
Design and Analysis of Algorithms March 15, 2012

Massachusetts Institute of Technology 6.046J/18.410J

Profs. Dana Moshkovitz and Bruce Tidor Handout 12

Problem Set 5

This problem set is due at 9:00pm on Wednesday, March 21, 2012.

Both exercises and problems should be solved, but only the problems should be turned in.

Exercises are intended to help you master the course material. Even though you should not turn in

the exercise solutions, you are responsible for material covered by the exercises.

Mark the top of the first page of your solution with your name, the course number, the problem

number, your recitation section, the date, and the names of any students with whom you collabo-

rated. The homework template (LATEX) is available on the course website.

You will often be called upon to “give an algorithm” to solve a certain problem. Your write-up

should take the form of a short essay. A topic paragraph should summarize the problem you are

solving and what your results are. The body of the essay should provide the following:

1. A description of the algorithm in English and, if helpful, pseudo-code.

2. At least one worked example or diagram to show more precisely how your algorithm works.

3. A proof (or indication) of the correctness of the algorithm.

4. An analysis of the running time of the algorithm.

Remember, your goal is to communicate. Full credit will be given only to correct solutions that

are described clearly. Convoluted and opaque descriptions will receive lower marks.

Exercise 5-1. Do Exercise C.5-1 on page 1214 of CLRS.

Exercise 5-2. Do Exercise C.5-5 on page 1214 of CLRS.

Exercise 5-3. Do Exercise C.5-6 on page 1215 of CLRS.

Exercise 5-4. Do Exercise 11.3-3 on page 269 of CLRS.

Exercise 5-5. Do Exercise 11.3-5 on page 269 of CLRS.

Exercise 5-6. Do Exercise 11.5-1 on page 282 of CLRS.

Exercise 5-7. Do Problem 11-2 on page 283 of CLRS.

2 Handout 12: Problem Set 5

Problem 5-1. High Probability Bounds on Randomized Select

Recall that in lecture, we discussed an algorithm for randomized select, for which you can find

pseudocode in CLRS on page 216 in section 9.2. In this problem, you’ll explore the problem of

high probability bounds for randomized select.

We’ll go through a few steps to disprove the following statement, which we will refer to as (∗):

Let T (n) be the running time of RANDOMIZED-SELECT on an input of size n. Then there exist
1

integers n0, c ≥ 1 such that for all n ≥ n0, P (T (n) > cn) ≤ .
n

(a) Let b be a real number such that 1/2 < b < 1, and let Ai be the array in the ith

recursion. Define a bad pivot choice in the ith recursion as one that results in |Ai+1| >
b|Ai|. (Note that in class, we have been using b = 9/10.)

Give a lower bound on the probability of having k bad pivot choices in a row. (The

lower bound should hold for any input to RANDOMIZED-SELECT. Make it as tight as

you can; you’ll need it in part (c).)

(b) If our initial array size is n, then after one bad pivot choice, the next array is of size at

least bn. Recall that the running time at each recursive call requires time equal to at

least the size of the array.

Give a precise lower bound (do not use big-O notation) on the total running time of

k recursive calls to RANDOMIZED-SELECT, if in every recursive call we chose a bad

pivot.

(c) Use a proof by contradiction to disprove the statement (∗) above.

(Hint: Suppose there exists a c, n0 satisfying the equation above. Then pick b =
1− 1

2
.)

c

Problem 5-2. Random Vectors and Matrices

Random vectors are good choices for hashing

Z

and testing, because they are unlikely to be o

onal to a given (non-zero) input vector. In this problem, we will perform all operations in

some prime number p (which is to say we take the result of any arithmetic operation mod

(a) You are given a non-zero vector ~u ∈ n
p , and some number c ∈

if another vector ~v ∈ n
p has each element chosen independently an

Zp. Prove that

d uniformly at

Z

Z

rthog-

p for

p).

random from p, then t

Z

he probability that ~v · ~u = c is 1/p.

(Hint: Observe that any non-zero vector ~u of size n has n− 1 elements which can be

arranged into a non-zero vector of size n− 1. Then use induction to prove the claim.)

In class, we have seen a couple examples of universal hash families. We will now devise another

universal hash family based on random matrices.

(b) You are given two vectors ~x, ~y ∈ n
p such that ~x = ~y. Using the result from part (a),

show that if ~v is a random vector as before, then Pr(~v · ~x = ~v · ~y) = 1/p.

Z 6

Handout 12: Problem Set 5 3

(c) Using the result from part (b), show that if A is an m × n matrix with each element

chosen independently and at random from p, then Pr(A~x = A~y) = 1/pm.

(d) Conclude that the family H of all such functions hA(~x) = A~x where A is an m × n
matrix with elements in p, is universal.

In the implementation of the encryption algor

Z

ithm BitWhipperTM, the key step is to perform the

composition of two hashes to compute the vector ~y ∈ k
2 such that ~y = hB(hA(~x)), where ~x ∈ n

2 ,

A is an m× n matrix, B is a k ×m matrix, and hA and hB are defined as in part (d) with p = 2.

Note that all operations here are performed in 2

Z

, which means all additions are bit-wise XOR.

Ben Bitdiddle gives you a k × n matrix C over 2, which he says is equal to B · A. If he’s right,

you could just use hC(~x) in the implementation of BitWhipperTM, in lieu of hB(hA(~x)). You want

to make sure that C = B · A, but you don’t want to multiply the matrices because it will take you

O(kmn) time.

In part (e), you will come up with a randomized algorithm that runs much faster than O(kmn)
time, and also runs faster than any known algorithm for rectangular matrix multiplication.

(e) Using the result from part (a), devise a randomized algorithm to determine if C =
B · A. Show that your algorithm is correct with probability at least 90%.

Z

Z

Z Z

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

