
Lecture 2

Recap & Interval Scheduling
Supplemental reading in CLRS: Section 16.1; Section 4.4

2.1 Recap of Median Finding

Like MERGE-SORT, the median-of-medians algorithm SELECT calls itself recursively, with the argu-
ment to each recursive call being smaller than the original array A. However, while MERGE-SORT

runs in O(n lgn) time, SELECT is able to run in linear time. Why is this? There are two key observa-
tions to make:

Observation 1. Given an element x of A, we can partition around x in linear time. Thus, all the
steps in SELECT other than the recursive calls take a total of only O(n) time.

Observation 2. Finding the median of n elements can be reduced to finding the median of n/5
elements and then finding the median of at most 7

10 n elements. (The true figures in our case are
dn/5e and 7

10 n+6, but that’s not important for the analysis that follows. For a refresher on where this
observation comes from, see the proof of running time and Figure 1.1.)

To see why the second observation is important, we’ll do a branching analysis. This will also show
how we might have figured out the running time of our algorithm without guessing. Observation 2
is just a translation into English of the recurrence relation

T(n)≤ T
(1

5 n
)+T

( 7
10 n

)+O(n). (2.1)

Pick a constant c such that T(n) ≤ T
(1

5 n
)+T

( 7
10 n

)+ cn for all sufficiently large n. (Actually, for
simplicity, let’s assume the relation holds for all n.1) Then we can apply (2.1) to each of the terms
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1Make sure you see why we are allowed to do this.
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Figure 2.1. A recursion tree for SELECT. Running SELECT on an array of n elements gives rise to two daughter processes,
with arguments of sizes 1

5 n and 7
10 n. Each of these daughters produces two of its own daughters, with arguments of sizes
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n (a geometric sum)

= 10cn.

This geometric sum makes it clear that it is very important for 1
5 + 7

10 to be less than 1—otherwise,
the geometric sum would diverge. If the number 1

5 in our recurrence had been replaced by 2
5 , the

resulting recurrence would have non-linear solutions and the running time would be T(n) =Θ(n2).
On an intuitive level, this makes sense: reducing an input of n entries to an input of

(1
5 + 7

10
)
n = 9

10 n
entries is a good time-saver, but “reducing” an input of n entries to an input of

(2
5 + 7

10
)
n = 11

10 n entries
is not.

Finally, let’s make an observation that one is not usually able to make after writing an algorithm:

“SELECT achieves the best possible asymptotic running time for an algorithm that solves
the median finding problem.”

This statement must be interpreted carefully. What we mean is that any correct algorithm which
solves the median finding problem must be Ω(n), since such an algorithm must at least look at each
of the n entries of A. However, there are several other considerations that prevent us from being
able to conclude that SELECT is the “best” median finding algorithm:

• It is only the asymptotic running time of SELECT that is optimal. The overhead could be very
large. There may exist algorithms with a larger asymptotic running time that are still much
faster than SELECT for all practical purposes because the asymptotic behavior only becomes
significant when n is inhumanly large.

• There may also exist algorithms with the same asymptotic running time as SELECT but whose
implementations run faster than those of SELECT because they have smaller overhead (i.e.,
the constants implicit in the big-O notation are smaller).

• There may exist randomized algorithms which run in sublinear time and return the correct
answer with high probability, or deterministic algorithms which run in sublinear time and
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return approximately the correct answer.2

2.2 Interval Scheduling

Does your planner look like this?

8am 9 10 11 Noon 1pm 2 3 4 5 6 7 8 9 10 11 Midnight

lecture lunch work group sports game

lecture group meeting lecture language class party

seminar

The first step to getting the most out of your day is getting enough sleep and eating right. After that,
you’ll want to make a schedule that is in some sense “maximal.” There are many possible precise
formulations of this problem; one of the simpler ones is this:

Input: A list of pairs L = 〈
(s1, f1), . . . , (sn, fn)

〉
, representing n events with start time si and end

time f i (si < f i).

Output: A list of pairs S = 〈
(si1 , f i1), . . . , (sik , f ik )

〉
representing a schedule, such that

si1 < f i1 ≤ si2 < f i2 ≤ ·· · ≤ sik < f ik

(i.e., no scheduled events overlap), where k is maximal.

This formulation corresponds to wanting to attend as many events as possible (not allowing late
arrivals or early departures, without any regard for how long the events are, without any preference
of one event over another, and assuming it takes no time to travel between events).

While all of us face problems like this in everyday life, probably very few of us have tried to
mathematically rigorize the heuristics we use to decide what to do each day. Often we employ greedy
strategies. A greedy strategy can be used in situations where it is easy to tell what is “locally
optimal.” The hope is that by making locally optimal decisions at each point, we will arrive at a
globally optimal solution.3 A couple of reasonable-sounding greedy strategies are:

• Pick the activities that take the least time (minimize f i − si).

2 While such a sublinear algorithm is probably out of the question in our case (at least if we have no prior information
about A), there are lots of problems in which this does occur. For example, if you believe P 6= NP, we will see later in the
course that there exist polynomial-time approximations to some NP-hard problems.

3 An analogous situation is this: Imagine that you live in the Himalayan village of Nagarkot and are trying to find the
highest point in the Himalayan mountain range. A greedy strategy would be to hike straight up. Since this strategy is
locally optimal, you will eventually arrive at a peak from which it is impossible to go up without first going down. However,
your peak will probably not be the global optimum, since Nagarkot is in central Nepal and Mt. Everest is on the Chinese
border.
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This strategy fails because attending one short activity may prevent you from attending two
other activities.

• Each time you find yourself doing nothing, go to the activity that starts the soonest (locally
minimize si).

This strategy fails because it is possible for the earliest activity to preclude lots of other activi-
ties.

Somewhat surprisingly, there is a greedy strategy that is optimal:

• Each time you find yourself doing nothing, go to the activity that ends the soonest (locally
minimize f i). In pseudocode,

1 while there are still activities to consider do
2 Pick (si, f i) with the smallest f i
3 Remove all activities that intersect (si, f i)

Claim. The above algorithm outputs a list of pairs
〈
(si1 , f i1), . . . , (sik , f ik )

〉
such that

si1 < f i1 ≤ si2 < f i2 ≤ ·· · ≤ sik < f ik .

Proof. By definition, si < f i. Now, if si2 < f i1 , then (si2 , f i2) overlaps (si1 , f i1). Thus (si2 , f i2) must have
been removed from consideration after we chose (si1 , f i1), a contradiction. The same reasoning with
1 and 2 replaced by j and j+1 for arbitrary j completes the proof.

Claim. Suppose given a list of activities L. If an optimal schedule has k∗ activities, then the above
algorithm outputs a schedule with k∗ activities.

Proof. By induction on k∗. If the optimal schedule has only one activity, then obviously the claim
holds. Next, suppose the claim holds for k∗ and we are given a set of events whose optimal schedule
has k∗+1 activities. Let S∗ = S∗[1, . . . ,k∗+1] = 〈

(s`1 , f`1), . . . , (s`k∗+1 , f`k∗+1)
〉

be an optimal schedule,
and let S = S[1, . . . ,k]= 〈

(si1 , f i1), . . . , (sik , f ik )
〉

be the schedule that our algorithm gives. By construc-
tion, f i1 ≤ f`1 . Thus the schedule S∗∗ = 〈

(si1 , f i1), (s`2 , f`2), . . . , (s`k∗+1 , f`k∗+1)
〉

has no overlap, and is
also optimal since it has k∗+1 activities. Let L′ be the set of activities with si ≥ f i1 . The fact that
S∗∗ is optimal for L implies that S∗∗[2, . . . ,k∗+1] is optimal for L′. Thus an optimal schedule for L′

has k∗ activities. So by the inductive hypothesis, running our algorithm on L′ produces an optimal
schedule. But by construction, running our algorithm on L′ just gives S[2, . . . ,k]. Since any two opti-
mal schedules have the same length, we have k = k∗+1. So S is an optimal schedule, completing the
induction.

This algorithm can be implemented with Θ(n lgn) running time as follows:
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Algorithm: UNWEIGHTED-SCHEDULE(L)
1 Sort L according to finish time using MERGE-SORT

2 S ←〈〉
3 curf←−∞ B the finish time of our current schedule
4 for (s, f ) in L do
5 if s ≥ curf then
6 S.append[(s, f )]
7 curf← f
8 return S

This implementation makes one pass through the list of activities, ignoring those which overlap with
the current schedule. Notice that the only part of this algorithm that requires Θ(n lgn) time is the
sorting—once L is sorted, the remainder of the algorithm takes Θ(n) time.

2.2.1 Weighted Interval Scheduling

Let’s try a more sophisticated formulation of the scheduling problem. Suppose that rather than
maximize the total number of events we attend, we want to maximize the total amount of time we
are busy. More generally still, suppose each event in L has a weight w > 0 representing how much
we prioritize that event.

Input: A list of triples L = 〈
(s1, f1,w1), . . . , (sn, fn,wn)

〉
, representing n events with start time si,

end time f i (si < f i), and weight wi > 0.

Output: A list of triples S = 〈
(si1 , f i1 ,wi1), . . . , (sik , f ik ,wik )

〉
representing a schedule, such that

si1 < f i1 ≤ si2 < f i2 ≤ ·· · ≤ sik < f ik

(i.e., no scheduled events overlap), where
∑k

j=1 wi j is maximal.

A greedy algorithm of the sort above will not work for this problem.

1 1 1

10 1

Which is better: attending a short event with low weight (so that you have more free time for
the heavy events), or attending a slightly longer event with slightly higher weight? It depends on
whether there are exciting opportunities in the future.

1

2 2

1 100

Here is a sketch of an efficient solution to the weighted scheduling problem:
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Figure 2.2. An illustration of WEIGHTED-SCHEDULE.

Algorithm: WEIGHTED-SCHEDULE(L)
Put all the start and finish times into an array A = 〈s1, f1, . . . , sn, fn〉. Sort A, keeping track
of which activity each number belongs to (that is, the index i). Make a new array B with
one entry for each element of A. The idea is that the value of B[t] will be the maximal
weight of a schedule that starts at point t, along with a list of event indices that gives
such a schedule. Thus B[t0] (assuming your day starts at t = t0) will give you an optimal
schedule for your day.

To construct B, first initialize all entries to zero. Then traverse backwards through A.
The first time you hit a start point sifirst , set B[sifirst] ← wifirst . From then on, keep track
of the most recent start point you have seen in a new variable icur. Each time you hit an
endpoint f i, set B[ f i]← B[sicur]. Each time you hit a new start point si, set

B[si]←max
{
B[sicur], wi +B[ f i]

}
.

Once you have finished, B[t0] (assuming your day starts at t = t0) will be the weight of an
optimal schedule.

For ease of exposition, I didn’t say explicitly how to keep track of the actual schedule you
are constructing (which you will usually want to do—what use is the maximal weight if you
don’t know what schedule gives that weight?). That is an easy implementation detail that
you can figure out for yourself. A more subtle issue that I didn’t address is the possibility
of duplicate elements of A. One way to deal with this is to, for each new start point s, keep
a cache of possible weights of schedules starting at s (using a new variable to keep track
of the heaviest schedule in cache). The cache should only be cleared when you hit a start
point whose value is strictly less than s (or run out of elements of A), at which point you
will know what value to assign to B[s].

Again, it is easy to see that this algorithm runs in linear time after sorting, for a total running
time of O(n lgn).

This example introduces the algorithmic paradigm of dynamic programming. “Dynamic pro-
gramming” refers to a strategy in which the solution to a problem is computed by combining the
solutions to subproblems which are essentially smaller versions of the same problem. In our exam-
ple, we started with an optimal schedule for the empty set of events and then added events one at a
time (in a strategic order), arriving at an optimal schedule for the full set L of events. Each time we
wanted to solve a subproblem, we used the answers to the previous subproblems.
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2.2.2 Conclusions

This lecture showed that the way in which a problem is formulated is important. A given real-life
problem can be formulated as a precise algorithmic problem in many different, non-equivalent ways,
with different solutions.

There are several standard approaches that you should have in your toolbox. So far we have seen
greedy algorithms and dynamic programming; more will come up later in the course.
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