{f} :

1. Use $\widehat{f}(x, y)$ to create k different functions \widehat{f}_{x} that operate on the domain \mathbb{Z}_{k}. The function $\widehat{f}_{x}(y)$ is defined to be $\widehat{f}(x, y)$.
2. Run the one-dimensional inverse FFT k times, once on each function \widehat{f}_{x}. This yields k functions f_{x} that operate on the domain \mathbb{Z}_{k}.
3. Use the computed functions f_{x}, to create k different functions $\widehat{g_{b}}$ that operate on the domain \mathbb{Z}_{k}. The function $\widehat{g_{b}}(x)$ is defined to be $f_{x}(b)$.
4. Run one-dimensional FFT k times, once on each function $\widehat{g_{b}}$. This yields k functions g_{b} that operate on the domain \mathbb{Z}_{k}.
5. Define the function f such that $f(a, b)=g_{b}(a)$. Return the function f.

The runtime analysis of this function proceeds analogously to the runtime analysis of the FFT algorithm given above, for a total runtime of $\Theta\left(k^{2} \log k\right)$.

We use a similar technique to show the correctness of our algorithm:

$$
\begin{aligned}
f(a, b) & =g_{b}(a) & & \text { (definition from step 5) } \\
& =\sum_{x=0}^{k-1} \widehat{g}_{b}(x) \cdot \omega_{k}^{a x} & & \text { (inverse FFT in step 4) } \\
& =\sum_{x=0}^{k-1} f_{x}(b) \cdot \omega_{k}^{a x} & & \text { (definition from step 3) } \\
& =\sum_{x=0}^{k-1}\left(\sum_{y=0}^{k-1} \widehat{f}_{x}(y) \cdot \omega_{k}^{b y}\right) \cdot \omega_{k}^{a x} & & \text { (inverse FFT in step 2) } \\
& =\sum_{x=0}^{k-1} \sum_{y=0}^{k-1} \widehat{f}(x, y) \cdot \omega_{k}^{b y} \cdot \omega_{k}^{a x} & & \text { (definition from step 1) } \\
& =\sum_{x=0}^{k-1} \sum_{y=0}^{k-1} \widehat{f}(x, y) \cdot \omega_{k}^{a x+b y} & & \text { (rearranging terms) }
\end{aligned}
$$

So we have correctly computed the inverse FFT of \widehat{f}.
(e) Design an $O\left(m^{2} \lg m\right)$ time algorithm to solve the electric potential problem for a grid of size $m \times m$.

Solution: The following algorithm can be used to compute $V(x, y)$ for all points (x, y) not occupied by a charge.

1. Compute the values of f and g, as defined in part (b), on $\mathbb{Z}_{2 m-1} \times \mathbb{Z}_{2 m-1}$. This requires the computation of $\Theta\left((2 m-1)^{2}\right)=\Theta\left(m^{2}\right)$ values, each of which requires $\Theta(1)$ time to compute.
2. Compute the values of \widehat{f} and \widehat{g} using the two-dimensional FFT algorithm from part (d). This requires $\Theta\left(m^{2} \log m\right)$ time in total.
3. Compute the values of \widehat{h}, defined to be $\widehat{h}(x, y)=\widehat{f}(x, y) \cdot \widehat{g}(x, y)$ for all values of x and y. This requires the computation of $\Theta\left((2 m-1)^{2}\right)=\Theta\left(m^{2}\right)$ values, each of which is the product of two values that have already been computed. As a result, this step requires $\Theta\left(m^{2}\right)$ time.
4. Compute the values of h using the two-dimensional inverse FFT algorithm from part (d). This requires $\Theta\left(m^{2} \log m\right)$ time.
The results in part (c) show that steps 2,3 , and 4 are computing the convolution of f and g. We showed in part (b) that the convolution of f and g gives us $V(x, y)$ for all (x, y) not occupied by a charge. Therefore, this algorithm will compute $V(x, y)$ correctly. The total runtime of this algorithm is $\Theta\left(m^{2} \log m\right)$.

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

