
Design and Analysis of Algorithms March 22, 2012

Massachusetts Institute of Technology 6.046J/18.410J

Profs. Dana Moshkovitz and Bruce Tidor Handout 14

Problem Set 5 Solutions

This problem set is due at 9:00pm on Wednesday, March 21, 2012.

Problem 5-1. High Probability Bounds on Randomized Select

Recall that in lecture, we discussed an algorithm for randomized select, for which you can find

pseudocode in CLRS on page 216 in section 9.2. In this problem, you’ll explore the problem of

high probability bounds for randomized select.

We’ll go through a few steps to disprove the following statement, which we will refer to as (∗):

Let T (n) be the running time of RANDOMIZED-SELECT on an input of size n. Then there exist
1

integers n0, c ≥ 1 such that for all n ≥ n0, P (T (n) > cn) ≤ .
n

(a) Let b be a real number such that 1/2 < b < 1, and let Ai be the array in the ith

recursion. Define a bad pivot choice in the ith recursion as one that results in |Ai+1| >
b|Ai|. (Note that in class, we have been using b = 9/10.)

Give a lower bound on the probability of having k bad pivot choices in a row. (The

lower bound should hold for any input to RANDOMIZED-SELECT. Make it as tight as

you can; you’ll need it in part (c).)

Solution: A lower bound is (1− b)k.

For most inputs, the probability of getting a single bad pivot will actually be 2(1− b),
as there are two regions the pivot could be picked from that would leave an array

of size greater than b|Ai|. However, in cases where the rank of the element being

looked for is very small (< (1 − b)n) or very large (> bn), one of these regions may

not be applicable for finding bad pivots, and therefore when Select is called on these

elements, the probability of getting a bad pivot is only (1− b).

(b) If our initial array size is n, then after one bad pivot choice, the next array is of size at

least bn. Recall that the running time at each recursive call requires time equal to at

least the size of the array.

Give a precise lower bound (do not use big-O notation) on the total running time of

k recursive calls to RANDOMIZED-SELECT, if in every recursive call we chose a bad

pivot.

Solution: After i recursive calls where each pivot chosen is a bad pivot, the smallest

possible array size we could have at that point is bin. Because the running time at

iteration i is at least the size of the array |Ai|, we have a lower bound on the running
k

time of
∑

i=0
|Ai| =

∑k

i=0
bin = n(

∑k

i=0
bi) = n((1− bk+1)/(1− b)).

2 Handout 14: Problem Set 5 Solutions

(c) Use a proof by contradiction to disprove the statement (∗) above.

(Hint: Suppose there exists a c, n0 satisfying the equation above. Then pick b =
1− 1

2
.)

c

Solution: As suggested in the hint, suppose there exists a c and n0 satisfying the

equation above, and pick b = 1− 1

2
.

c

Now we will investigate the running time and probability of choosing k bad pivots in

a row from the start, where k is some constant to be determined later. By part (b),

the running time for the first k recursive calls is at least n((1 − bk+1)/(1 − b)) =
2cn(1− bk+1).

Pick k to be a constant large enough so that bk+1 < 1/2. Then (1 − bk+1) > 1/2, so

the total running time is greater than cn.

By part (a), this situation occurs with probability at least (1− b)k, which is a constant.

Therefore we can pick an n >> k (to ensure that the algorithm does not terminate after

k recursive calls) such that n > n0 and (1 − b)k < 1/n, contradicting the statement

(∗) (which must hold for all n > n0). Therefore, we have a contradiction, and no pair

c, n0 can exist satisfying the conditions.

Problem 5-2. Random Vectors and Matrices

Random vectors are good choices for hashing and testing, because they are unlikely to be orthog-

onal to a given (non-zero) input vector. In this problem, we will perform all operations in p for

some prime number

Z

p (which is to say we take the result of any arithmetic operation mod p).

(a) You are given a non-zero vector ~u ∈ n
p , and some number c ∈ p. Prove that

if another vector ~v ∈ n
p has each element chosen independently and uniformly at

Z

random from p, then the probability that ~v · ~u = c is 1/p.

(Hint: Observe that any non-zero vector

arranged into a non-zer

Z

o vector of size n

Z

~u of size n has n− 1 elemen

− 1. Then use induction to p

Z

ts which can be

rove the claim.)

Solution: First, we show the base case, for v, u ∈ p. The goal for the base case

is to show that the probability that vu = c is 1/p for any c ∈ p. Note that, because

we know that u is nonzer

Z

o, it has a multiplicative inve

Z

rse in p, so we can divide this

whole equation by u. So we want to find the probability that v = c/u, where c/u
is some fixed number in p. Because v is chosen uniformly

Z

at

Z

random from p, this

probability is therefore 1/p.

Now we show the inductive step. Assume the property is true for vectors of size n−1.

Additionally, note that if ~u of size n is non-zero, then it must have at least one non-

zero element. If we take this element together with any other n − 2 elemen

Z

ts of ~u,

then the resulting u~′ of size n − 1 is non-zero. So, without loss of generality assume

that the non-zero element is at some index less than n.

Handout 14: Problem Set 5 Solutions 3

Then

n n−1 n−1

Pr(~v · ~u = c) = Pr(
∑

viui = c) = Pr(
∑

v − v ′

iui = c nun) = Pr(
∑

viui = c)
i=1 i=1 i=1

We can do the last step because the elements of ~v are independent. Now using the

induction hypothesis, we can conclude that the probability is 1/p.

In class, we have seen a couple examples of universal hash families. We will now devise another

universal hash family based on random matrices.

(b) You are given two vectors ~x, ~y ∈ n
p such that ~x = ~y. Using the result from part (a),

show that if ~v is a random vector a

Z

s before, then Pr(~v · ~x = ~v · ~y) = 1/p.

Solution:

~v · ~x = ~v · ~y ⇐⇒ ~v · (~x− ~y) = 0

Using the result from part (a) with ~u = ~x− ~y and c = 0, this happens with probability

1/p.

(c) Using the result from part (b), show that if

Z

A is an m × n matrix with each element

chosen independently an m

Solution: Note that A~x

Z

d at random from p, then Pr(A~x = A~y) = 1/p .

= A~y holds if and only if, for every row a~i of A, it holds that

a~i ·~x = a~i ·~y. For each a~i, the probabili

Z

ty that a~i ·~x = a~i ·~y is 1/p by part (b). Because

each of the m rows of A are independent, we can multiply these probabilities to get a

total probability of 1/pm that A~x = A~y.

(d) Conclude that the family H of all such functions hA(~x) = A~x where A is an m × n
matrix with elements in p, is universal.

Solution: Each function in H maps an input vector to a hash value that is a vector

of size m (in other words, a vector in m
p). The total number of possible hash values

is therefore pm. Choosing one of these functi

Z

ons at random results in us getting a

random matrix A. Using the result from part (c), the probability that hA(~x) = hA(~y)
for a given pair of vectors ~x and ~y that are not equal is 1/pm, fulfilling the definition

of a universal hash family.

In the implementation of the encryption algorithm BitWhipperTM, the key step is to perform the

composition of two hashes to compute the vector ~y ∈ k
2 such that ~y = hB(hA(~x)), where ~x ∈ n

2 ,

A is an m× n matrix, B is a k ×m matrix, and hA and hB are defined as in part (d) with p =
Z

2.

6

4 Handout 14: Problem Set 5 Solutions

Note that all operations here are performed in 2, which means all additions are bit-wise XOR.

Ben Bitdiddle gives you a k × n matrix C over 2, which he says is equal to B · A. If he’s right,

you could just use hC(~x) in the implementation of BitWhipperTM, in lieu of hB(hA(~x)). You want

to make sure that C = B · A, but you don’t want to multiply the matrices because it will take you

O(kmn) time.

In part (e), you will come up with a randomized algorithm that runs much faster than O(kmn)
time, and also runs faster than any known algorithm for rectangular matrix multiplication.

(e) Using the result from part (a), devise a randomized algorithm to determine if C =
B · A. Show that your algorithm is correct with probability at least 90%.

Solution: Pick a random input vector ~x and compare the output of C~x to B(A~x).
If they are unequal, we conclude that the Ben’s matrix is incorrect, otherwise we

conclude it’s correct.

The output of this algorithm will be incorrect if C = B · A, but the two outputs

generated are equal. To analyze the probability of this happening, suppose that C =
B ·A and consider (C −B ·A)~x, which is the product of a nonzero k× n matrix with

a vector.

This nonzero matrix must have at least one nonzero row. Consider the dot product of

this row with ~x. Using (a), the probability that this product is equal to 0 is 1/p = 1/2,

which is an upper bound for when the algorithm will be wrong. If we repeat 4 times,

the probability of all four tries being wrong is 1/16, meaning we have at least 15/16

probability of correctness, which is more than 90%.

Z

Z

6
6

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

