
Contents

1 Introduction & Median Finding
1.1 The Course
1.2 Algorithms
1.3 Order Statistics (“Median Finding”)

2 Recap & Interval Scheduling
2.1 Recap of Median Finding
2.2 Interval Scheduling

3 Minimum Spanning Trees I
3.1 Greedy Algorithms
3.2 Graphs
3.3 Minimum Spanning Trees

4 Minimum Spanning Trees II
4.1 Implementing Kruskal’s Algorithm
4.2 Prim’s Algorithm
4.3 Greedy Strategies

5 Fast Fourier Transform
5.1 Multiplication
5.2 Convolution

6 All-Pairs Shortest Paths I
6.1 Dynamic Programming
6.2 Shortest-Path Problems
6.3 The Floyd–Warshall Algorithm

7 All-Pairs Shortest Paths II
7.1 Johnson’s Algorithm
7.2 Linear Programming

8 Randomized Algorithms I
8.1 Randomized Median Finding
8.2 Another Example: Verifying Polynomial Multiplication
8.3 The Markov Bound

9 Randomized Algorithms II
9.1 The Central Limit Theorem and the Chernoff Bound
9.2 Analysis of QUICKSORT

9.3 Monte Carlo Sampling
9.4 Amplification

10 Hashing and Amortization
10.1 Arrays and Hashing
10.2 Hash Families
10.3 Amortization

11 Amortized Analysis
11.1 Aggregate Analysis
11.2 Accounting Method
11.3 Potential Method
11.4 Example: A Dynamically Resized Table

12 Competitive Analysis
12.1 Online and Offline Algorithms
12.2 Example: A Self-Organizing List

13 Network Flow
13.1 The Ford–Fulkerson Algorithm
13.2 The Max Flow–Min Cut Equivalence
13.3 Generalizations

14 Interlude: Problem Solving
14.1 What to Bring to the Table
14.2 How to Attack a Problem
14.3 Recommended Reading

15 van Emde Boas Data Structure
15.1 Analogy: The Two-Coconut Problem
15.2 Implementation: A Recursive Data Structure
15.3 Solving the Recurrence

16 Disjoint-Set Data Structures
16.1 Linked-List Implementation
16.2 Forest-of-Trees Implementation

17 Complexity and NP-completeness
17.1 Examples
17.2 Complexity
17.3 Example: Algorithm Search

18 Polynomial-Time Approximations
18.1 Vertex Cover

18.2 Set Cover
18.3 Partition

19 Compression and Huffman Coding
19.1 Compression
19.2 The Huffman Algorithm

20 Sublinear-Time Algorithms
20.1 Estimating the Number of Connected Components
20.2 Estimating the Size of a Minimum Spanning Tree

21 Clustering
21.1 Hierarchical Agglomerative Clustering
21.2 Minimum-Radius Clustering

22 Derandomization
22.1 Using Conditional Expectation
22.2 Using Pairwise Independence

23 Computational geometry
23.1 Intersection Problem
23.2 Finding the Closest Pair of Points

Index

Lecture 1

Introduction & Median Finding
Supplemental reading in CLRS: Section 9.3; Chapter 1; Sections 4.3 and 4.5

1.1 The Course

Hello, and welcome to 6.046 Design and Analysis of Algorithms. The prerequisites for this course are

1. 6.006 Introduction to Algorithms. This course is designed to build on the material of 6.006. The
algorithms in 6.046 are generally more advanced. Unlike 6.006, this course will not require
students to implement the algorithms; instead, we make frequent use of pseudocode.

2. Either 6.042/18.062J Mathematics for Computer Science or 18.310 Principles of Applied Math-
ematics. Students must be familiar with beginning undergraduate mathematics and able to
write mathematical proofs. After taking this course, students should be able not just to de-
scribe the algorithms they have learned, but also to prove their correctness (where applicable)
and rigorously establish their asymptotic running times.

The course topics are as follows:

• Divide and Conquer
• Dynamic Programming
• Greedy Algorithms
• Graph Algorithms
• Randomized Algorithms
• Data Structures
• Approximation Algorithms.

The course textbook is Introduction to Algorithms 3e., by Cormen, Leiserson, Rivest and Stein. We
will usually refer to the textbook (or the authors) as “CLRS.” In addition, Profs. Bruce Tidor and
Dana Moshkovitz, who taught this course in spring of 2012, prepared hand-written notes for each
lecture. What you are reading is an electronic, fleshed-out version of those notes, developed by Ben
Zinberg with oversight by Prof. Moshkovitz under the commission of MIT OpenCourseWare.

1.2 Algorithms

Before our first example, let’s take a moment to ask:

What is the study of algorithms, and why is it important?

CLRS offer the following answer: An algorithm is “any well-defined computational procedure that
takes some [. . .] input and produces some [. . .] output.” They point out that algorithms are an
essential component not just of inherently electronic domains such as electronic commerce or the
infrastructure of the Internet, but also of science and industry, as exemplified by the Human Genome
Project or an airline that wishes to minimize costs by optimizing crew assignments.

Studying algorithms allows us both to understand (and put to use) the capabilities of computers,
and to communicate our ideas about computation to others. Algorithms are a basis for design: they
serve as building blocks for new technology, and provide a language in which to discuss aspects of
that technology. The question of whether a certain algorithm is effective depends on the context in
which it is to be used. Often relevant are the following two concerns:

• Correctness. An algorithm is said to be correct if, for every possible input, the algorithm halts
with the desired output. Usually we will want our algorithms to be correct, though there are
occasions in which incorrect algorithms are useful, if their rate of error can be controlled.

• Efficiency. The best algorithms are ones which not just accomplish the desired task, but use
minimal resources while doing so. The resources of interest may include time, money, space in
memory, or any number of other “costs.” In this course we will mostly be concerned with time
costs. In particular, we will try to give asymptotic bounds on the “number of steps” required
to perform a computation as a function of the size of the input. The notion of a “step” is an
imprecise (until it has been given a precise definition) abstraction of what on current computers
could be processor cycles, memory operations, disk operations, etc. Of course, these different
kinds of steps take different amounts of time, and even two different instructions completed
by the same processor can take different amounts of time. In this course, we do not have the
time to study these subtleties in much detail. More advanced courses, such as 6.854 Advanced
Algorithms, take up the subject in further detail. Fortunately, the course material of 6.046 is
extremely useful despite its limitations.

1.3 Order Statistics (“Median Finding”)

Median finding is important in many situations, including database tasks. A precise statement of
the problem is as follows:

Problem 1.1. Given an array A = A[1, . . . ,n] of n numbers and an index i (1 ≤ i ≤ n), find the ith-
smallest element of A.

For example, if i = 1 then this amounts to finding the minimum element, and if i = n then we are
looking for the maximum element. If n is odd, then setting i = n+1

2 gives the median of A. (If n is
even, then the median will probably be some average of the cases i = ⌊ n+1

2
⌋

and i = ⌈ n+1
2

⌉
, depending

on your convention.)

Intuitive Approach. We could simply sort the entire array A—the ith element of the resulting
array would be our answer. If we use MERGE-SORT to sort A in place and we assume that jumping
to the ith element of an array takes O(1) time, then the running time of our algorithm is

Lec 1 – pg. 2 of 7

(MERGE-SORT) O(n lgn)
(jump to the ith element) + O(1)

O(n lgn) (worst case).

Can we expect to do better than this initial approach? If sorting all of A were a necessary step
in computing any individual median, then the answer would be no. But as it stands, sorting all of A
does much more work than we are asking for—it finds all n medians, whereas we only wanted one.
So, even though the best sorting algorithms take Θ(n lgn) time, it does not necessarily follow that
median finding cannot be done faster.

It turns out that median finding can be done in O(n) time. In practice, this is usually accom-
plished by a randomized algorithm with linear expected running time, but there also exists a de-
terministic algorithm with linear worst-case time. In a 1973 paper, Blum, Floyd, Pratt, Rivest and
Tarjan proposed the so-called “median-of-medians” algorithm, which we present below.

For this algorithm, we will assume that the elements of A are distinct. This is not a very strong
assumption, and it is easy to generalize to the case where A is allowed to have duplicate elements.1

Algorithm: SELECT(A, i)

1. Divide the n items into groups of 5 (plus any remainder).

2. Find the median of each group of 5 (by rote). (If the remainder group has an even
number of elements, then break ties arbitrarily, for example by choosing the lower
median.)

3. Use SELECT recursively to find the median (call it x) of these dn/5e medians.

4. Partition around x.∗ Let k = rank(x).†

A i < x x A i > x︸ ︷︷ ︸
k−1 elements

↑
Ak

︸ ︷︷ ︸
n−k elements

5. • If i = k, then return x.

• Else, if i < k, use SELECT recursively by calling SELECT(A[1, . . . ,k−1], i).‡

• Else, if i > k, use SELECT recursively by calling SELECT(A[k+1, . . . , i], i−k).

∗ By “partition around x,” we mean reorder the elements of A in place so that all elements prior to x are less
than x (and consequently all elements after x are ≥ x—in our case actually > x since there are no duplicate
elements). Partitioning can be done in linear time. We won’t show the details here, but they can be found in
§7.1 of CLRS.

† For a set S of distinct numbers, we define the rank of an element x ∈ S to be the number k such that x is
the kth-smallest element of S. Thus, in the set {5,8,2,3}, the rank of 5 is 3.

‡The array A[1, . . . ,k − 1] should be passed by reference—there is certainly no need to waste time and
memory by making a new copy.

1 One example of such a way is to equip each element of A with satellite data. Replace each element A[j] (1 ≤ j ≤ n)
with the pair 〈A[j], j〉, thus turning A into an array of ordered pairs. Then we can define an order on A by saying
〈x1, j1〉 < 〈x2, j2〉 iff either x1 < x2, or x1 = x2 and j1 < j2. (This is the so-called “lexicographic order.”) Since this order is
strict, it is safe to feed into our algorithm which assumes no duplicate elements. On the other hand, once A is sorted in
the lexicographic order, it will also be sorted in the regular order.

Lec 1 – pg. 3 of 7

Note a few things about this algorithm. First of all, it is extremely non-obvious. Second, it is
recursive, i.e., it calls itself. Third, it appears to do “less work” than the intuitive approach, since it
doesn’t sort all of A. Thus, we might suspect that it is more efficient than the intuitive approach.

1.3.1 Proof of Correctness

The strategy to prove correctness of an algorithm is a mix of knowing standard techniques and
inventing new ones when the standard techniques don’t apply. To prove correctness of our median-of-
medians algorithm, we will use a very common technique called a loop invariant. A loop invariant
is a set of conditions that are true when the loop is initialized, maintained in each pass through the
loop, and true at termination. Loop invariant arguments are analogous to mathematical induction:
they use a base case along with an inductive step to show that the desired proposition is true in all
cases. One feasible loop invariant for this algorithm would be the following:

At each iteration, the “active subarray” (call it A′) consists of all elements of A which are
between min(A′) and max(A′), and the current index (call it i′) has the property that the
i′th-smallest element of A′ is the ith-smallest element of A.

In order to prove that this is a loop invariant, three things must be shown:

1. True at initialization. Initially, the active subarray is A and the index is i, so the proposition
is obviously true.

2. Maintained in each pass through the loop. If the proposition is true at the beginning of an
iteration (say with active subarray A′ = A′[1, . . . ,n′] and active index i′), then the (k−1)- and
(n′ − k)-element subarrays depicted in step 4 clearly also have the contiguity property that
we desire. Then, if step 5 calls SELECT(A′′, i′′), it is easy to see by casework that the i′′th-
smallest element of A′′ equals the i′th-smallest element of A′, which by hypothesis equals the
ith-smallest element of A.

3. True at termination. Since there is nothing special about the termination step (it is just
whichever step happens to be interrupted by the returned value), the proof of maintenance
in each pass though the loop is sufficient to show maintenance at termination.

Now that we have established the loop invariant, it is easy to see that our algorithm is correct. If
the final recursive iteration of SELECT has arguments A′ and i′, then step 5 returns the i′th-smallest
element of A′, which by the loop invariant equals the ith-smallest element of A. Thus we have proven
that, if our algorithm terminates at all, then it terminates with the correct output. Moreover, the
algorithm must terminate eventually, since the size of the active subarray shrinks by at least 1 with
each recursive call and since SELECT(A′, i′) terminates immediately if A′ has one element.

1.3.2 Running Time

There is no single magic bullet for writing proofs. Instead, you should use nonrigorous heuristics to
guide your thinking until it becomes apparent how to write down a rigorous proof.

In order to prove that our algorithm is efficient, it would help to know that the active subarray
in each successive recursive call is much smaller than the previous subarray. That way, we are
guaranteed that only relatively few recursive calls are necessary. Therefore, let’s determine an upper
bound on the size of A′, the new active subarray, given that the old subarray, A, had size n.

Lec 1 – pg. 4 of 7

larger elements
within each group

smaller elements
within each group

smaller medians larger medians

x

Figure 1.1. Imagine laying out the groups side by side, ordered with respect to their medians. Also imagine that each
group is sorted from greatest to least, top to bottom. Then each of the elements inside the red curve is guaranteed to be
greater than x.

As in step 3, let x be the median of medians. Then either A′ doesn’t contain any items greater
than x, or A′ doesn’t contain any items less than x. However, as we will see, there are lots of elements
greater than x and there are lots of elements less than x. In particular, each (non-remainder) group
whose median is less than x contains at least three elements less than x, and each (non-remainder)
group whose median is greater than x contains at least three elements greater than x. Moreover,
there are at least dn/5e−1 non-remainder groups, of which at least

⌊1
2 dn/5e−2

⌋
have median less

than x and at least
⌊1

2 dn/5e−2
⌋

have mean greater than x. Finally, the group with x as its median
contains two elements greater than x and two elements less than x (unless n < 5, but you can check
the following inequalities in that case separately if you like). Thus(

elts of A less than x
)≥ 3

(⌊1
2 dn/5e−2

⌋)+2≥ 3
(1

2 dn/5e−2− 1
2
)+2> 3

10 n−6.

Similarly, (
elts of A greater than x

)≥ 3
10 n−6.

Therefore A′ must exclude at least 3
10 n−6 elements of A, which means that A′ contains at most

n− (3
10 n−6

)= 7
10 n+6 elements. See Figure 1.1 for an illustration.

Let’s now put together all the information we know about the running time of SELECT. Let T(n)
denote the worst-case running time of SELECT on an array of size n. Then:

• Step 1 clearly takes O(n) time.

• Step 2 takes O(n) time since it takes O(1) time to find the median of each 5-element group.

• Step 3 takes T (dn/5e) time since there are dn/5e submedians.

• Step 4 takes O(n) time, as explained in §7.1 of CLRS.

• Step 5 takes at most T
(7

10 n+6
)

since the new subarray has at most 7
10 n+6 elements.2

2 Technically, we haven’t proved that T(n) is an increasing function of n. However, if we let T′(n) = max {T(m) : m ≤ n},
then T′(n) is an increasing function of n, and any asymptotic upper bound on T′(n) will also be an asymptotic upper bound
on T(n).

Lec 1 – pg. 5 of 7

Thus
T(n)≤ T (dn/5e)+T

(7
10 n+6

)+O(n). (1.1)

1.3.3 Solving the Recurrence

How does one go about solving a recurrence like (1.1)? Possible methods include:

• Substitution Method: make a guess and prove it by induction.

• Recursion Tree Method: branching analysis.

• Master Method: read off the answer from a laundry list of already-solved recurrences.3

We will use the substitution method this time. Our guess will be that T(n) is O(n), i.e., that there
exists a positive constant c such that T(n)≤ cn for all sufficiently large n. We won’t choose c just yet;
later it will become apparent which value of c we should choose.

In order to deal with the base case of an inductive argument, it is often useful to separate out
the small values of n. (Later in the argument we will see how this helps.) Since SELECT always
terminates, we can write

T(n)≤
{

O(1), n < 140
T (dn/5e)+T

(7
10 n+6

)+O(n), for all n.

In other words, there exist positive constants a,b such that T(n) ≤ b for n < 140 (for example, b =
max {T(m) : m < 140}) and T(n) ≤ T (dn/5e)+T

(7
10 n+6

)+an for all n. Once this is done, we can start
our inductive argument with the base case n = 140:

Base case.

T(140)≤ T (d140/5e)+T
(7

10140+6
)+an

≤ b+b+an

= 2b+an

= 2b+140a.

Thus, the base case holds if and only if 2b+140≤ c(140), or equivalently c ≥ a+ b
70 .

Inductive step. Suppose n ≥ 140. Then the inductive hypothesis gives

T(n)≤ c (dn/5e)+ c
(7

10 n+6
)+an

≤ c
(n

5 +1
)+ c

(7
10 n+6

)+an

= 9
10 cn+7c+an

= cn+
(−cn

10
+7c+an

)
︸ ︷︷ ︸ .

Thus all we need is for the part with the brace to be nonpositive. This will happen if and only if
c ≥ 10an

n−70 . On the other hand, since n ≥ 140, we know n
n−70 ≤ 2. (This is why we wanted a base case

of n = 140. Though, any base case bigger than 70 would have worked.) Thus the part with the brace
will be nonpositive whenever c ≥ 20a.

3 The master method is a special case of a general technique known as literature search, which is of fundamental
importance in not just computer science but also physics, biology, and even sociology.

Lec 1 – pg. 6 of 7

Putting these two together, we find that the base case and the inductive step will both be satisfied
as long as c is greater than both a+ b

70 and 20a. So if we set c = max
{
20a, b

70

}
+1, then we have

T(n)≤ cn for all n ≥ 140. Thus T(n) is O(n).

Lec 1 – pg. 7 of 7

Lecture 2

Recap & Interval Scheduling
Supplemental reading in CLRS: Section 16.1; Section 4.4

2.1 Recap of Median Finding

Like MERGE-SORT, the median-of-medians algorithm SELECT calls itself recursively, with the argu-
ment to each recursive call being smaller than the original array A. However, while MERGE-SORT

runs in O(n lgn) time, SELECT is able to run in linear time. Why is this? There are two key observa-
tions to make:

Observation 1. Given an element x of A, we can partition around x in linear time. Thus, all the
steps in SELECT other than the recursive calls take a total of only O(n) time.

Observation 2. Finding the median of n elements can be reduced to finding the median of n/5
elements and then finding the median of at most 7

10 n elements. (The true figures in our case are
dn/5e and 7

10 n+6, but that’s not important for the analysis that follows. For a refresher on where this
observation comes from, see the proof of running time and Figure 1.1.)

To see why the second observation is important, we’ll do a branching analysis. This will also show
how we might have figured out the running time of our algorithm without guessing. Observation 2
is just a translation into English of the recurrence relation

T(n)≤ T
(1

5 n
)+T

(7
10 n

)+O(n). (2.1)

Pick a constant c such that T(n) ≤ T
(1

5 n
)+T

(7
10 n

)+ cn for all sufficiently large n. (Actually, for
simplicity, let’s assume the relation holds for all n.1) Then we can apply (2.1) to each of the terms
T

(1
5 n

)
and T

(7
10 n

)
, obtaining

T(n)≤ T
(1

5 n
)+T

(7
10 n

)+ cn

≤
[
T

(1
5 · 1

5 n
)+T

(7
10 · 1

5 n
)+ c

(1
5 n

)]
︸ ︷︷ ︸+

[
T

(1
5 · 7

10 n
)+T

(7
10 · 7

10 n
)+ c

(7
10 n

)]
︸ ︷︷ ︸+cn

≤ ·· ·

≤ cn+ c
(1

5 + 7
10

)
n+ c

(1
5 · 1

5 + 1
5 · 7

10 + 7
10 · 1

5 + 7
10 · 7

10
)
n+·· ·

1Make sure you see why we are allowed to do this.

n

1
5 n 7

10 n

1
5
(1

5 n
) 7

10
(1

5 n
) 1

5
(7

10 n
) 7

10
(7

10 n
)

Figure 2.1. A recursion tree for SELECT. Running SELECT on an array of n elements gives rise to two daughter processes,
with arguments of sizes 1

5 n and 7
10 n. Each of these daughters produces two of its own daughters, with arguments of sizes

1
5

(
1
5 n

)
, 7

10

(
1
5 n

)
, etc.

= cn+ c
(1

5 + 7
10

)
n+ c

(1
5 + 7

10
)2 n+ c

(1
5 + 7

10
)3 n+·· ·

= c

[∞∑
j=0

(1
5 + 7

10
) j

]
n (a geometric sum)

= 10cn.

This geometric sum makes it clear that it is very important for 1
5 + 7

10 to be less than 1—otherwise,
the geometric sum would diverge. If the number 1

5 in our recurrence had been replaced by 2
5 , the

resulting recurrence would have non-linear solutions and the running time would be T(n) =Θ(n2).
On an intuitive level, this makes sense: reducing an input of n entries to an input of

(1
5 + 7

10
)
n = 9

10 n
entries is a good time-saver, but “reducing” an input of n entries to an input of

(2
5 + 7

10
)
n = 11

10 n entries
is not.

Finally, let’s make an observation that one is not usually able to make after writing an algorithm:

“SELECT achieves the best possible asymptotic running time for an algorithm that solves
the median finding problem.”

This statement must be interpreted carefully. What we mean is that any correct algorithm which
solves the median finding problem must be Ω(n), since such an algorithm must at least look at each
of the n entries of A. However, there are several other considerations that prevent us from being
able to conclude that SELECT is the “best” median finding algorithm:

• It is only the asymptotic running time of SELECT that is optimal. The overhead could be very
large. There may exist algorithms with a larger asymptotic running time that are still much
faster than SELECT for all practical purposes because the asymptotic behavior only becomes
significant when n is inhumanly large.

• There may also exist algorithms with the same asymptotic running time as SELECT but whose
implementations run faster than those of SELECT because they have smaller overhead (i.e.,
the constants implicit in the big-O notation are smaller).

• There may exist randomized algorithms which run in sublinear time and return the correct
answer with high probability, or deterministic algorithms which run in sublinear time and

Lec 2 – pg. 2 of 7

return approximately the correct answer.2

2.2 Interval Scheduling

Does your planner look like this?

8am 9 10 11 Noon 1pm 2 3 4 5 6 7 8 9 10 11 Midnight

lecture lunch work group sports game

lecture group meeting lecture language class party

seminar

The first step to getting the most out of your day is getting enough sleep and eating right. After that,
you’ll want to make a schedule that is in some sense “maximal.” There are many possible precise
formulations of this problem; one of the simpler ones is this:

Input: A list of pairs L = 〈
(s1, f1), . . . , (sn, fn)

〉
, representing n events with start time si and end

time f i (si < f i).

Output: A list of pairs S = 〈
(si1 , f i1), . . . , (sik , f ik)

〉
representing a schedule, such that

si1 < f i1 ≤ si2 < f i2 ≤ ·· · ≤ sik < f ik

(i.e., no scheduled events overlap), where k is maximal.

This formulation corresponds to wanting to attend as many events as possible (not allowing late
arrivals or early departures, without any regard for how long the events are, without any preference
of one event over another, and assuming it takes no time to travel between events).

While all of us face problems like this in everyday life, probably very few of us have tried to
mathematically rigorize the heuristics we use to decide what to do each day. Often we employ greedy
strategies. A greedy strategy can be used in situations where it is easy to tell what is “locally
optimal.” The hope is that by making locally optimal decisions at each point, we will arrive at a
globally optimal solution.3 A couple of reasonable-sounding greedy strategies are:

• Pick the activities that take the least time (minimize f i − si).

2 While such a sublinear algorithm is probably out of the question in our case (at least if we have no prior information
about A), there are lots of problems in which this does occur. For example, if you believe P 6= NP, we will see later in the
course that there exist polynomial-time approximations to some NP-hard problems.

3 An analogous situation is this: Imagine that you live in the Himalayan village of Nagarkot and are trying to find the
highest point in the Himalayan mountain range. A greedy strategy would be to hike straight up. Since this strategy is
locally optimal, you will eventually arrive at a peak from which it is impossible to go up without first going down. However,
your peak will probably not be the global optimum, since Nagarkot is in central Nepal and Mt. Everest is on the Chinese
border.

Lec 2 – pg. 3 of 7

This strategy fails because attending one short activity may prevent you from attending two
other activities.

• Each time you find yourself doing nothing, go to the activity that starts the soonest (locally
minimize si).

This strategy fails because it is possible for the earliest activity to preclude lots of other activi-
ties.

Somewhat surprisingly, there is a greedy strategy that is optimal:

• Each time you find yourself doing nothing, go to the activity that ends the soonest (locally
minimize f i). In pseudocode,

1 while there are still activities to consider do
2 Pick (si, f i) with the smallest f i
3 Remove all activities that intersect (si, f i)

Claim. The above algorithm outputs a list of pairs
〈
(si1 , f i1), . . . , (sik , f ik)

〉
such that

si1 < f i1 ≤ si2 < f i2 ≤ ·· · ≤ sik < f ik .

Proof. By definition, si < f i. Now, if si2 < f i1 , then (si2 , f i2) overlaps (si1 , f i1). Thus (si2 , f i2) must have
been removed from consideration after we chose (si1 , f i1), a contradiction. The same reasoning with
1 and 2 replaced by j and j+1 for arbitrary j completes the proof.

Claim. Suppose given a list of activities L. If an optimal schedule has k∗ activities, then the above
algorithm outputs a schedule with k∗ activities.

Proof. By induction on k∗. If the optimal schedule has only one activity, then obviously the claim
holds. Next, suppose the claim holds for k∗ and we are given a set of events whose optimal schedule
has k∗+1 activities. Let S∗ = S∗[1, . . . ,k∗+1] = 〈

(s`1 , f`1), . . . , (s`k∗+1 , f`k∗+1)
〉

be an optimal schedule,
and let S = S[1, . . . ,k]= 〈

(si1 , f i1), . . . , (sik , f ik)
〉

be the schedule that our algorithm gives. By construc-
tion, f i1 ≤ f`1 . Thus the schedule S∗∗ = 〈

(si1 , f i1), (s`2 , f`2), . . . , (s`k∗+1 , f`k∗+1)
〉

has no overlap, and is
also optimal since it has k∗+1 activities. Let L′ be the set of activities with si ≥ f i1 . The fact that
S∗∗ is optimal for L implies that S∗∗[2, . . . ,k∗+1] is optimal for L′. Thus an optimal schedule for L′

has k∗ activities. So by the inductive hypothesis, running our algorithm on L′ produces an optimal
schedule. But by construction, running our algorithm on L′ just gives S[2, . . . ,k]. Since any two opti-
mal schedules have the same length, we have k = k∗+1. So S is an optimal schedule, completing the
induction.

This algorithm can be implemented with Θ(n lgn) running time as follows:

Lec 2 – pg. 4 of 7

Algorithm: UNWEIGHTED-SCHEDULE(L)
1 Sort L according to finish time using MERGE-SORT

2 S ←〈〉
3 curf←−∞ B the finish time of our current schedule
4 for (s, f) in L do
5 if s ≥ curf then
6 S.append[(s, f)]
7 curf← f
8 return S

This implementation makes one pass through the list of activities, ignoring those which overlap with
the current schedule. Notice that the only part of this algorithm that requires Θ(n lgn) time is the
sorting—once L is sorted, the remainder of the algorithm takes Θ(n) time.

2.2.1 Weighted Interval Scheduling

Let’s try a more sophisticated formulation of the scheduling problem. Suppose that rather than
maximize the total number of events we attend, we want to maximize the total amount of time we
are busy. More generally still, suppose each event in L has a weight w > 0 representing how much
we prioritize that event.

Input: A list of triples L = 〈
(s1, f1,w1), . . . , (sn, fn,wn)

〉
, representing n events with start time si,

end time f i (si < f i), and weight wi > 0.

Output: A list of triples S = 〈
(si1 , f i1 ,wi1), . . . , (sik , f ik ,wik)

〉
representing a schedule, such that

si1 < f i1 ≤ si2 < f i2 ≤ ·· · ≤ sik < f ik

(i.e., no scheduled events overlap), where
∑k

j=1 wi j is maximal.

A greedy algorithm of the sort above will not work for this problem.

1 1 1

10 1

Which is better: attending a short event with low weight (so that you have more free time for
the heavy events), or attending a slightly longer event with slightly higher weight? It depends on
whether there are exciting opportunities in the future.

1

2 2

1 100

Here is a sketch of an efficient solution to the weighted scheduling problem:

Lec 2 – pg. 5 of 7

1 1

3

t0

t1

t2 t3

t4

t5

B: 3

t0

3

t1

1

t2

1

t3

0

t4

0

t5

max{1+1, 3}

Figure 2.2. An illustration of WEIGHTED-SCHEDULE.

Algorithm: WEIGHTED-SCHEDULE(L)
Put all the start and finish times into an array A = 〈s1, f1, . . . , sn, fn〉. Sort A, keeping track
of which activity each number belongs to (that is, the index i). Make a new array B with
one entry for each element of A. The idea is that the value of B[t] will be the maximal
weight of a schedule that starts at point t, along with a list of event indices that gives
such a schedule. Thus B[t0] (assuming your day starts at t = t0) will give you an optimal
schedule for your day.

To construct B, first initialize all entries to zero. Then traverse backwards through A.
The first time you hit a start point sifirst , set B[sifirst] ← wifirst . From then on, keep track
of the most recent start point you have seen in a new variable icur. Each time you hit an
endpoint f i, set B[f i]← B[sicur]. Each time you hit a new start point si, set

B[si]←max
{
B[sicur], wi +B[f i]

}
.

Once you have finished, B[t0] (assuming your day starts at t = t0) will be the weight of an
optimal schedule.

For ease of exposition, I didn’t say explicitly how to keep track of the actual schedule you
are constructing (which you will usually want to do—what use is the maximal weight if you
don’t know what schedule gives that weight?). That is an easy implementation detail that
you can figure out for yourself. A more subtle issue that I didn’t address is the possibility
of duplicate elements of A. One way to deal with this is to, for each new start point s, keep
a cache of possible weights of schedules starting at s (using a new variable to keep track
of the heaviest schedule in cache). The cache should only be cleared when you hit a start
point whose value is strictly less than s (or run out of elements of A), at which point you
will know what value to assign to B[s].

Again, it is easy to see that this algorithm runs in linear time after sorting, for a total running
time of O(n lgn).

This example introduces the algorithmic paradigm of dynamic programming. “Dynamic pro-
gramming” refers to a strategy in which the solution to a problem is computed by combining the
solutions to subproblems which are essentially smaller versions of the same problem. In our exam-
ple, we started with an optimal schedule for the empty set of events and then added events one at a
time (in a strategic order), arriving at an optimal schedule for the full set L of events. Each time we
wanted to solve a subproblem, we used the answers to the previous subproblems.

Lec 2 – pg. 6 of 7

2.2.2 Conclusions

This lecture showed that the way in which a problem is formulated is important. A given real-life
problem can be formulated as a precise algorithmic problem in many different, non-equivalent ways,
with different solutions.

There are several standard approaches that you should have in your toolbox. So far we have seen
greedy algorithms and dynamic programming; more will come up later in the course.

Lec 2 – pg. 7 of 7

Lecture 3

Minimum Spanning Trees I
Supplemental reading in CLRS: Chapter 4; Appendix B.4, B.5; Section 16.2

3.1 Greedy Algorithms

As we said above, a greedy algorithm is an algorithm which attempts to solve an optimization
problem in multiple stages by making a “locally optimal” decision at each stage.

Example. We wish to make 99¢ in change using the minimal number of coins. Most people instinc-
tively use a greedy algorithm:

99¢ = (25¢)×3+
−75¢

24¢ = (10¢)×2 +
−20¢

4¢ = (1¢)×4 (no nickels)
−4¢

0¢
3 quarters + 2 dimes + 4 pennies = 9 coins.

This greedy algorithm is correct: starting with the coin of largest value, take as many as possible
without allowing your total to exceed 99¢. However, plenty of greedy algorithms are not correct. For
example, suppose we started with the smallest coin rather than the largest coin:

99¢= (1¢)×99=⇒ 99 pennies.

Or, imagine trying to make 15¢ of change if the dime were replaced by an 11¢ piece:

Greedy: 15¢= (11¢)×1+ (5¢)×0+ (1¢)×4 =⇒ 5 coins
Optimal: 15¢= (11¢)×0+ (5¢)×3+ (1¢)×0 =⇒ 3 coins.

Remark. Greedy algorithms sometimes give a correct solution (are globally optimal). But even
when they’re not correct, greedy algorithms can be useful because they provide “good solutions”
efficiently. For example, if you worked as a cashier in a country with the 11¢ piece, it would be
perfectly reasonable to use a greedy algorithm to choose which coins to use. Even though you won’t
always use the smallest possible number of coins, you will still always make the correct amount of
change, and the number of coins used will always be close to optimal.

3

2

3

1
1

Figure 3.1. From left to right: A directed graph, an undirected graph, and a weighted undirected graph.

The above example shows that the performance of a greedy algorithm (in terms of both correct-
ness and efficiency) depends on both

• the structure of the algorithm (starting with big coins vs. small coins)
• the structure of the problem (coin values).

3.2 Graphs

We assume that you have seen some graph theory before. We will give a quick review here; if you
are shaky on graph theory then you should review §B.4 of CLRS. A graph is a mathematical object
which consists of vertices and edges. Thus, we may say that a graph is a pair G = (V ,E), where
V is a set of vertices and E is a set of edges. Or, if the vertex set V has been fixed ahead of time,
we may simply say that “E is a graph on V .” In an undirected graph, the edges are unordered
pairs e = {u,v} with u,v ∈ V ; whereas in a directed graph, the edges are ordered pairs e = (u,v). A
directed edge e = (u,v) is said to emanate “from u to v,” and we may use the notation e = (u → v).1

Our convention (which is by no means standard convention, since there is no standard) will be that
all graphs are assumed finite, and are allowed to have loops (edges u → u) but may not have multiple
edges between the same pair of vertices. Thus E is just a set, not a multiset (though in a directed
graph, u → v and v → u count as different edges).

It is often useful to consider graphs with satellite data attached to the edges or vertices (or
both). One common instance of this is a weighted undirected graph, which is an undirected
graph equipped with a weight function w : E →R. We say that the edge e = {u,v} has weight w(e), or
sometimes wuv. For example, let V be the set of cities in the United States, and let E be a complete
graph on V , meaning that E contains every pair of vertices {u,v} with u 6= v (but no loops). Let w(u,v)
be the distance in miles between u and v. The graph G = (V ,E,w) is obviously of great importance to
airline booking companies, shipping companies, and presidential candidates in the last few months
of compaigning.

Consider a fixed set V of vertices. A tree T on V is a graph which is acyclic and connected.2 (See
Figure 3.2.) Note that acyclic is a smallness condition, while connectivity is a largeness condition.
Thus, trees are “just the right size.” According to the following proposition, that size is |V |−1.

1 In fact, we will probably use several other notations, depending on our whim; in particular, we will sometimes use
the notation of directed graphs in discussions of undirected graphs. It is the author’s job to keep clear the meaning of the
notation—you should speak up if you are confused by any notation, since it is more likely the author’s fault than yours.

2 A path in a graph (V ,E) is a sequence of vertices 〈v0,v1, . . . ,vn〉, where (v j → v j+1) ∈ E for j = 0, . . . ,n−1. The number
n is called the length of the path. If v0 = vn, then the path is called a cycle. A graph is called acyclic if it contains no
cycles, and is said to be connected if, for every pair u,v of vertices, there exists a path from u to v.

Lec 3 – pg. 2 of 7

Figure 3.2. Left: An undirected graph G. Center: Two different spanning trees of G. Right: A subgraph of G which is a
tree but not a spanning tree. The gray vertices and edges are just visual aids; they are not part of the graphs.

Proposition 3.1 (Theorem B.2 of CLRS, slightly modified). Let V be a finite set of vertices, and let
G = (V ,T) be an undirected graph on V. The following conditions are equivalent:

(i) G is acyclic and connected.
(ii) G is acyclic and has at least |V |−1 edges.

(iii) G is connected and has at most |V |−1 edges.
(iv) G is acyclic, but if any edge is added to T, the resulting graph contains a cycle.
(v) G is connected, but if any edge is removed from T, the resulting graph is not connected.

(vi) For any two vertices u,v ∈V, there exists a unique simple path from u to v.3

Any one of these six conditions could be taken as the definition of a tree. If G is a tree, then G has
exactly |V |−1 edges.

We will not prove the proposition here, but you would do yourself a service to write the proof
yourself (or look it up in CLRS), especially if you have not seen proofs in graph theory before. There
are certain types of arguments that occur again and again in graph theory, and you will definitely
want to know them for the remainder of the course.

Definition. Let G = (V ,E) be an undirected graph. A spanning tree of G is a subset T ⊆ E such
that T is a tree on V .

The reason for the word “spanning” is that T must be a tree on all of V . There are plenty of
subgraphs of G that are trees but not spanning trees: they are graphs of the form G′ = (V ′,T ′) where
V ′ áV and T ′ is a tree on V ′ (but not on V because it does not touch all the vertices).

Proposition 3.2. Let G = (V ,E) be an undirected graph. Then G has a spanning tree if and only if
G is connected. Thus, every connected graph on V has at least |V |−1 edges.

Proof. If G has a spanning tree T, then for any pair of vertices u,v there is a path from u to v in T.
That path also lies in E since T ⊆ E. Thus G is connected.

Conversely, suppose G is connected but is not a tree. Then, by Proposition 3.1(v), we can remove
an edge from E, obtaining a connected subgraph E1. If E1 is not a tree, then we can repeat the process
again. Eventually we will come upon a connected subgraph (V ,Ek) of G such that it is impossible
to remove an edge from Ek, either because we have run out of edges, or because the resulting graph
will be disconnected. In the former case, V must have only one vertex, so the empty set of edges
is a spanning tree. In the latter case, Ek is a spanning tree by Proposition 3.1(v). It follows from
Proposition 3.1 that G has at least |V |−1 edges, since any spanning tree has exactly |V |−1 edges.

3 A path is said to be simple if all vertices in the path are distinct. A cycle is said to be simple if all vertices are distinct
except for the common start/end vertex. Thus, strictly speaking, a simple cycle is not a simple path; extra clarifications
will be made in any situation where there might be confusion.

Lec 3 – pg. 3 of 7

Figure 3.3. Clustering using an MST.

3.3 Minimum Spanning Trees

Given a weighted undirected graph G = (V ,E,w), one often wants to find a minimum spanning
tree (MST) of G: a spanning tree T for which the total weight w(T)=∑

(u,v)∈T w(u,v) is minimal.

Input: A connected, undirected weighted graph G = (V ,E,w)

Output: A spanning tree T such that the total weight

w(T)= ∑
(u,v)∈T

w(u,v)

is minimal.

For example, if V is the set of buildings in a city and E is the complete graph on V , and if w(u,v)
is the distance between u and v, then a minimum spanning tree would be very useful in building a
minimum-length fiber-optic network, pipeline network, or other infrastructure for the city.

There are many other, less obvious applications of minimum spanning trees. Given a set of data
points on which we have defined a metric (i.e., some way of quantifying how close together or similar
a pair of vertices are), we can use an MST to cluster the data by starting with an MST for the distance
graph and then deleting the heaviest edges. (See Figure 3.3 and Lecture 21.) If V is a set of data
fields and the distance is mutual information, then this clustering can be used to find higher-order
correlative relationships in a large data set.

How would we go about finding an MST for this graph?

6

5

14

8

12

9

7

3 10

15

There are several sensible heuristics:

• Avoid large weights. We would like to avoid the 14 and 15 edges if at all possible.

Lec 3 – pg. 4 of 7

U

u v

u′ v′

Figure 3.4. Illustration of the MST property.

• Include small weights. If the 3 and 5 edges provide any benefit to us, we will probably want to
include them.

• Some edges are inevitable. The 9 and 15 edges must be included in order for the graph to be
connected.

• Avoid cycles, since an MST is not allowed to have cycles.

Some more thoughts:

• Would a greedy algorithm be likely to work here? Is there something about the structure of
the problem which allows locally optimal decisions to be informed enough about the global
solution?

• Should we start with all the edges present and then remove some of them, or should we start
with no edges present and then add them?

• Is the MST unique? Or are there multiple solutions?

A key observation to make is the following: If we add an edge to an MST, the resulting graph will
have a cycle, by Proposition 3.1(iv). If we then remove one of the edges in this cycle, the resulting
graph will be connected and therefore (by Proposition 3.1(iii)) will be a spanning tree. If we have
some way of knowing that the edge we removed is at least as heavy as the edge we added, then it
follows that we will have a minimum spanning tree. This is the idea underlying the so-called “MST
property.”

Theorem 3.3 (MST Property). Let G = (V ,E,w) be a connected, weighted, undirected graph. Let U
be a proper nonempty subset of V .4 Let S be the set of edges (x, y) with x ∈U and y ∈ V \U. Suppose
(u,v) is the lightest edge (or one of the lightest edges) in S. Then there exists an MST containing (u,v).

This partition of V into U and V \U is called a “cut.” An edge is said to “cross” the cut if one
endpoint is in U and the other endpoint is in V \U . Otherwise the edge is said to “respect” the cut.
So S is the set of edges which cross the cut and E \S is the set of edges that respect the cut. An edge
in S of minimal weight is called a “light edge” for the cut.

4That is, ;áU áV .

Lec 3 – pg. 5 of 7

Proof. Let T ⊆ E be an MST for G, and suppose (u,v) 6∈ T. If we add the edge (u,v) to T, the resulting
graph T ′ has a cycle. This cycle must cross the cut (U ,V \U) in an even number of places, so in
addition to (u,v), there must be some other edge (u′,v′) in the cycle, such that (u′,v′) crosses the cut.
Remove (u′,v′) from T ′ and call the resulting graph T ′′. We showed above that T ′′ is a spanning tree.
Also, since (u,v) is a light edge, we have w(u,v)≤ w(u′,v′). Thus

w(T ′′)= w(T)+w(u,v)−w(u′,v′)≤ w(T).

Since T is a minimum spanning tree and T ′′ is a spanning tree, we also have w(T)≤ w(T ′′). Therefore
w(T)= w(T ′′) and T ′′ is a minimum spanning tree which contains (u,v).

Corollary 3.4. Preserve the setup of the MST property. Let T be any MST. Then there exists an edge
(u′,v′) ∈ T such that u′ ∈U and v′ ∈V \U and

(
T \{(u′,v′)}

)∪ {(u,v)} is an MST.

Proof. In the proof of the MST property, T ′′ = (
T \{(u′,v′)}

)∪ {(u,v)}.

Corollary 3.5. Let G = (V ,E,w) be a connected, weighted, undirected graph. Let T be any MST and
let (U ,V \U) be any cut. Then T contains a light edge for the cut. If the edge weights of G are distinct,
then G has a unique MST.

Proof. If T does not contain a light edge for the cut, then the graph T ′′ constructed in the proof of
the MST property weighs strictly less than T, which is impossible.

Suppose the edge weights in G are distinct. Let M be an MST. For each edge (u,v) ∈ M, consider
the graph (V , M \{(u,v)}). It has two connected components5; let U be one of them. The only edge in
M that crosses the cut (U ,V \U) is (u,v). Since M must contain a light edge, it follows that (u,v) is
a light edge for this cut. Since G has distinct edge weights, (u,v) is the unique light edge for the cut,
and every MST must contain (u,v). Letting (u,v) vary over all edges of M, we find that every MST
must contain M. Thus, every MST must equal M.

Now do you imagine that a greedy algorithm might work? The MST property is the crucial idea
that allows us to use local information to decide which edges belong in an MST. Below is Kruskal’s
algorithm, which solves the MST problem.

Algorithm: KRUSKAL-MST(V ,E,w)

Initially, let T ←; be the empty graph on V .

Examine the edges in E in increasing order of weight (break ties arbitrarily).

• If an edge connects two unconnected components of T, then add the edge to T.∗

• Else, discard the edge and continue.

Terminate when there is only one connected component. (Or, you can continue through all
the edges.)

∗ By “two unconnected components,” we mean two distinct connected components. Please forgive me for
this egregious abuse of language.

5 Given a graph G, we say a vertex v is reachable from u if there exists a path from u to v. For an undirected
graph, reachability is an equivalence relation on the vertices. The restrictions of G to each equivalence class are called the
connected components of G. (The restriction of a graph G = (V ,E) to a subset V ′ ⊆ V is the subgraph (V ′,E′), where
E′ is the set of edges whose endpoints are both in V ′.) Thus each connected component is a connected subgraph, and a
connected undirected graph has only one connected component.

Lec 3 – pg. 6 of 7

Try performing Kruskal’s algorithm by hand on our example graph.

Proof of correctness for Kruskal’s algorithm. We will use the following loop invariant:

Prior to each iteration, every edge in T is a subset of an MST.

• Initialization. T has no edges, so of course it is a subset of an MST.

• Maintenance. Suppose T ⊆ T∗ where T∗ is an MST, and suppose the edge (u,v) gets added to T.
Then, as we will show in the next paragraph, (u,v) is a light edge for the cut (U ,V \U), where U
is one of the connected components of T. Therefore, by Corollary 3.4, there exist vertices u′ ∈U
and v′ ∈V \U with (u′,v′) ∈ T∗ such that T ′ is an MST, where T ′ = (

T∗ \{(u′,v′)}
)∪ {(u,v)}. But

(u′,v′) 6∈ T, so T ∪ {(u,v)} is a subset of T ′.

As promised, we show that (u,v) is a light edge for the cut (U ,V \U), where U is one of the
connected components of T. The reasoning is this: If (u,v) is added, then it joins two uncon-
nected components of T. Let U be one of those components. Now suppose that (x, y) ∈ E were
some lighter edge crossing the cut (U ,V \U), say x ∈ U and y ∈ V \U . Since x and y lie in
different connected components of T, the edge (x, y) is not in T. Thus, when we examined (x, y),
we decided not to add it to T. This means that, when we examined the edge (x, y), x and y lay
in the same connected component of Tprev, where Tprev is what T used to be at that point in
time. But Tprev ⊆ T, which means that x and y lie in the same connected component of T. This
contradicts the fact that x ∈U and y ∈V \U .

• Termination. At termination, T must be connected: If T were disconnected, then there would
exist an edge of E which joins two components of T. But that edge would have been added to
T when we examined it, a contradiction. Now, since T is connected and is a subset of an MST,
it follows that T is an MST.

To implement Kruskal’s algorithm and analyze its running time, we will first need to think about
the data structures that will be used and the running time of operations on them.

Exercise 3.1. What if we wanted a maximum spanning tree rather than a minimum spanning tree?

Lec 3 – pg. 7 of 7

Lecture 4

Minimum Spanning Trees II
Supplemental reading in CLRS: Chapter 23; Section 16.2; Chapters 6 and 21

4.1 Implementing Kruskal’s Algorithm

In the previous lecture, we outlined Kruskal’s algorithm for finding an MST in a connected, weighted
undirected graph G = (V ,E,w):

Initially, let T ←; be the empty graph on V .
Examine the edges in E in increasing order of weight (break ties arbitrarily).

• If an edge connects two unconnected components of T, then add the edge to T.
• Else, discard the edge and continue.

Terminate when there is only one connected component. (Or, you can continue
through all the edges.)

Before we can write a pseudocode implementation of the algorithm, we will need to think about the
data structures involved. When building up the subgraph T, we need to somehow keep track of the
connected components of T. For our purposes it suffices to know which vertices are in each connected
component, so the relevant information is a partition of V . Each time a new edge is added to T, two
of the connected components merge. What we need is a disjoint-set data structure.

31

52

63

74

85

9
6

10

7

12 8

14
9

15

10

Figure 4.1. Illustration of Kruskal’s algorithm.

4.1.1 Disjoint-Set Data Structure

A disjoint-set data structure maintains a dynamic collection of pairwise disjoint sets S= {S1, . . . ,Sr}
in which each set Si has one representative element, rep[Si]. Its supported operations are

• MAKE-SET(u): Create new set containing the single element u.

– u must not belong to any already existing set

– of course, u will be the representative element initially

• FIND-SET(u): Return the representative rep[Su] of the set Su containing u.

• UNION(u,v): Replace Su and Sv with Su ∪Sv in S. Update the representative element.

4.1.2 Implementation of Kruskal’s Algorithm

Equipped with a disjoint set data structure, we can implement Kruskal’s algorithm as follows:

Algorithm: KRUSKAL-MST(V ,E,w)
1 B Initialization and setup
2 T ←;
3 for each vertex v ∈V do
4 MAKE-SET(v)
5 Sort the edges in E into non-decreasing order of weight
6 BMain loop
7 for each edge (u,v) ∈ E in non-decreasing order of weight do
8 if FIND-SET(u) 6= FIND-SET(v) then
9 T ← T ∪ {(u,v)}

10 UNION(u,v)
11 return T

The running time of this algorithm depends on the implementation of the disjoint set data structure
we use. If the disjoint set operations have running times TMAKE-SET, TUNION and TFIND-SET, and if we
use a good O(n lgn) sorting algorithm to sort E, then the running time is

O(1)+V TMAKE-SET +O(E lgE)+2ETFIND-SET +O(E)+ETUNION.1

4.1.3 Implementations of Disjoint-Set Data Structure

The two most common implementations of the disjoint-set data structure are (1) a collection of doubly
linked lists and (2) a forest of balanced trees. In what follows, n denotes the total number of elements,
i.e., n = |S1|+ · · ·+ |Sr|.

Solution 1: Doubly-linked lists. Represent each set Si as a doubly-linked list, where each element
is equipped with a pointer to its two neighbors, except for the leftmost element which has a “stop”
marker on the left and the rightmost element which has a “stop” marker on the right. We’ll take the
leftmost element of Si as its representative.

1 Actually, we can do better. In line 10, since we have already computed rep[Su] and rep[Sv], we do not need to call
UNION; we need only call WEAK-UNION, an operation which merges two sets assuming that it has been given the correct
representative of each set. So we can replace the ETUNION term with ETWEAK-UNION.

Lec 4 – pg. 2 of 7

Si : u1

rep[Si]
u2 u3 · · · uk

MAKE-SET(u) – initialize as a lone node Θ(1)

FIND-SET(u) – walk left from u until you reach the head Θ(n) worst-case

UNION(u,v) – walk right from u and left from v. Reassign pointers so that
the tail of Su and the head of Sv become neighbors. The rep-
resentative is updated automatically.

Θ(n) worst-case

These can be improved upon—there exist better doubly-linked list implementations of the disjoint
set data structure.

Solution 2: Forest of balanced trees.2

Si : u1

rep[Si]
u4 u3

u2 u5 u6

MAKE-SET(u) – initialize new tree with root node u Θ(1)

FIND-SET(u) – walk up tree from u to root Θ(height)=Θ(lgn) best-case

UNION(u,v) – change rep[Sv]’s parent to rep[Su] O(1)+2TFIND-SET

The forest of balanced trees will be our implementation of choice. With a couple of clever tricks3,
the running times of the operations can be greatly improved: In the worst case, the improved struc-
ture has an amortized (average) running time of Θ(α(n)) per operation4, where α(n) is the inverse
Ackermann function, which is technically unbounded but for all practical purposes should be consid-
ered bounded.5 So in essence, each disjoint set operation takes constant time, on average.

2 A rooted tree is a tree with one distinguished vertex u, called the root. By Proposition 3.1(vi), for each vertex v there
exists a unique simple path from u to v. The length of that path is called the depth of v. It is common to draw rooted trees
with the vertices arranged in rows, with the root on top, all vertices of depth 1 on the row below that, etc.

3 The tricks are called union-by-rank and path compression. For more information, see Lecture 16.
4 In a 1989 paper, Fredman and Saks proved that Θ(α(n)) is the optimal amortized running time.
5 For example, if n is small enough that it could be written down by a collective effort of the entire human population

before the sun became a red giant star and swallowed the earth, then α(n)≤ 4.

Lec 4 – pg. 3 of 7

In the analysis that follows, we will not use these optimizations. Instead, we will assume that
FIND-SET and UNION both run in Θ(lgn) time. The asymptotic running time of KRUSKAL-MST is
not affected.

As we saw above, the running time of KRUSKAL-MST is

Initialize: O(1)+V

O(1)︷ ︸︸ ︷
TMAKE-SET +O(E lgE)

Loop: 2E TFIND-SET︸ ︷︷ ︸
O(lgV)

+O(E)+E TUNION︸ ︷︷ ︸
O(lgV)

O(E lgE)+2O(E lgV).

Since there can only be at most V 2 edges, we have lgE ≤ 2lgV . Thus the running time of Kruskal’s
algorithm is O(E lgV), the same amount of time it would take just to sort the edges.

4.1.4 Safe Choices

Let’s philosophize about Kruskal’s algorithm a bit. When adding edges to T, we do not worry about
whether T is connected until the end. Instead, we worry about making “safe choices.” A safe choice
is a greedy choice which, in addition to being locally optimal, is also part of some globally optimal
solution. In our case, we took great care to make sure that at every stage, there existed some MST
T∗ such that T ⊆ T∗. If T is safe and T∪{(u,v)} is also safe, then we call (u,v) a “safe edge” for T. We
have already done the heavy lifting with regard to safe edge choices; the following theorem serves as
a partial recap.

Proposition 4.1 (CLRS Theorem 23.1). Let G = (V ,E,w) be a connected, weighted, undirected graph.
Suppose A is a subset of some MST T. Suppose (U ,V \U) is a cut of G that is respected by A, and
that (u,v) is a light edge for this cut. Then (u,v) is a safe edge for A.

Proof. In the notation of Corollary 3.4, the edge (u′,v′) does not lie in A because A respects the cut
(U ,V \U). Therefore A∪ {(u,v)} is a subset of the MST

(
T \{(u′,v′)}

)∪ {(u,v)}.

4.2 Prim’s Algorithm

We now present a second MST algorithm: Prim’s algorithm. Like Kruskal’s algorithm, Prim’s
algorithm depends on a method of determining which greedy choices are safe. The method is to con-
tinually enlarge a single connected component by adjoining edges emanating from isolated vertices.6

Algorithm: PRIM-MST(V ,E,w)
1 Choose an arbitrary start vertex s
2 C ← {s}
3 T ←;
4 while C is not the only connected component of T do
5 Select a light edge (u,v) connecting C to an isolated vertex v
6 T ← T ∪ {(u,v)}
7 C ← C∪ {v}
8 return T

6 An isolated vertex is a vertex which is not connected to any other vertices. Thus, an isolated vertex is the only vertex
in its connected component.

Lec 4 – pg. 4 of 7

Proof of correctness for Prim’s algorithm. Again, we use a loop invariant:

Prior to each iteration, T is a subset of an MST.

• Initialization. T has no edges, so trivially it is a subset of an MST.

• Maintenance. Suppose T ⊆ T∗ where T∗ is an MST, and suppose the edge (u,v) gets added to
T, where u ∈ C and v is an isolated vertex. Since (u,v) is a light edge for the cut (C,V \C) which
is respected by T, it follows by Proposition 4.1 that (u,v) is a safe edge for T. Thus T ∪ {(u,v)}
is a subset of an MST.

• Termination. At termination, C is the only connected component of T, so by Proposition 3.1(v),
T has at least |V |−1 edges. Since T is also a subset of an MST, it follows that T has exactly
|V |−1 edges and is an MST.

The tricky part of Kruskal’s algorithm was keeping track of the connected components of T.
In Prim’s algorithm this is easy: except for the special component C, all components are isolated
vertices. The tricky part of Prim’s algorithm is efficiently keeping track of which edge is lightest
among those which join C to a new isolated vertex. This task is typically accomplished with a data
structure called a min-priority queue.

4.2.1 Min-Priority Queue

A min-priority queue is a data structure representing a collection of elements which supports the
following operations:

INSERT(Q, x) – Inserts element x into the set of elements Q

MINIMUM(Q) – Returns the element of Q with the smallest key

EXTRACT-MIN(Q) – Removes and returns the element with the smallest key

DECREASE-KEY(Q, x,k) – Decreases the value of x’s key to new value k.

With this data structure, Prim’s algorithm could be implemented as follows:

Lec 4 – pg. 5 of 7

Algorithm: PRIM-MST(G, s)
1 T ←;
2 for each u ∈G.V do
3 u.key←∞ B initialize all edges to “very heavy”
4 B The component C will be a tree rooted at s. Once a vertex u gets added to C, u.π

will be a pointer to its parent in the tree.
5 u.π← NIL

6 s.key← 0 B this ensures that s will be the first vertex we pick
7 Let Q ←G.V be a min-priority queue
8 while Q 6= ; do
9 u ← EXTRACT-MIN(Q)

10 if u.π 6= NIL then
11 T ← T ∪ {(u,u.π)}
12 BWe assume that G is presented in the adjacency-list format∗

13 for each v ∈G.adj[u] do
14 if v ∈Q and w(u,v)< v.key then
15 v.π← u
16 v.key← w(u,v) B using DECREASE-KEY

17 return T
∗For more information about ways to represent graphs on computers, see §22.1 of CLRS.

4.2.2 Running Time of Prim’s Algorithm

Lines 1 through 6 clearly take O(V) time. Line 7 takes TBUILD-QUEUE(V), where TBUILD-QUEUE(n) is
the amount of time required to build a min-priority queue from an array of n elements. Within the
“while” loop of line 8, EXTRACT-MIN gets called |V | times, and the instructions in lines 14–16 are
run a total of O(E) times. Thus the running time of Prim’s algorithm is

O(V)+TBUILD-QUEUE(V)+V TEXTRACT-MIN +O(E)TDECREASE-KEY.

Exercise 4.1. How can we structure our implementation so that line 14 runs in O(1) time?

Let’s take a look at the performance of PRIM-MST under some implementations of the min-
priority queue, in increasing order of efficiency:

Q TBUILD-QUEUE(n) TEXTRACT-MIN TDECREASE-KEY Runtime of PRIM-MST
Array O(n) O(n) O(1) O(V 2)

Binary Heap O(n) O(lgn) O(lgn) O(E lgV)
Fibonacci Heap O(n) O(lgn)︸ ︷︷ ︸

amortized

O(1)︸︷︷︸
amortized

O(E+V lgV)

Thus, for a dense graph (a graph with Θ(V 2) edges), Prim’s algorithm with a Fibonacci heap outper-
forms Kruskal’s algorithm. The best known MST algorithm to date is a randomized algorithm with
Θ(V +E) expected running time, introduced by Karger, Klein and Tarjan in 1995.

Lec 4 – pg. 6 of 7

4.3 Greedy Strategies

General approach:

1. Structure the problem so that we make a choice and are left with one subproblem to solve.

2. Make a greedy choice and then prove that there exists an optimal solution to the original
problem which makes the same greedy choice (“safe choice”).

3. Demonstrate optimal substructure.

• After making the greedy choice, combine with the optimal solution of the remaining sub-
problem, giving an optimal solution to the original problem.

Note that this sounds a lot like dynamic programming. Let’s now examine the key properties of
greedy algorithms in comparison to those of dynamic programming.

1) Greedy Choice Property – Locally optimal solution leads to globally optimal solution. Each
greedy local choice is made independently of the solution to the subproblem. (E.g.: Kruskal’s
and Prim’s algorithms can choose a safe edge without having examined the full problem.) In
dynamic programming, the local choice depends on the solution to the subproblem—it is a
bottom-up solution.

2) Optimal Substructure – The optimal solution to a problem contains optimal solutions to sub-
problems. Both greedy strategies and dynamic programming exploit (or rely on) optimal sub-
structures. Prim’s algorithm produces (optimal) MSTs on subsets of V on the way to finding
the full MST.

Lec 4 – pg. 7 of 7

Lecture 5

Fast Fourier Transform
Supplemental reading in CLRS: Chapter 30

The algorithm in this lecture, known since the time of Gauss but popularized mainly by Cooley and
Tukey in the 1960s, is an example of the divide-and-conquer paradigm. Actually, the main uses of
the fast Fourier transform are much more ingenious than an ordinary divide-and-conquer strategy—
there is genuinely novel mathematics happening in the background. Ultimately, the FFT will allow
us to do n computations, each of which would take Ω(n) time individually, in a total of Θ(n lgn) time.

5.1 Multiplication

To motivate the fast Fourier transform, let’s start with a very basic question:

How can we efficiently multiply two large numbers or polynomials?

As you probably learned in high school, one can use essentially the same method for both:

385
×426
2310
770

+1540
164010

(3x2 + 8x + 5)
× (4x2 + 2x + 6)

18x2 +48x+30
6x3 +16x2 +10x

12x4 +32x3 +20x2

12x4 +38x3 +54x2 +58x+30

Of these two, polynomials are actually the easier ones to work with. One reason for this is that
multiplication of integers requires carrying, while multiplication of polynomials does not. To make
a full analysis of this extra cost, we would have to study the details of how large integers can be
stored and manipulated in memory, which is somewhat complicated.1 So instead, let’s just consider
multiplication of polynomials.

Suppose we are trying to multiply two polynomials p, q of degree at most n with complex co-
efficients. In the high-school multiplication algorithm (see Figure 5.1), each row of the diagram is

1 More ideas are required to implement efficient multiplication of n-bit integers. In a 1971 paper, Schönhage and
Strassen exhibited integer multiplication in O(n lgn · lglgn) time; in 2007, Fürer exhibited O

(
n lgn ·2O(lg∗ n)

)
time. The

iterated logarithm lg∗ n is the smallest k such that lglg · · · lgn (k times)≤ 1. It is not known whether integer multiplication
can be achieved in O(n lgn) time, whereas by the end of this lecture we will achieve multiplication of degree-n polynomials
in O(n lgn) time.

◦ ◦ · · · ◦
× ◦ ◦ · · · ◦

◦ ◦ · · · ◦
◦ ◦ · · · ◦

◦ ◦ · · · ◦
◦ ◦ · · · ◦ ◦

2n+1

n+1

n+1

Figure 5.1. The high-school polynomial multiplication algorithm.

obtained by multiplying p by a monomial. Thus any single row would take Ω(n) time to compute
individually. There are n+1 rows, so the computation takes Ω(n2) time.

The key to improving this time is to consider alternative ways of representing p and q. Fix some
N > n. We’ll choose N later, but for now all that matters is that N =O(n). A polynomial of degree at
most N −1 is uniquely determined by its values at N points. So, instead of storing the coefficients of
p and q, we could represent p and q as the lists

pz =
〈
p(z0), . . . , p(zN−1)

〉
and qz

〈
p(z0), . . . , p(zN−1)

〉
for any distinct complex numbers z0, . . . , zN−1. In this representation, computing pq is very cheap—
the list

(pq)z =
〈
p(z0)q(z0), . . . , p(zN−1)q(zN−1)

〉
can be computed in O(n) time. If N > deg pq, then pq is the unique polynomial whose FFT is (pq)z.

Algorithm: MULTIPLY(p, q)

1. Fix some N =O(deg p+deg q) such that N > deg p+deg q.

2. Compute the sample vectors pz = 〈p(z0), . . . , p(zN−1)〉 and qz = 〈q(z0), . . . , q(zN−1)〉.
3. Compute the unique polynomial r such that rz = pz · qz, where · denotes entrywise

multiplication.∗

4. Return r.
∗ For example, 〈1,2,3〉 · 〈4,5,6〉 = 〈4,10,18〉.

Thus, the cost of finding the coefficients of pq is equal to the cost of converting back and forth between
the coefficients representation and the sample-values representation (see Figure 5.2). We are free to
choose values of z0, . . . , zN−1 that make this conversion as efficient as possible.

5.1.1 Efficiently Computing the FFT

In the fast Fourier transform, we choose z0, . . . , zN−1 to be the Nth roots of unity, 1,ωN ,ω2
N , . . . ,ωN−1

N ,
where ωN = e2πi/N . We make this choice because roots of unity enjoy the useful property that

ω2
N =ωN/2.

Lec 5 – pg. 2 of 6

PN ×PN
FFT //

Polynomial
mult. (slow)

��

CN ×CN

Entrywise
mult. (fast)

��
PN CNFFT−1
oo

Figure 5.2. Commutative diagram showing the cost of multiplication on either side of a fast Fourier transform. As we will
see, the fastest way to get from the top-left to the bottom-left is through the FFT.

(We can choose N to be a power of 2.) This allows us to divide the task of computing an FFT of size
N into computing two FFTs of size N/2, and then combining them in a certain way.2

Algorithm: FFT
(
N, p(x)= aN−1xN−1 +aN−2xN−2 +·· ·+a1x+a0

)
1 B As part of the specification, we assume N is a power of 2
2 if N = 1 then
3 return a0
4 Let

peven(y)← a0 +a2 y+·· ·+aN−2 yN/2−1,

podd(y)← a1 +a3 y+·· ·+aN−1 yN/2−1

be the even and odd parts of p
5 B Thus

p(x)= peven (
x2)+ xpodd (

x2)
(5.1)

6 peven
ωN/2

← FFT(N/2, peven)
7 podd

ωN/2
← FFT

(
N/2, podd)

8 B That is,

peven
ωN/2

=
〈

peven(1), peven (ωN/2) , . . . , peven
(
ωN/2−1

N/2

)〉
podd
ωN/2

=
〈

podd(1), podd (ωN/2) , . . . , podd
(
ωN/2−1

N/2

)〉
.

9 B Because ωN/2 = ω2
N , we can calculate the vector pωN = 〈

p(1), p (ωN) , . . . , p
(
ωN−1

N
)〉

very quickly using (5.1):
10 ω← 〈

1, ωN , . . . , ωN−1
N

〉
B the left side is a bold omega

11 return peven
ωN/2

+ω · podd
ωN/2

, where · denotes entrywise multiplication

2 I suppose the “conquer” stage is when we recursively compute the smaller FFTs (but of course, each of these smaller
FFTs begins with its own “divide” stage, and so on). After the “conquer” stage, the answers to the smaller problems are
combined into a solution to the original problem.

Lec 5 – pg. 3 of 6

Above, we compute pωN by computing podd
ωN/2

and peven
ωN/2

and combining them in Θ(N) time. Thus, the
running time of an FFT of size N satisfies the recurrence

T(N)= 2T(N/2)+Θ(N).

This recurrence is solved in CLRS as part of the Master Theorem in §4.5. The solution is

T(N)=Θ(N lg N).

5.1.2 Computing the Inverse FFT

Somewhat surprisingly, the inverse FFT can be computed in almost exactly the same way as the FFT.
In this section we will see the relation between the two transforms. If you don’t have a background
in linear algebra, you can take the math on faith.

Let PN be the vector space of polynomials of degree at most N−1 with complex coefficients. Then
the FFT is a bijective linear map PN →CN . If we use the ordered basis 1, x, . . . , xN−1 for PN and the
standard basis for CN , then the matrix of the FFT is

A =
(
ω

i j
N

)
0≤i, j≤N−1

=

1 1 1 · · · 1
1 ωN ω2

N · · · ωN−1
N

...
...

...
. . .

...
1 ωN−1

N ω2(N−1)
N · · · ω(N−1)2

N

 .

The jth column of A−1 contains the coefficients of the polynomial which, when evaluated on ω
j
N ,

gives 1 and, when evaluated on ωi
N (i 6= j), gives zero. This polynomial is∏

i 6= j
(
x−ωi

N
)

∏
i 6= j

(
ω

j
N −ωi

N

) .

We will not show the details here, but after about a page of calculation you can find that

A−1 = 1
N A = 1

N

1 1 1 · · · 1
1 ω−1

N ω−2
N · · · ω−(N−1)

N
...

...
...

. . .
...

1 ω−(N−1)
N ω−2(N−1)

N · · · ω−(N−1)2

N

 ,

where the bar indicates entrywise complex conjugation. You can certainly check that the i, j entry of
1
N AA is

N−1∑
`=0

ωi`
N · 1

Nω
− j`
N = 1

N

N−1∑
`=0

ω
`(i− j)
N =

{
1, i = j
0, i 6= j,

and similarly for 1
N AA. Thus

FFT−1(v)= 1
N FFT

(
v
)
. (5.2)

Again, this is surprising. A priori, we would consider PN and CN to be “different worlds”—like two
different implementations of the same abstract data structure, the coefficients representation and

Lec 5 – pg. 4 of 6

the sample-values representation of polynomials serve essentially the same role but have different
procedures for performing operations. Yet, (5.2) tells us that inverting an FFT involves creating a
new polynomial whose coefficients are the sample values of our original polynomial. This of course
has everything to do with the fact that roots of unity are special; it would not have worked if we had
not chosen 1,ωN , . . . ,ωN−1

N as our sample points.

Algorithm: INVERSE-FFT
(
N, v= 〈v0, . . . ,vN−1〉

)
1 v← 〈

v0, . . . ,vN−1
〉

2 Let pv(x) be the polynomial vN−1xN−1 +·· ·+v1x+v0
3 return the value of

1
N FFT

(
N, pv

)
With all the details in place, the MULTIPLY algorithm looks like this:

Algorithm: FFT-MULTIPLY(p, q)

1. Let N be the smallest power of 2 such that N −1≥ deg p+deg q.

2. Compute v= FFT(N, p) and w= FFT(N, q), and let u= v ·w, where · denotes entry-
wise multiplication.

3. Compute and return INVERSE-FFT(N, u).

It runs in Θ(N lg N)=Θ(
(deg p+deg q) lg(deg p+deg q)

)
time.

5.2 Convolution

Let p(x)= an−1xn−1 +·· ·+a1x+a0 and q(x)= bn−1xn−1 +·· ·+b1x+b0. The coefficient of xk in pq is∑
`∈Z2n−1

a`bk−`,

where the subscripts are interpreted modulo 2n−1. This sort of operation is known as convolution,
and is written as ∗. Convolution can be applied quite generally: if f and g are any functions Z2n−1 →
C, then one common definition of the convolution operation is

(f ∗ g)(k)= 1
2n−1

∑
`∈Z2n−1

f (`)g(k−`).

For each i, computing (f ∗ g)(i) requires linear time, but the fast Fourier transform allows us to
compute (f ∗ g)(i) for all i = 0, . . . ,2n−2 in a total of Θ(n lgn) time.

Convolution appears frequently, which is part of the reason that the FFT is useful. The above
notion of convolution can easily be generalized to allow f and g to be functions from any group G
to any ring in which |G| is a unit. There is also a continuous version of convolution which involves
an integral. This continuous version is useful in signal compression. The idea is to let f : R→ R be
an arbitrary signal and let g be a smooth bump function which spikes up near the origin and is zero
elsewhere. (See Figure 5.3.) Then the convolution of f and g is a new function f ∗ g defined by

(f ∗ g)(t)=
∫ ∞

−∞
f (τ)g(t−τ) dτ.

Lec 5 – pg. 5 of 6

Noisy signal f Bump function g Convolution f ∗ g

Figure 5.3. A complicated, noisy signal f , a bump function g, and the convolution f ∗ g.

The value (f ∗ g)(t) is essentially an average of the values of f at points close to t. Thus, the funtion
f ∗ g inherits smoothness from g while still carrying most of the information from f . As a bonus, if f
comes with some unwanted random noise, then g will have much less noise. For example, f may be
the raw output of a recording device, and computing f ∗ g may be the first step towards encoding f
into a compressed audio format such as MP3. The point is that smooth functions are much easier to
describe concisely, so creating a smooth version of f is useful in (lossy) data compression.

Lec 5 – pg. 6 of 6

Lecture 6

All-Pairs Shortest Paths I
Supplemental reading in CLRS: Chapter 25 intro; Section 25.2

6.1 Dynamic Programming

Like the greedy and divide-and-conquer paradigms, dynamic programming is an algorithmic
paradigm in which one solves a problem by combining the solutions to smaller subproblems. In
dynamic programming, the subproblems overlap, and the solutions to “inner” problems are stored
in memory (see Figure 6.1). This avoids the work of repeatedly solving the innermost problem. Dy-
namic programming is often used in optimization problems (e.g., finding the maximum or minimum
solution to a problem).

• The key feature that a problem must have in order to be amenable to dynamic programming
is that of optimal substructure: the optimal solution to the problem must contain optimal
solutions to subproblems.

• Greedy algorithms are similar to dynamic programming, except that in greedy algorithms, the
solution to an inner subproblem does not affect the way in which that solution is augmented
to the solution of the full problem. In dynamic programming the combining process is more
sophisticated, and depends on the solution to the inner problem.

• In divide-and-conquer, the subproblems are disjoint.

Dynamic Programming

subsubproblemsubproblem

problem
Divide-and-Conquer

subproblem 1 subproblem 2 subproblem 3

problem

Figure 6.1. Schematic diagrams for dynammic programming and divide-and-conquer.

6.2 Shortest-Path Problems

Given a directed graph G = (V ,E,w) with real-valued edge weights, it is very natural to ask what the
shortest (i.e., lightest) path between two vertices is.

Input: A weighted, directed graph G = (V ,E,w) with real-valued edge weights, a start vertex u,
and an end vertex v

Output: The minimal weight of a path from u to v. That is, the value of

δ(u,v)=
{

min
{
w(p) : paths u

p
 v

}
if such a path exists

∞ otherwise,

where the weight of a path p = 〈v0, v1, . . . , vk〉 is

w(p)=
k∑

i=1
w(vi−1,vi).

(Often we will also want an example of a path which achieves this minimal weight.)

Shortest paths exhibit an optimal-substructure property:

Proposition 6.1 (Theorem 24.1 of CLRS). Let G = (V ,E,w) be a weighted, directed graph with real-
valued edge weights. Let p = 〈v0, v1, . . . , vk〉 be a shortest path from v0 to vk. Let i, j be indices with
0≤ i ≤ j ≤ k, and let pi j be the subpath

〈
vi, vi+1, . . . ,v j

〉
. Then pi j is a shortest path from vi to v j.

Proof. We are given that

p : v0
p0i // vi

pi j // v j
p jk // vk

is a shortest path. If there were a shorter path from vi to v j, say vi
p′

i j
 v j, then we could patch it in to

obtain a shorter path from v0 to vk:

p′ : v0
p0i // vi

p′
i j // v j

p jk // vk ,

which is impossible.

6.2.1 All Pairs

In recitation, we saw Dijkstra’s algorithm (a greedy algorithm) for finding all shortest paths from a
single source, for graphs with nonnegative edge weights. In this lecture, we will solve the problem of
finding the shortest paths between all pairs of vertices. This information is useful in many contexts,
such as routing tables for courier services, airlines, navigation software, Internet traffic, etc.

The simplest way to solve the all-pairs shortest path problem is to run Dijkstra’s algorithm |V |
times, once with each vertex as the source. This would take time |V | ·TDIJKSTRA, which, depending on
the implementation of the min-priority queue data structure, would be

Linear array: O
(
V 3 +V E

)=O
(
V 3)

Binary min-heap: O
(
V E lgV

)
Fibonacci heap: O

(
V 2 lgV +V E

)
.

Lec 6 – pg. 2 of 5

However, Dijkstra’s algorithm only works if the edge weights are nonnegative. If we wanted to allow
negative edge weights, we could instead use the slower Bellman–Ford algorithm once per vertex:

O
(
V 2E

) dense graph−−−−−−−−→O
(
V 4)

.

We had better be able to beat this!

6.2.2 Formulating the All-Pairs Problem

When we solved the single-source shortest paths problem, the shortest paths were represented on the
actual graph, which was possible because subpaths of shortest paths are shortest paths and because
there was only one source. This time, since we are considering all possible source vertices at once, it
is difficult to conceive of a graphical representation. Instead, we will use matrices.

Let n = |V |, and arbitrarily label the vertices 1,2, . . . ,n. We will format the output of the all-pairs
algorithm as an n×n distance matrix D = (

di j
)
, where

di j = δ(i, j)=
{

weight of a shortest path from i to j if a path exists
∞ if no path exists,

together with an n×n predecessor matrix Π= (
πi j

)
, where

πi j =
{

NIL, if i = j or there is no path from i to j
predecessor of j in our shortest path i j otherwise.

Thus, the ith row of Π represents the sinlge-source shortest paths starting from vertex i, and the ith
row of D gives the weights of these paths. We can also define the weight matrix W = (

wi j
)
, where

wi j =
{

weight of edge (i, j) if edge exists
∞ otherwise.

Because G is a directed graph, the matrices D, Π and W are not necessarily symmetric. The existence
of a path from i to j does not tell us anything about the existence of a path from j to i.

6.3 The Floyd–Warshall Algorithm

The Floyd–Warshall algorithm solves the all-pairs shortest path problem in Θ(V 3) time. It allows
negative edge weights, but assumes that there are no cycles with negative total weight.1 The Floyd–
Warshall algorithm uses dynamic programming based on the following subproblem:

What are D and Π if we require all paths to have intermediate vertices2 taken from the
set

{
1, . . . ,k

}
, rather than the full

{
1, . . . ,n

}
?

1 If there were a negative-weight cycle, then there would exist paths of arbitrarily low weight, so some vertex pairs
would have a distance of −∞. In particular, the distance from a vertex to itself would not necessarily be zero, so our
algorithms would need some emendations.

2 An intermediate vertex in a path p = 〈v0, . . . ,vn〉 is one of the vertices v1, . . . ,vn−1, i.e., not an endpoint.

Lec 6 – pg. 3 of 5

i

1

2

3

k

j

i

1

2

3

k

j

Figure 6.2. Either p passes through vertex k, or p doesn’t pass through vertex k.

As k increases from 0 to n, we build up the solution to the all-pairs shortest path problem. The base
case k = 0 (where no intermediate vertices are allowed) is easy:

D(0) =
(
d(0)

i j

)
and Π(0) =

(
π(0)

i j

)
,

where

d(0)
i j =

{
0 if i = j
wi j otherwise

}
and π(0)

i j =
{

NIL if i = j or wi j =∞
i if i 6= j and there is an edge from i to j

}
.

In general, let D(k) and Π(k) be the corresponding matrices when paths are required to have all their
intermediate vertices taken from the set {1, . . . ,k}. (Thus D = D(n) and Π=Π(n).) What we need is a
way of computing D(k) and Π(k) from D(k−1) and Π(k−1). The following observation provides just that.

Observation. Let p be a shortest path from i to j when we require all intermediate vertices to come
from {1, . . . ,k}. Then either k is an intermediate vertex or k is not an intermediate vertex. Thus, one
of the following:

1. k is not an intermediate vertex of p. Thus, p is also a shortest path from i to j when we require
all intermediate vertices to come from {1, . . . ,k−1}.

2. k is an intermediate vertex for p. Thus, we can decompose p as

p : i
pik // k

pk j // j ,

where pik and pk j are shortest paths when we require all intermediate vertices to come from
{1, . . . ,k−1}, by (a slightly modified version of) Proposition 6.1.

This tells us precisely that

d(k)
i j =

{
wi j if k = 0

min
(
d(k−1)

i j , d(k−1)
ik +d(k−1)

k j

)
if k ≥ 1.

Thus we may compute D by the following procedure:

Lec 6 – pg. 4 of 5

Algorithm: FLOYD–WARSHALL(W)
1 n ← ∣∣W .rows

∣∣
2 D(0) ←W
3 Π(0) ← an n×n matrix with all entries initially NIL

4 for k ← 1 to n do
5 Let D(k) =

(
d(k)

i j

)
and Π(k) =

(
π(k)

i j

)
be new n×n matrices

6 for i ← 1 to n do
7 for j ← 1 to n do
8 d(k)

i j ←min
(
d(k−1)

i j , d(k−1)
ik +d(k−1)

k j

)
9 if d(k)

i j ≤ d(k−1)
ik +d(k−1)

k j then
10 π(k)

i j ←π(k−1)
i j

11 else
12 π(k)

i j ←π(k−1)
k j

Being in a triply nested loop, lines 8–12 are executed n3 times. Thus, the algorithm runs in Θ
(
n3)=

Θ
(
V 3)

time. Note that while the algorithm as written requires Θ
(
V 3)

space, reasonable implementa-
tions will only require Θ

(
V 2)

space: we only ever need to memorize four matrices at a time, namely
D(k), D(k−1), Π(k), Π(k−1). In fact, we can get away with memorizing even less—see Exercise 25.2-4
of CLRS.

Lec 6 – pg. 5 of 5

Lecture 7

All-Pairs Shortest Paths II
Supplemental reading in CLRS: Section 25.3

7.1 Johnson’s Algorithm

The Floyd–Warshall algorithm runs in Θ
(
V 3)

time. Recall that, if all edge weights are nonnegative,
then repeated application of Dijkstra’s algorithm using a Fibonacci heap gives the all-pairs shortest
paths in Θ

(
V 2 lgV +V E

)
time. If G is not dense (i.e., if |E| is not on the order of |V |2), then Dijkstra’s

algorithm asymptotically outperforms the Floyd–Warshall algorithm. So our goal for the first half of
this lecture will be to reduce the problem of finding all-pairs shortest paths on an arbitrary graph to
that of finding all-pairs shortest paths on a graph with nonnegative edge weights.

7.1.1 Reweighting

How might we “eliminate” negative edge weights? The naïve way would be to add some constant
N to all the edge weights, where N is chosen large enough to make all the edge weights non-
negative. Unfortunately, this transformation does not preserve shortest paths. Given a path p :
〈u = v0, v1, . . . ,vk = v〉 from u to v with total weight w(p)=∑k

i=1 w(vi−1,vi), the weight of p in the new
graph would be w(p)+kN. Thus, a very light path in the original graph might not be so attractive in
the new graph, if it contained lots of edges (see Figure 7.1).

We will need to do something smarter; the change in weight must vary from edge to edge. Our
goal is to assign to each edge (u,v) a new weight ŵ(u,v), such that the new weight function ŵ has
the following two properties:

1. For each pair of vertices u,v ∈V and each path p : u v, the old weight w(p) is minimal if and
only if the new weight ŵ(p) is minimal (among paths from u to v).

2. For all edges (u,v), the new weight ŵ(u,v) is nonnegative.

−4 −4

−5

1 1

0

Figure 7.1. Adding a constant to the weight of every edge does not preserve shortest paths.

A clever, simple solution to this problem is as follows. Let h : V → R be a scalar-valued function
on the vertices. Assign

ŵ(u,v)= w(u,v)+h(v)−h(u).

This weighting has the property that, for a path p : 〈u = v0, v1, . . . ,vk = v〉, the new weight is

ŵ(p)=
k∑

i=1
ŵ (vi−1,vi)

=
k∑

i=1
w (vi−1,vi)+h (vi)−h (vi−1)

= w(p)+
k∑

i=1
h (vi)−h (vi−1)

= w(p)+h (vk)−h (v0)

= w(p)+h(v)−h(u),

by telescoping. Thus, the amount by which p changes depends only on the endpoints u and v, not on
the intermediate vertices. Consequently, a path p : u v is minimal with respect to ŵ if and only if
it is minimal with respect to w. Also, if u = v, then ŵ(p)= w(p), so the weight of cycles is unchanged.
Thus, negative-weight cycles are preserved, so the distance from u to v with respect to ŵ is −∞ if
and only if the distance from u to v with respect to w is −∞.

Our task now is to choose an appropriate function h so that the edge wieghts ŵ become nonnega-
tive. There is a magical answer to this question: Let s be a new vertex, and construct an augmented
graph G′ = (V ′,E′) with V ′ =V ∪{s}. Take E′ to consist of all the edges in E, plus a directed edge from
s to each vertex in V (see Figure 7.2). Then let

h(v)=−δ(s,v),

where δ(s,v) is the weight of the shortest path from s to v. Note that Proposition 6.1 implies the
“triangle inequality”

δ(s,v)≤ δ(s,u)+δ(u,v)

(with equality if one of the shortest paths from s to v passes through u). Since δ(u,v) ≤ w(u,v), we
have

δ(s,v)≤ δ(s,u)+w(u,v).

Hence

ŵ(u,v)= w(u,v)+h(v)−h(u)

= w(u,v)−δ(s,v)+δ(s,u)

≥ w(u,v)− (
δ(s,u)+w(u,v)

)+δ(s,u)

= 0.

Applying the weights ŵ to G, we obtain the following algorithm, due to Johnson:

Lec 7 – pg. 2 of 7

s

3 4

8

−4

7 1

6

2
−5

0

0

0

0

0

Figure 7.2. The augmented graph G′ in Johnson’s algorithm, consisting of G together with a special vertex s from which
there emanates an edge of weight 0 to each other vertex.

Algorithm: JOHNSON(G)
1 Construct the augmented graph G′, where G′.V = G.V ∪ {s} and G′.E = G.E ∪{

(s,v) with G′.w(s,v)= 0, for each v ∈G.V
}

2 if BELLMAN–FORD(G′, s)= FALSE then
3 B if BELLMAN–FORD complains about a negative-weight cycle
4 error “The input graph contians a negative-weight cycle.”
5 else
6 for each vertex v ∈G.V do
7 Set h(v)←−δ(s,v), where δ(s,v) is as computed by BELLMAN–FORD

8 for each edge (u,v) ∈G.E do
9 ŵ(u,v)←G.w(u,v)+h(v)−h(u)

10 Let D = (
duv

)
and Π= (

πuv
)

be new n×n matrices
11 for each vertex u ∈G.V do
12 Run DIJKSTRA(G, ŵ,u) to compute δ̂(u,v) for all v ∈G.V
13 for each vertex v ∈G.V do
14 B correct the shortest path weights
15 duv ← δ̂(u,v)− (

h(v)−h(u)
)

16 πuv ← the predecessor of v as computed by DIJKSTRA(G, ŵ,u) above
17 return D

The only steps in this algorithm that take more than O(E) time are the call to BELLMAN–FORD

on line 2 (which takes Θ(V E) time) and the |V | calls to DIJKSTRA on lines 11–16 (each of which
takes Θ

(
V lgV +E

)
time using a Fibonacci heap). Thus, the total running time of JOHNSON is

Θ
(
V 2 lgV +V E

)
.

Lec 7 – pg. 3 of 7

7.2 Linear Programming

Linear programming is a very general class of problem that arises frequently in diverse fields. The
goal is to optimize a linear objective function subject to linear constraints (equalities and inequali-
ties). That is, we want to maximize or minimize the function

f (x1, x2, . . . , xn)= a1x1 +a2x2 +·· ·+anxn =
n∑

j=1
a jx j

subject to the constraints

g(i) (x1, . . . , xn)= b(i)
1 x1 +b(i)

2 x2 +·· ·+b(i)
n xn =

n∑
j=1

b(i)
j x j = p(i)

and

h(i) (x1, . . . , xn)= c(i)
1 x1 + c(i)

2 x2 +·· ·+ c(i)
n xn =

n∑
j=1

c(i)
j x j ≤ q(i).

In vector form, we want to maximize or minimize

aTx

subject to the constraints
Bx=p and Cx≤q

(meaning that the ith entry of Cx is less than or equal to the ith entry of q for every i). Here B and
C are matrices with n columns (and any number of rows).

7.2.1 Application: Bacterial Growth

One of the many applications of linear programming is the problem of maximizing bacterial growth
subject to biochemical constraints. Consider the transport pathways of a bacterial cell, which we
model as a graph embedded in three-dimensional space (see Figure 7.3). Let xi be the flux through
edge i.

• At steady-state, the net flux through each vertex of the graph is zero, as wastes are not building
up along the cell pathways. This amounts to a linear constraint at each vertex, e.g., x1−x2−x3 =
0 in the picture.

• Each edge has a minimum (namely zero) and a maximum rate at which molecules can pass
through. This amounts to a linear constraint 0≤ xi ≤ v(i)

max at each edge.

• The objective function is the sum of fluxes contributing to biomass production (e.g., synthesis
of amino acids and proteins).

The availability of efficient solutions to linear programming problems has been valuable in the engi-
neering of new bacterial strains with improved capabilities, e.g., to produce biofuels.

Lec 7 – pg. 4 of 7

Food source

Zoom in on a vertex:

Flow constraint:
x1 − x2 − x3 = 0

x1
x2

x3

Figure 7.3. Bacterial cell, with a graph representing its transport pathways. At steady-state, the net flux through each
vertex is zero.

7.2.2 Difference Constraints as Graphs

It turns out that shortest path problems are related to some forms of linear programming problems.
Consider a system of linear constraints, each having the form

x j − xi ≤ bk,

in other words, a system of the form
Ax≤b,

where A is an m× n matrix, x is an n-dimensional vector and b is an m-dimensional vector, and
where each row of A contains one 1, one −1, and all other entries are zero. As a concrete example,
let’s consider the system

1 −1 0 0
1 0 0 −1
0 1 0 −1
−1 0 1 0
0 0 −1 1

x1
x2
x3
x4

≤

0
−1
1
5
−3

 .

This is equalivalent to the inequalities

x1 − x2 ≤ 0

x1 − x4 ≤−1

x2 − x4 ≤ 1

x3 − x1 ≤ 5

x4 − x3 ≤−3

.

Lec 7 – pg. 5 of 7

v0

v1 v2

v3v4

0

−1
1

−3

5

0

0

0

0

Figure 7.4. Constraint graph for the system of difference constraints Ax≤b, where A and b are as in our example.

Two plausible solutions to this system are

x=

−5
−3
0
−4

 , x=

0
2
5
1

 .

In general, it’s not hard to see that adding any multiple of (1,1,1,1)T to a solution produces another
solution.

Let’s now construct a graph G, called the constraint graph for this system (see Figure 7.4). The
vertex set of G is V = {

v0, . . . ,vn
}
. Draw a directed edge with weight 0 from v0 to each other vertex.

Then, for each difference constraint x j − xi ≤ b, draw an edge from vi to v j with weight b.

Theorem 7.1 (Theorem 24.9 of CLRS). Given a system Ax≤b of difference constraints, let G = (V ,E)
be the corresponding constraint graph. If G contians no negative-weight cycles, then

x=

δ (v0,v1)
δ (v0,v2)

...
δ (v0,vn)

is a feasible solution. If G does contain negative-weight cycles, then there is no feasible solution.

Proof. Assume there are no negative-weight cycles. Since shortest paths satisfy the triangle inequal-
ity, we have

δ
(
v0,v j

)︸ ︷︷ ︸
x j

≤ δ (v0,vi)︸ ︷︷ ︸
xi

+w
(
vi,v j

)︸ ︷︷ ︸
b

.

Rearranging, we obtain
x j − xi ≤ b.

Next, consider the case of a negative-weight cycle. Without loss of generality, assume the cycle is
of the form c = 〈

v1, v2, . . . , vk, v1
〉
. Then any solution x to the system of difference constraints must

satisfy

Lec 7 – pg. 6 of 7

x2 − x1 ≤ w (v1,v2)
x3 − x2 ≤ w (v2,v3)

...
xk − xk−1 ≤ w (vk−1,vk)

+ x1 − xk ≤ w (vk,v1)
0 ≤ w(c) < 0,

a contradiction. Therefore there cannot be any solutions to the system of difference constraints.

Lec 7 – pg. 7 of 7

Lecture 8

Randomized Algorithms I
Supplemental reading in CLRS: Chapter 5; Section 9.2

Should we be allowed to write an algorithm whose behavior depends on the outcome of a coin flip?
It turns out that allowing random choices can yield a tremendous improvement in algorithm perfor-
mance. For example,

• One can find a minimum spanning tree of a graph G = (V ,E,w) in linear time Θ(V +E) using a
randomized algorithm.

• Given two polynomials p, q of degree n−1 and a polynomial r of degree n−2, one can check
whether r = pq in linear time Θ(n) using a randomized algorithm.

No known deterministic algorithms can match these running times.
Randomized algorithms are generally useful when there are many possible choices, “most” of

which are good. Surprisingly, even when most choices are good, it is not necessarily easy to find a
good choice deterministically.

8.1 Randomized Median Finding

Let’s now see how randomization can improve our median-finding algorithm from Lecture 1. Recall
that the main challenge in devising the deterministic median-finding algorithm was this:

Problem 8.1. Given an unsorted array A = A[1, . . . ,n] of n numbers, find an element whose rank is
sufficiently close to n/2.

While the deterministic solution of Blum, Floyd, Pratt, Rivest and Tarjan is ingenious, a simple
randomized algorithm will typically outperform it in practice.

Input: An array A = A[1, . . . ,n] of n numbers

Output: An element x ∈ A such that 1
10 n ≤ rank(x)≤ 9

10 n.

Algorithm: FIND-APPROXIMATE-MIDDLE(A)
Pick an element from A uniformly at random.

Note that the above algorithm is not correct. (Why not?) However, it does return a correct answer
with probability 8

10 .

A:

good

Figure 8.1. Wouldn’t it be nice if we had some way of choosing an element that probably lies in the middle?

8.1.1 Randomized Median Finding

Let’s put the elegant and simple algorithm FIND-APPROXIMATE-MIDDLE to use in a randomized
version of the median-finding algorithm from Lecture 1:

Algorithm: RANDOMIZED-SELECT(A, i)

1. Pick an element x ∈ A uniformly at random.

2. Partition around x. Let k = rank(x).

3. • If i = k, then return x.

• If i < k, then recursively call RANDOMIZED-SELECT(A[1, . . . ,k−1], i).

• If i > k, then recursively call RANDOMIZED-SELECT(A[k+1, . . . , i], i−k).

Note two things about this algorithm:

• Unlike FIND-APPROXIMATE-MIDDLE, RANDOMIZED-SELECT makes several random choices:
one in each recursive call.

• Unlike FIND-APPROXIMATE-MIDDLE, RANDOMIZED-SELECT is correct. The effect of bad ran-
dom choices is to prolong the running time, not to generate an incorrect answer. For example, if
we wanted to find the middle element (i = n/2), and if our random element x happened to always
be the smallest element of A, then RANDOMIZED-SELECT would take Θ(n) ·Tpartition = Θ(n2)
time. (To prove this rigorously, a more detailed calculation is needed.)

The latter point brings to light the fact that, for randomized algorithms, the notion of “worst-case”
running time is more subtle than it is for deterministic algorithms. We cannot expect randomized
algorithms to work well for every possible input and every possible sequence of random choices (in
that case, why even use randomization?). Instead, we do one of two things:

• Construct algorithms that always run quickly, and return the correct answer with high prob-
ability. These are called Monte Carlo algorithms. With some small probability, they may
return an incorrect answer or give up on computing the answer.

• Construct algorithms that always return the correct answer, and have low expected running
time. These are called Las Vegas algorithms. Note that the expected running time is an
average over all possible sequences of random choices, but not over all possible inputs. An
algorithm that runs in expected Θ(n2) time on difficult inputs and expected Θ(n) time on easy
inputs has worst-case expected running time Θ(n2), even if most inputs are easy.

FIND-APPROXIMATE-MIDDLE is a Monte Carlo algorithm, and RANDOMIZED-SELECT is a Las Vegas
algorithm.

Lec 8 – pg. 2 of 5

8.1.2 Running Time

To begin our analysis of RANDOMIZED-SELECT, let’s first suppose all the random choices happen
to be good. For example, suppose that every recursive call of RANDOMIZED-SELECT(A, i) returns
an element whose rank is between 1

10 |A| and 9
10 |A|. Then, the argument to each recursive call of

RANDOMIZED-SELECT is at most nine-tenths the size of the argument to the previous call. Hence, if
there are a total of K recursive calls to RANDOMIZED-SELECT, and if n is the size of the argument
to the original call, then (9

10
)K n ≥ 1 =⇒ K ≤ log10/9 n.

(Why?) Of course, in general we won’t always get this lucky; things might go a little worse. However,
it is quite unlikely that things will go much worse. For example, there is a 96% chance that (at least)
one of our first 15 choices will be bad—quite high. But there is only a 13% chance that three of our
first 15 choices will be bad, and only a 0.06% chance that nine of our first 15 choices will be bad.

Now let’s begin the comprehensive analysis. Suppose the size of the original input is n. Then,
let Tr be the number of recursive calls that occur after the size of A has dropped below

(9
10

)r n, but

before it has dropped below
(9

10
)r+1 n. For example, if it takes five recursive calls to shrink A down

to size 9
10 n and it takes eight recursive calls to shrink A down to size

(9
10

)2 n, then T0 = 5 and T1 = 3.
Of course, each Ti is a random variable, so we can’t say anything for sure about what values it will
take. However, we do know that the total running time of RANDOMIZED-SELECT(A = A[1, . . . ,n], i) is

T =
log10/9 n∑

r=0
Θ

((9
10

)r n
)
·Tr.

Again, T is a random variable, just as each Tr is. Moreover, each Tr has low expected value: Since
each recursive call to RANDOMIZED-SELECT has a 4/5 chance of reducing the size of A by a factor of
9
10 , it follows that (for any r)

Pr
[
Tr > s

]≤ (1
5
)s .

Thus, the expected value of Tr satisfies

E [Tr]≤
∞∑

s=0
s
(1

5
)s = 5

16
.

(The actual value 5/16 is not important; just make sure you are able to see that the series converges
quickly.) Thus, by the linearity of expectation,

E [T]= E
[

log10/9 n∑
r=0

Θ
((9

10
)r n

)
·Tr

]

=
log10/9 n∑

r=0
Θ

((9
10

)r n
)
·E [Tr]

≤ 5
16

log10/9 n∑
r=0

O
((9

10
)r n

)

=O

(
n

log10/9 n∑
r=0

(9
10

)r
)

Lec 8 – pg. 3 of 5

≤O

(
n

∞∑
r=0

(9
10

)r
)

=O(n),

since the geometric sum
∑∞

r=0
(9

10
)r converges (to 10).

8.2 Another Example: Verifying Polynomial Multiplication

Suppose we are given two polynomials p, q of degree n−1 and a polynomial r of degree 2n−2, and we
wish to check whether r = pq. We could of course compute pq in Θ(n lgn) time using the fast Fourier
transform, but for some purposes the following Monte Carlo algorithm would be more practical:

Algorithm: VERIFY-MULTIPLICATION(p, q, r)

1. Choose x uniformly at random from {0,1, . . . ,100n−1}.

2. Return whether p(x) · q(x)= r(x).

This algorithm is not correct. It will never report no if the answer is yes, but it might report yes when
the answer is no. This would happen if x were a root of the polynomial pq− r, which has degree at
most 2n−2. Since pq− r can only have at most 2n−2 roots, it follows that

Pr
[
wrong answer

]≤ 2n−2
100n

< 0.02.

Often, the performance improvement offered by this randomized algorithm (which runs in Θ(n) time)
is worth the small risk of (one-sided) error.

8.3 The Markov Bound

The Markov bound states that it is unlikely for a nonnegative random variable X to exceed its
expected value by very much.

Theorem 8.2 (Markov bound). Let X be a nonnegative random variable with positive expected value.1

Then, for any constant c > 0, we have

Pr
[
X ≥ c ·E [X]

]
≤ 1

c
.

Proof. We will assume X is a continuous random variable with probability density function fX ; the
discrete case is the same except that the integral is replaced by a sum. Since X is nonnegative, so is
E [X]. Thus we have

E [X]=
∫ ∞

0
x fX (x) dx

≥
∫ ∞

cE[X]
x fX (x) dx

1 i.e., Pr
[
X > 0

]> 0.

Lec 8 – pg. 4 of 5

≥ cE [X]
∫ ∞

cE[X]
fX (x) dx

= cE [X] ·Pr
[
X ≥ cE [X]

]
.

Dividing through by cE [X], we obtain

1
c
≥Pr

[
X ≥ cE [X]

]
.

Corollary 8.3. Given any constant c > 0 and any Las Vegas algorithm with expected running time
T, we can create a Monte Carlo algorithm which always runs in time cT and has probability of error
at most 1/c.

Proof. Run the Las Vegas algorithm for at most cT steps. By the Markov bound, the probability of
not reaching termination is at most 1/c. If termination is not reached, give up.

Lec 8 – pg. 5 of 5

Lecture 9

Randomized Algorithms II
Supplemental reading in CLRS: Appendix C; Section 7.3

After Lecture 8, several students asked whether it was fair to compare randomized algorithms to
deterministic algorithms.

Determistic algorithm:
• always outputs the right answer
• always runs efficiently

Randomized algorithm:
• may sometimes not output the right answer
• may sometimes not run efficiently

Is this “fair”? Of course not. We demand less from randomized algorithms. But in exchange, we
expect randomized algorithms to do more—to be more efficient, or to be simple and elegant.

Separately, we might ask whether it is useful to employ randomized algorithms. The answer here
is that it depends:

• on the situation
• on the available alternatives
• on the probability of error or inefficiency.

Lots of real-life situations call for randomized algorithms. For example, Google Search and IBM’s
Jeopardy!-playing computer Watson both employ randomized algorithms.

9.1 The Central Limit Theorem and the Chernoff Bound

Ideally, a randomized algorithm will have the property that

Pr
[
bad things happening

] n→∞−−−−→ 0.

Before further analyzing randomized algorithms, it will be useful to establish two basic facts about
probability theory: the central limit theorem and the Chernoff bound. The central limit theorem
states that the mean of a large number of independent copies of a random variable is approximately
normal, as long as the variable has finite variance. The normal distribution (or Gaussian distri-
bution) of mean 0 and variance 1, denoted N(0,1), is defined by the probability density function

fN(0,1)(x)= 1p
2π

exp
(−x2/

2
)
.

Figure 9.1. A tail of the normal distribution.

Taking an affine transform of this standard Gaussian, we obtain the normal distribution with arbi-
trary mean µ and arbitrary variance σ2, denoted N

(
µ,σ2)

. Its probability density function is

fN(µ,σ2)(x)= 1p
2πσ2

exp
(
− (x−µ)2

2σ2

)
.

Due in part to the following theorem, the Gaussian distribution is extremely important in all of
probability theory.

Theorem 9.1 (Central Limit Theorem). Suppose X1, X2, . . . are i.i.d.1 random variables, each with
finite mean µ and finite variance σ2. Let Sn = X1+...+Xn

n , and let Yn =p
n

(
Sn −µ

)
. Then the variables

Y1,Y2, . . . converge to a normal distribution:

Yn
d−→ N

(
0,σ2)

.

The precise meaning of this theorem is somewhat technical. Again, in effect it means that the
average of a large number of independent copies of a random variable X is approximately normally
distributed. Thus, the probability that this average exceeds its expected value by r is approximately
the probability that a normal random variable with variance σ2 exceeds its expected value by r.
While this heuristic reasoning does not rigorously prove any specific bound, there are a number of
bounds that have been worked out for certain common distributions of X . One such bound is the
Chernoff bound, one version of which is as follows:

Theorem 9.2 (Chernoff bound). Let Y ∼ B(n, p) be a random variable representing the total number
of heads in a series of n independent coin flips, where each flip has probability p of coming up heads.
Then, for all r > 0, we have

Pr
[
Y ≥ E [Y]+ r

]
≤ exp

(−2r2/
n
)
.

The distribution in Theorem 9.2 is called the binomial distribution with parameters (n, p).
The probability of m heads is

(n
m

)
pm(1− p)n−m.

There are several different versions of the Chernoff bound—some with better bounds for specific
hypotheses, some more general. Section C.5 of CLRS gives a classic proof of the Chernoff bound,
applying the Markov inequality to the random variable exp

(
α(Y −E [Y])

)
for a suitable constant α.

We give a different proof here2, due to Impagliazzo and Kabanets, 2010.

1independent and identically distributed
2 Of a different theorem, actually. The version we prove here is (stronger than) Exercise C.5-6 of CLRS.

Lec 9 – pg. 2 of 9

0 1 2 3 4 5 6

Figure 9.2. Galton’s board is a toy in which, at each peg, the ball has probability 1
2 of moving left and probability 1

2 of
moving right. The number of the bin into which it falls is a binomial random variable with parameters (n, 1

2). If n is large
and you drop a large number of balls into the board, the collection of balls in the bins underneath will start to look like a
Gaussian probability density curve.

Lec 9 – pg. 3 of 9

Proof of Theorem 9.2. Let
Y = X1 +·· ·+ Xn,

where X1, . . . , Xn are independent {0,1}-valued random variables, each having probability p of being
1. Thus Y is a binomial random variable with parameters (n, p). Let S be a random subset of {1, . . . ,n}
such that each element of {1, . . . ,n} independently has probability q of being included in S, where q
is a parameter that will be determined later. The probability that X i = 1 for all i ∈ S is

Pr

[∧
i∈S

X i = 1

]
=Pr

[∧
i∈S

X i = 1
∣∣∣ Y ≥ E [Y]+ r

]
Pr

[
Y ≥ E [Y]+ r

]
+Pr

[∧
i∈S

∣∣∣ Y < E [Y]+ r

]
Pr

[
Y < E [Y]+ r

]

≥Pr

[∧
i∈S

X i = 1
∣∣∣ Y ≥ E [Y]+ r

]
Pr

[
Y ≥ E [Y]+ r

]
. (9.1)

Meanwhile,

Pr

[∧
i∈S

X i = 1
∣∣∣ Y ≥ E [Y]+ r

]
≥ (1− q)n−(E[Y]+r), (9.2)

since the condition
∧

i∈S X i = 1 is equivalent to the condition that S doesn’t include the indices of any
zeros, and we are conditioning on the hypothesis that there are at most n− (E [Y]+ r) zeros. (This is
the “key idea” of the proof. Notice that we have switched from conditioning on S followed by the X i ’s
to conditioning on the X i ’s followed by S.) Combining (9.1) and (9.2), we obtain

Pr

[∧
i∈S

X i = 1

]
≥ (1− q)n−(E[Y]+r) Pr

[
Y ≥ E [Y]+ r

]
. (9.3)

We could also compute Pr
[∧

i∈S X i = 1
]

by conditioning on S in a different way:

Pr

[∧
i∈S

X i = 1

]
=

n∑
k=0

((n
k
)
qk(1− q)n−k

)
︸ ︷︷ ︸

Pr
[
|S|=k

]
·
(

pk
)

︸ ︷︷ ︸
Pr

[∧
i∈S X i=1

∣∣∣ |S|=k
]

.

Recall the binomial formula, which states

(a+b)n =
n∑

k=0

(n
k
)
akbn−k.

In the present case, we have

Pr

[∧
i∈S

X i = 1

]
= (

qp+1− q
)n . (9.4)

Combining (9.3) and (9.4), we obtain

(1− q)n−(E[Y]+r) Pr
[
Y ≥ E [Y]+ r

]
≤ (

qp+1− q
)n .

Rearranging and using the fact that E [Y]= np, we have equivalently

Pr
[
Y ≥ E [Y]+ r

]
≤

(
qp+1− q

)n

(1− q)n−(np+r) . (9.5)

Lec 9 – pg. 4 of 9

Equation (9.5) holds for arbitrary q, so we might as well assign a value to q for which the right side
is minimal. Let

q = r/n(
p+ r

n
)
(1− p)

;

after some expansion, the right side of (9.5) becomes(
p

p+ r
n

)p+ r
n
(

1− p
1− (

p+ r
n
))1−(p+ r

n)
n

= exp
(−nf

(r
n
))

,

where3

f (x)= (
p+ x

)
ln

(
1+ x

p

)
+ (

1− (p+ x)
)
ln

(
1− x

1−p

)
.

Below we will show that
f (x)≥ 2x2 for all x ∈R such that f (x) ∈R,

so that (9.5) becomes

Pr
[
Y ≥ E [Y]+ r

]
≤ exp

(−nf
(r

n
))

≤ exp
(
−2n

(r
n
)2

)
= exp

(
−2r2

n

)
.

This will complete the proof.
All that remains is to show that f (x)≥ 2x2 for all x such that f (x) ∈R—namely, for −p < x < 1− p,

though we will only need the range 0≤ x < 1−p.4 This can be shown by calculus: the first and second
derivatives of f are

f ′(x)= ln
(
1+ x

p

)
− ln

(
1− x

1−p

)
,

f ′′(x)= 1
(1− (p+ x))(p+ x)

.

In particular, f ′′(x) is minimized when p+ x = 1
2 , at which point f ′′(x) = 4. Thus, the fundamental

theorem of calculus gives

f ′(x) = f ′(0)︸ ︷︷ ︸
0

+
∫ x

t=0
f ′′(t) dt ≥

∫ x

t=0
4 dt = 4x.

Applying the fundamental theorem of calculus again, we have

f (x) = f (0)︸︷︷︸
0

+
∫ x

t=0
f ′(t) dt ≥

∫ x

t=0
4t dt = 2x2.

3 The definition of f may seem unmotivated here, but in fact f (x) is properly interpreted as the relative entropy between
two Bernoulli random variables with parameters p and p+ x, respectively. Relative entropy is a measure of the “distance”
between two probability distributions.

4 Note that x = r
n will always fall within this range, as we must have E [Y]+ r ≤ n. (Or at least, the theorem becomes

trivial when r
n > 1− p.)

Lec 9 – pg. 5 of 9

ai

pivot

Figure 9.3. In a given iteration of QUICKSORT, there will be several working subarrays, each in the process of being
sorted by its own recursive call to QUICKSORT.

9.2 Analysis of QUICKSORT

Recall the procedure QUICKSORT, which sorts an array A = 〈a1, . . . ,an〉 in place (see Figure 9.3):

Algorithm: QUICKSORT(A)

1. Choose an element x ∈ A uniformly at random. We will call x the “pivot.”

2. Partition A around x.

3. Sort the elements less than x recursively.

4. Sort the elements greater than x recursively.

We saw in recitation that the expected running time of QUICKSORT is Θ(n lgn). In this lecture we’ll
use the Chernoff bound to show that, for some constant c ≥ 1, the probability that QUICKSORT takes
more than cn lgn time on any given input is at most 1

n . In fact, what we’ll show is that after time
cn lgn, the probability that the working subarray containing any given element a ∈ A consists of
more than one element is at most 1

n2 . Once this is established, the union bound shows that the
probability that there exists any working subarray with more than one element is at most 1

n . That
is to say, let A = 〈a1, . . . ,an〉 and let E i be the event that after time cn lgn, the working subarray
containing ai has more than one element. Then the union bound states that

Pr
[∃ working subarray with

more than one element

]
=Pr

[
n⋃

i=1
E i

]
≤

n∑
i=1

Pr
[
E i

]≤ n
(

1
n2

)
= 1

n
.

(In general, the union bound says that the probability of a finite or countably infinite union of events
E i is at most the sum of their individual probabilities. The intuition is that equality is achieved
when the E i ’s are pairwise disjoint, and any overlap only diminishes the size of the union.)

All that remains is to find c such that, for any array A,

Pr
[
E i

]≤ 1
n2 for all i = 1, . . . ,n.

As in Lecture 8, we define a “good” pivot x in an array A to be a pivot such that

1
10 |A| ≤ rank(x)≤ 9

10 |A| .
Thus, a good pivot splits the current array into two subarrays each at most 9

10 as big. Let X i,k be the
indicator random variable

X i,k =
{

0 if, in the kth iteration, a good pivot was chosen for ai ’s subarray
1 otherwise.

Lec 9 – pg. 6 of 9

(By “the kth iteration,” we mean all calls to QUICKSORT at recursive depth k. Thus, the kth iteration
will consist of 2k−1 recursive calls to QUICKSORT, assuming none of the subarrays have shrunk to
size 1 yet.) Note two things:

• E
[
X i,k

] = 0.2 for all i and all k. (To reduce the amount of bookkeeping we have to do, we will
assume that pivots continue to be chosen even after an element’s subarray is reduced to size 1,
and that the probability of choosing a good pivot continues to be 0.8.)

• For a fixed k, the variables X1,k, X2,k, . . . , Xn,k are dependent on each other. However, for a fixed
i, the variables X i,1, X i,2, . . . are independent of each other.

For a fixed i and a fixed K , we have

E

[
K∑

k=1
X i,k

]
= 0.2K .

Thus, by the Chernoff bound (with r = 0.1K), we have

Pr

[
K∑

k=1
X i,k > 0.2K +0.1K

]
≤ exp

(
−2(0.1K)2

K

)
= exp(−0.02K) .

Now let K = 100lnn. We obtain

Pr

[
K∑

k=1
X i,k > 0.3K

]
≤ 1

n2 .

On the other hand, if
∑K

k=1 X i,k ≤ 0.3K , then at least 0.7K of the first K pivots were good, and the
size of the working subarray containing ai after K steps is at most

n ·
(

9
10

)0.7K
= n ·

(
9

10

)70lnn
= n70ln(9/10)+1 ≈ n−6.3 < 1

(i.e., the size is at most 1; the reason for the fractional number is that we are ignoring issues of
rounding). Thus, after K = 100lnn iterations, the probability that the working subarray containing
ai has more than one element is at most 1

n2 . So by the union bound, the probability that QUICKSORT

requires more than K iterations is at most 1
n .

While the sizes of the inputs to each iteration and the total number of iterations required are
random, the running time of the non-recursive part of QUICKSORT is deterministic: It takes Θ(A)
time to pick a random element and partition around that element. Let’s say it takes at most τA time
to do this, where τ is some appropriately chosen constant. Now, if the sizes of the inputs to the kth
iteration are m1, . . . ,m`, then the quantities m1, . . . ,m` are random, but we know

∑`
λ=1 mλ = n, so the

total amount of time required by the kth iteration is at most
∑`
λ=1τmλ = τn. Thus, the probability

that QUICKSORT takes more than Kτn = (100τ)n lnn time is at most 1/n. This is what we set out to
show in the beginning of this section, with c = 100τ.

To recap:

How can we argue about randomized algorithms?

• Identify the random choices in the algorithm.
• After fixing the random choices, we have a deterministic algorithm.

In this example, the random choices were the pivots. Fixing the sequence of choices of pivots, we
were able to analyze

∣∣A i,k
∣∣, the size of the subarray containing ai after k iterations, for each i and k

(see Figure 9.4).

Lec 9 – pg. 7 of 9

Random choices at depth 1
∣∣A1,1

∣∣= n
∣∣A2,1

∣∣= n · · ·
Random choices at depth 2

∣∣A1,2
∣∣= 0.3n

∣∣A2,2
∣∣= 0.8n · · ·

...
...

...
. . .

Figure 9.4. The values 0.3n and 0.8n are just examples, and of course depend on the sequence of random choices. Once
the sequence of random choices is fixed, we would like to know how many rows down we must go before all entries are 1.

9.3 Monte Carlo Sampling

Suppose that out of a large population U , there occurs a certain phenomenon in a subset S ⊆ U .
Given an element x, we are able to test whether x ∈ S. How can we efficiently estimate |S|

|U |? For
example, how can we efficiently estimate what fraction of the world’s population is left-handed, or
what percentage of voters vote Republican?

There is an elegant simple solution to this problem: Choose a k-element sample A = {x1, . . . , xk}⊆
U uniformly at random. We then estimate |S|

|U | by the quantity Ŝ = |A∩S|
|A| = 1

k

∣∣{i : xi ∈ S
}∣∣, figuring that

the chance that an element a ∈ A belongs to S ought to be the same as the chance that a general
element x ∈ U belongs to S. Thus, we are relying heavily on our ability to pick a truly uniform
sample.5 Assuming this reliance is safe, kŜ = |A∩S| is a binomial random variable with parameters(
k, |S|

|U |
)
. In particular, the expected value of Ŝ is the exact correct answer |S|

|U | . Thus, the Chernoff
bound states that for any r > 0,

Pr
[
Ŝ ≥ |S|

|U | + r
]
=Pr

[
kŜ ≥ E[

kŜ
]+kr

]
≤ exp

(−2kr2)
.

Exercise 9.1. How can we use the Chernoff bound to give an upper bound on Pr
[
Ŝ ≤ |S|

|U | − r
]
? (Hint:

replace S by its complement U \ S.)

9.4 Amplification

Suppose we are given a Monte Carlo algorithm which always runs in time T and returns the correct
answer with probability 2/3. (Assume there is a unique correct answer.) Then, for any ε> 0, we can
create a new randomized algorithm which always runs in time O

(
T lg 1

ε

)
and outputs an incorrect

answer with probability at most ε. How?
The plan is to run the original algorithm k times, where k = O

(
lg 1

ε

)
is a quantity which we will

determine later. The algorithm should then output whichever answer occurred most frequently out
of the k computed answers. To bound the probability of error, let I j be the indicator random variable
which equals 1 if the jth run returns an incorrect answer, and let I = ∑k

j=1 I j. Then I is a binomial
random variable with parameters

(
k, 1

3
)
. Thus, by the Chernoff bound,

Pr
[
we ultimately return
an incorrect answer

]
≤Pr

[
I ≥ 1

2 k
]=Pr

[
I ≥ E [I]+ 1

6 k
]
≤ exp

(− 1
18 k

)
.

5 In practice, it could be quite hard to pick a uniform sample. For example, what if you wanted figure out what proportion
of New Yorkers speak Chinese? How much of your random sampling should be done in Chinatown? Without the help of
extensive census data, it can be hard to make unbiased choices.

Lec 9 – pg. 8 of 9

Thus, the probability of error will be at most ε if we let k = 18ln 1
ε
.

Exercise 9.2. Suppose that instead of returning the correct answer with probability 2/3, our Monte
Carlo algorithm returned the correct answer with probability p. What conditions on p allow the above
strategy to work? In terms of p and ε, how many times must we run the Monte Carlo algorithm?

Lec 9 – pg. 9 of 9

Lecture 10

Hashing and Amortization
Supplemental reading in CLRS: Chapter 11; Chapter 17 intro; Section 17.1

10.1 Arrays and Hashing

Arrays are very useful. The items in an array are statically addressed, so that inserting, deleting,
and looking up an element each take O(1) time. Thus, arrays are a terrific way to encode functions{

1, . . . ,n
}→ T,

where T is some range of values and n is known ahead of time. For example, taking T = {0,1}, we
find that an array A of n bits is a great way to store a subset of {1, . . . ,n}: we set A[i] = 1 if and only
if i is in the set (see Figure 10.1). Or, interpreting the bits as binary digits, we can use an n-bit array
to store an integer between 0 and 2n−1. In this way, we will often identify the set {0,1}n with the set
{0, . . . ,2n −1}.

What if we wanted to encode subsets of an arbitrary domain U , rather than just {1, . . . ,n}? Or
to put things differently, what if we wanted a keyed (or associative) array, where the keys could be
arbitrary strings? While the workings of such data structures (such as dictionaries in Python) are
abstracted away in many programming languages, there is usually an array-based solution working
behind the scenes. Implementing associative arrays amounts to finding a way to turn a key into an
array index. Thus, we are looking for a suitable function U → {1, . . . ,n}, called a hash function.
Equipped with this function, we can perform key lookup:

U hash function−−−−−−−−−→ {
1, . . . ,n

} array lookup−−−−−−−−−→ T

(see Figure 10.2). This particular implementation of associative arrays is called a hash table.
There is a problem, however. Typically, the domain U is much larger than {1, . . . ,n}. For any hash

function h : U → {1, . . . ,n}, there is some i such that at least |U |
n elements are mapped to i. The set

A: 0

1

1

2

0

3

1

4

1

5

0

6

0

7

1

8

0

9

0

10

1

11

0

12

Figure 10.1. This 12-bit array encodes the set
{
2,4,5,8,11

}⊆ {
1, . . .12

}
.

1

2

h
(
key3

)= 3
〈
key3, val3

〉
4

h
(
key1

)= 5
〈
key1, val1

〉
h

(
key2

)= 6
〈
key2, val2

〉
7

Figure 10.2. An associative array with keys in U and values in T can be implemented as a (U×T)-valued array equipped
with a hash function h : U → {1, . . . ,n}.

h−1(i) of all elements mapped to i is called the load on i, and when this load contains more than
one of the keys we are trying to store in our hash table we say there is a collision at i. Collisions
are problem for us—if two keys map to the same index, then what should we store at that index?
We have to store both values somehow. For now let’s say we do this in the simplest way possible:
storing at each index i in the array a linked list (or more abstractly, some sort of bucket-like object)
consisting of all values whose keys are mapped to i. Thus, lookup takes O

(
h−1(i)

)
time, which may

be poor if there are collisions at i. Rather than thinking about efficient ways to handle collisions,1

let’s try to reason about the probability of having collisions if we choose our hash functions well.

10.2 Hash Families

Without any prior information about which elements of U will occur as keys, the best we can do is
to choose our hash function h at random from a suitable hash family. A hash family on U is a set
H of functions U → {1, . . . ,n}. Technically speaking, H should come equipped with a probability
distribution, but usually we just take the uniform distribution on H , so that each hash function is
equally likely to be chosen.

If we want to avoid collisions, it is reasonable to hope that, for any fixed x1, x2 ∈U (x1 6= x2), the
values h(x1) and h(x2) are completely uncorrelated as h ranges through the sample space H . This
leads to the following definition:

Definition. A hash family H on U is said to be universal if, for any x1, x2 ∈U (x1 6= x2), we have

Pr
h∈H

[
h(x1)= h(x2)

]≤ 1
n .

1 If you are expecting lots of collisions, a more efficient way to handle things is to create a two-layered hash table, where
each element of A is itself a hash table with its own, different hash function. In order to have collisions in a two-layer
hash table, the same pair of keys must collide under two different hash functions. If the hash functions are chosen well
(e.g., if the hash functions are chosen randomly), then this is extremely unlikely. Of course, if you want to be even more
sure that collisions won’t occur, you can make a three-layer hash table, and so on. There is a trade-off, though: introducing
unnecessary layers of hashing comes with a time and space overhead which, while it may not show up in the big-O analysis,
makes a difference in practical applications.

Lec 10 – pg. 2 of 7

Similarly, H is said to be ε-universal if for any x1 6= x2 we have

Pr
h∈H

[
h(x1)= h(x2)

]≤ ε.
The consequences of the above hypotheses with regard to collisions are as follows:

Proposition 10.1. Let H be a universal hash family on U. Fix some subset S ⊆U and some element
x ∈U. Pick h ∈H at random. The expected number of elements of S that map to h(x) is at most 1+ |S|

n .
In symbols,

E
h∈H

[∣∣h−1 (
h(x)

)∣∣]≤ 1+ |S|
n

.

If H is ε-universal rather than universal, then the same holds when 1+ |S|
n is replaced by 1+ε |S|.

Proof. For a proposition ϕ with random parameters, let Iϕ be the indicator random variable which
equals 1 if ϕ is true and equals 0 otherwise. The fact that H is universal means that for each
x′ ∈U \{x} we have

E
h∈H

[
Ih(x)=h(x′)

]≤ 1
n

.

Thus by the linearity of expectation, we have

E
[∣∣h−1 (

h(x)
)∩S

∣∣]= Ix∈S + E
h∈H

 ∑
x′∈S
x′ 6=x

Ih(x)=h(x′)

= Ix∈S + ∑

x′∈S
x′ 6=x

E
h∈H

[
Ih(x)=h(x′)

]

≤ 1+|S| · 1
n .

The reasoning is almost identical when H is ε-universal rather than universal.

Corollary 10.2. For a hash table in which the hash function is chosen from a universal family,
insertion, deletion, and lookup have expected running time O

(
1+ |S|

n

)
, where S ⊆U is the set of keys

which actually occur. If instead the hash family is ε-universal, then the operations have expected
running time O

(
1+ε |S|).

Corollary 10.3. Consider a hash table of size n with keys in U, whose hash function is chosen from a
universal hash family. Let S ⊆U be the set of keys which actually occur. If |S| = O(n), then insertion,
deletion, and lookup have expected running time O(1).

Let H be a universal hash family on U . If |S| = O(n), then the expected load on each index is
O(1). Does this mean that a typical hash table has O(1) load at each index? Surprisingly, the answer
is no, even when the hash function is chosen well. We’ll see this below when we look at examples of
universal hash families.

Examples 10.4.

1. The set of all functions h : U → {
1, . . . ,n

}
is certainly universal. In fact, we could not hope to get

any more balanced than this:

Lec 10 – pg. 3 of 7

• For any x ∈U , the random variable h(x) (where h is chosen at random) is uniformly dis-
tributed on the set

{
1, . . . ,n

}
.

• For any pair x1 6= x2, the random variables h(x1), h(x2) are independent. In fact, for
any finite subset {x1, . . . , xk} ⊆ U , the tuple

(
h(x1), . . . ,h(xk)

)
is uniformly distributed on{

1, . . . ,n
}k.

The load on each index i is a binomial random variable with parameters
(|S| , 1

n
)
.

Fact. When p is small and N is large enough that N p is moderately sized, the binomial distri-
bution with parameters (N, p) is approximated by the Poisson distribution with parameter
N p. That is, if X is a binomial random variable with parameters (N, p), then

Pr
[
X = k

]≈ (N p)k

k!
e−N p (k ≥ 0).

In our case, N = |S| and p = 1
n . Thus, if L i is the load on index i, then

Pr
[
L i = k

]≈
(|S|

n

)k

k!
e−|S|/n.

For example, if |S| = n, then

Pr
[
L i = 0

]≈ e−1 ≈ 0.3679,

Pr
[
L i = 1

]≈ e−1 ≈ 0.3679,

Pr
[
L i = 2

]≈ 1
2 e−1 ≈ 0.1839,

...

Further calculation shows that, when |S| = n, we have

E

[
max
1≤i≤n

L i

]
=Θ

(
lgn

lglgn

)
.

Moreover, with high probability, maxL i does not exceed O
(

lgn
lglgn

)
. Thus, a typical hash table

with |S| = n and h chosen uniformly from the set of all functions looks like Figure 10.3: about
37% of the buckets empty, about 37% of the buckets having one element, and about 26% of the
buckets having more than one element, incuding some buckets with Θ

(
lgn

lglgn

)
elements.

2. In Problem Set 4 we considered the hash family

H = {
hp : p ≤ k and p is prime

}
,

where hp :
{
0, . . . ,2m −1

}→ {
0, . . . ,k−1

}
is the function

hp(x)= x mod p.

In Problem 4(a) you proved that, for each x 6= y, we have

Pr
p

[
hp(x)= hp(y)

]≤ m lnk
k

.

Lec 10 – pg. 4 of 7

1

2

3

4

... Maximum load =Θ
(

lgn
lglgn

)

...

n

Figure 10.3. A typical hash table with |S| = n and h chosen uniformly from the family of all functions U → {1, . . . ,n}.

3. In Problem Set 5, we fixed a prime p and considered the hash family

H =
{
h~a :~a ∈Zm

p

}
,

where h~a :Zm
p →Zp is the dot product

h~a(~x)=~x ·~a =∑
xiai (mod p).

4. In Problem Set 6, we fixed a prime p and positive integers m and k and considered the hash
family

H =
{
hA : A ∈Zk×m

p

}
,

where hA :Zm
p →Zk

p is the function
hA(~x)= A~x.

5. If H1 is an ε1-universal hash family of functions {0,1}m → {0,1}k and H2 is an ε2-universal
hash family of functions {0,1}k → {0,1}`, then2

H =H2 ◦H1 =
{
h2 ◦h1 : h1 ∈H1,h2 ∈H2

}
is an (ε1 + ε2)-universal hash family of functions {0,1}m → {0,1}`. To see this, note that for any
x 6= x′, the union bound gives

Pr
h1∈H1
h2∈H2

[
h2 ◦h1(x)= h2 ◦h1(x′)

]
2 To fully specify H , we have to give not just a set but also a probability distribution. The hash families H1 and H2

come with probability distributions, so there is an induced distribution on H1×H2. We then equip H with the distribution
induced by the map H1 ×H2 → H , (h1,h2) 7→ h2 ◦h1. You could consider this a mathematical technicality if you wish:
if H1 and H2 are given uniform distributions (as they typically are), then the distribution on H1 ×H2 is also uniform.
The distribution on H need not be uniform, however: an element of H is more likely to be chosen if it can be expressed in
multiple ways as the composition of an element of H2 with an element of H1.

Lec 10 – pg. 5 of 7

=Pr
[
h1(x)= h1(x′) or

(
h1(x) 6= h1(x′) and h2 ◦h1(x)= h2 ◦h1(x′)

)]
≤Pr

[
h1(x)= h1(x′)

]
+Pr

[
h1(x) 6= h1(x′) and h2 ◦h1(x)= h2 ◦h1(x′)

]
≤ ε1 +ε2.

In choosing the parameters to build a hash table, there is a tradeoff. Making n larger decreases
the likelihood of collisions, and thus decreases the expected running time of operations on the table,
but also requires the allocation of more memory, much of which is not even used to store data. In
situations where avoiding collisions is worth the memory cost (or in applications other than hash
tables, when the corresponding tradeoff is worth it), we can make n much larger than S.

Proposition 10.5. Let H be a universal hash family U → {1, . . . ,n}. Let S ⊆U be the the set of keys
that occur. Then the expected number of collisions is at most

(|S|
2

) · 1
n . In symbols,

E
h∈H

[∑
x 6=x′∈U

Ih(x)=h(x′)

]
≤

(
|S|
2

)
· 1

n
.

Proof. There are
(|S|

2
)

pairs of distinct elements in S, and each pair has probability at most 1
n of

causing a collision. The result follows from linearity of expectation.

Corollary 10.6. If n ≥ 100 |S|2, then the expected number of collisions is less than 1/200, and the
probability that a collision exists is less than 1/200.

Proof. Apply the Markov bound.

Thus, if n is sufficiently large compared to S, a typical hash table consists mostly of empty buck-
ets, and with high probability, there is at most one element in each bucket.

As we mentioned above, choosing a large n for a hash table is expensive in terms of space. While
the competing goals of fast table operations and low storage cost are a fact of life if nothing is known
about S in advance, we will see in recitation that, if S is known in advance, it is feasible to construct
a perfect hash table, i.e., a hash table in which there are no collisions. Of course, the smallest value
of n for which this is possible is n = |S|. As we will see in recitation, there are reasonably efficient
algorithms to construct a perfect hash table with n =O (|S|).

10.3 Amortization

What if the size of S is not known in advance? In order to allocate the array for a hash table, we must
choose the size n at creation time, and may not change it later. If |S| turns out to be significantly
greater than n, then there will always be lots of collisions, no matter which hash function we choose.

Luckily, there is a simple and elegant solution to this problem: table doubling. The idea is to
start with some particular table size n = O(1). If the table gets filled, simply create a new table of
size 2n and migrate all the old elements to it. While this migration operation is costly, it happens
infrequently enough that, on the whole, the strategy of table doubling is efficient.

Let’s take a closer look. To simplify matters, let’s assume that only insertions and lookups occur,
with no deletions. What is the worst-case cost of a single operation on the hash table?

Lec 10 – pg. 6 of 7

• Lookup: O(1), as usual.
• Insertion: O(n), if we have to double the table.

Thus, the worst-case total running time of k operations (k = |S|) on the hash table is

O (1+·· ·+k)=O
(
k2)

.

The crucial observation is that this bound is not tight. Table doubling only happens after the second,
fourth, eighth, etc., insertions. Thus, the total cost of k insertions is

k ·O(1)+O

(
lgk∑
j=0

2 j

)
=O (k)+O (2k)=O (k) .

Thus, in any sequence of insertion and lookup operations on a dynamically doubled hash table, the
average, or amortized, cost per operation is O(1). This sort of analysis, in which we consider the
total cost of a sequence of operations rather than the cost of a single step, is called amortized
analysis. In the next lecture we will introduce methods of analyzing amortized running time.

Lec 10 – pg. 7 of 7

Lecture 11

Amortized Analysis
Supplemental reading in CLRS: Chapter 17

Data structures typically support several different types of operations, each with its own cost (e.g.,
time cost or space cost). The idea behind amortized analysis is that, even when expensive operations
must be performed, it is often possible to get away with performing them rarely, so that the aver-
age cost per operation is not so high. It is important to realize that these “average costs” are not
expected values—there needn’t be any random events.1 Instead, we are considering the worst-case
average cost per operation in a sequence of many operations. In other words, we are interested in
the asymptotic behavior of the function

C(n)= 1
n
· (worst-case total cost of a sequence of n operations

)
(possibly with some condition on how many times each type of operation may occur). “Worst-case”
means that no adversary could choose a sequence of n operations that gives a worse running time.

In this lecture we discuss three methods of amortized analysis: aggregate analysis, the account-
ing method, and the potential method.

11.1 Aggregate Analysis

In aggregate analysis, one assumes that there is no need to distinguish between the different
operations on the data structure. One simply asks, what is the cost of performing a sequence of n
operations, of any (possibly mixed) types?

Example. Imagine a stack2 S with three operations:

• PUSH(S, x) – Θ(1) – pushes object x onto the stack

• POP(S) – Θ(1) – pops and returns the top object of S

1 There could be random events, though. It makes sense to talk about the worst-case amortized expected running time
of a randomized algorithm, for example: one considers the average expected cost per operation in the string of operations
which has the longest expected running time.

2 A stack is a data structure S with two primitive operations: PUSH(S, x), which stores x, and POP(S), which removes
and returns the most recently pushed object. Thus, a stack is “last in, first out,” whereas a queue is “first in, first out.”

• MULTIPOP(S,k) – Θ (min {|S| ,k}) – pops the top k items from the stack (or until empty) and
returns the last item:

while S is not empty and k > 0 do
x ← POP(S)
k ← k−1

return x

Suppose we wish to analyze the the running time for a sequence of n PUSH, POP, and MULTIPOP

operations, starting with an empty stack. Considering individual operations without amortization,
we would say that a MULTIPOP operation could take Θ (|S|) time, and |S| could be as large as n−1.
So in the hypothetical worst case, a single operation could take Θ(n) time, and n such operations
strung together would take Θ

(
n2)

time.
However, a little more thought reveals that such a string of operations is not possible. While a

single POP could take Θ(n) time, it would have to be preceded by Θ(n) PUSH operations, which are
cheap. Taken together, the Θ(n) PUSH operations and the one MULTIPOP operation take Θ(n) · Θ(1)+
1 ·Θ(n) =Θ(n) time; thus, each operation in the sequence takes Θ(1) time on average. In general, if
there occur r MULTIPOP operations with arguments k1, . . . ,kr, then there must also occur at least
k1+·· ·+kr PUSH operations, so that there are enough items in the stack to pop. (To simplify notation,
we assume that k is never chosen larger than |S|.) Thus, in a string of n operations, the total cost
of all non-O(1) operations is bounded above by O(n), so the total cost of all operations is O(n) ·O(1)+
O(n)=O(n). Thus, the amortized running time per operation is O(1).

11.2 Accounting Method

Unlike aggregated analysis, the accounting method assigns a different cost to each type of oper-
ation. The accounting method is much like managing your personal finances: you can estimate the
costs of your operations however you like, as long as, at the end of the day, the amount of money you
have set aside is enough to pay the bills. The estimated cost of an operation may be greater or less
than its actual cost; correspondingly, the surplus of one operation can be used to pay the debt of other
operations.

In symbols, given an operation whose actual cost is c, we assign an amortized (estimated) cost
ĉ. The amortized costs must satisfy the condition that, for any sequence of n operations with actual
costs c1, . . . , cn and amortized costs ĉ1, . . . , ĉn, we have

n∑
i=1

ĉi ≥
n∑

i=1
ci.

As long as this condition is met, we know that the amortized cost provides an upper bound on the
actual cost of any sequence of operations. The difference between the above sums is the total surplus
or “credit” stored in the data structure, and must at all times be nonnegative. In this way, the
accounting model is like a debit account.

Example. Perhaps you have bought pre-stamped envelopes at the post office before. In doing so, you
pay up-front for both the envelopes and the postage. Then, when it comes time to send a letter, no
additional charge is required. This accounting can be seen as an amortization of the cost of sending
a letter:

Lec 11 – pg. 2 of 8

Operation Actual cost ci Amortized cost ĉi
Buy an envelope 5¢ 49¢
Mail a letter 44¢ 0¢

Obviously, for any valid sequence of operations, the amortized cost is at least as high as the actual
cost. However, the amortized cost is easier to keep track of—it’s one fewer item on your balance
sheet.

Example. For the stack in Section 11.1, we could assign amortized costs as follows:

Operation Actual cost ci Amortized cost ĉi
PUSH 1 2
POP 1 0
MULTIPOP min {|S| ,k} 0

When an object is pushed to the stack, it comes endowed with enough credit to pay not only for the
operation of pushing it onto the stack, but also for whatever operation will eventually remove it from
the stack, be that a POP, a MULTIPOP, or no operation at all.

11.3 Potential Method

The potential method is similar in spirit to the accounting method. Rather than assigning a credit
to each element of the data structure, the potential method assigns a credit to the entire data struc-
ture as a whole. This makes sense when the total credit stored in the data structure is a function
only of its state and not of the sequence of operations used to arrive at that state. We think of the
credit as a “potential energy” (or just “potential”) for the data structure.

The strategy is to define a potential function Φ which maps a state D to a scalar-valued poten-
tial Φ(D). Given a sequence of n operations with actual costs c1, . . . , cn, which transform the data
structure from its initial state D0 through states D1, . . . ,Dn, we define heuristic costs

ĉi = ci +Φ (D i)−Φ (D i−1) .

This rule can be seen as the conservation of energy: it says that the surplus (or deficit) cost ĉi − ci
caused by a given operation must be equal to the change in potential of the data structure caused
by that operation. An operation which increases the potential of the system is assigned a positive
heuristic cost, whereas an operation which decreases the potential of the system is assigned a nega-
tive heuristic cost.

Summing the heuristic costs of all n operations, we find
n∑

i=1
ĉi =

n∑
i=1

ci +Φ (D i)−Φ (D i−1) (a telescoping sum)

=
(

n∑
i=1

ci

)
+Φ (Dn)−Φ (D0) .

Thus, the total credit stored in the data structure is Φ (Dn)−Φ (D0). This quantity must remain
nonnegative at all times in order to ensure that the amortized cost provides an upper bound on the
actual cost of any sequence of operations. (Any function Φ which satisfies this property can be used
as the potential function.) One often chooses the potential function Φ so that Φ (D0) = 0; then one
must check that Φ remains nonnegative at all times.

Lec 11 – pg. 3 of 8

Example. Continuing the stack example from Sections 11.1 and 11.2, we define the potential of a
stack S to be Φ(S)= |S|, the number of elements in the stack. An empty stack has zero potential, and
clearly Φ is always nonnegative, so Φ is an admissible potential function. Then the heuristic costs of
the stack operations are as follows:

• A PUSH operation increases the size of S by 1, and has actual cost cPUSH = 1. Thus, the amor-
tized cost of a PUSH operation is

ĉPUSH = cPUSH +Φ (Dnew)−Φ (Dold)= 1+ (|Sold|+1)−|Sold| = 2.

• A POP operation decreases the size of S by 1, and has actual cost cPOP = 1. Thus, the amortized
cost of a POP operation is

ĉPOP = cPOP +Φ (Dnew)−Φ (Dold)= 1+ (|Sold|−1)−|Sold| = 0.

• The operation MULTIPOP(S,k) decreases the size of S by min {|S| ,k}, and has actual cost
cMULTIPOP =min {|S| ,k}. Thus, the amortized cost of a MULTIPOP operation is

ĉMULTIPOP = cMULTIPOP +Φ (Dnew)−Φ (Dold)=min {|S| ,k}+ (|Snew|− |Sold|)= 0.

Thus, the amortized costs for this application of the potential method are the same as those we came
up with using the accounting method in Section 11.2:

Operation Actual cost ci Amortized cost ĉi
PUSH 1 2
POP 1 0
MULTIPOP min {|S| ,k} 0

11.4 Example: A Dynamically Resized Table

We now extend the example we started in Lecture 10: a dynamically doubled table T. This time we
will forget about keys, inserting each new value into the next available block in the array T.arr. If
T.arr is full, then we create a new array of size 2 |T.arr|, copy over the old elements of T, perform
the insertion, and reassign T.arr to point to that array. Likewise, in §11.4.5 we ask you to devise an
extension of our data structure which supports deletions (specifically, pops) as well as insertions, and
halves the array T.arr when appropriate in addition to doubling it when appropriate. In this way, T
never takes up much more space than it has to.

For now, assume that T only supports insertions and lookups. We will store in T two things:
the underlying array T.arr, and an integer T.num which keeps track of the number of entries in
T.arr which have yet been populated. Thus, the array is full and needs to be doubled upon the next
insertion if and only if |T.arr| = T.num. So the table lookup will be a simple array lookup operation,
which takes O(1) time, and the insertion operation will be defined as follows:

Lec 11 – pg. 4 of 8

Algorithm: TABLE-INSERT(T, x)
1 if |T.arr| = 0 then
2 T.arr← new array of size 1
3 B If table is full, double it
4 if T.num= |T.arr| then
5 arr′ ← new array of size 2 |T.arr|
6 Migrate all items from T.arr to arr′

7 T.arr← arr′

8 B Insert x into the array
9 T.arr[T.num]← x

10 T.num← T.num+1

11.4.1 Actual cost per operation

A lookup operation on T is simply an array lookup, which takes O(1) time. The running time of
TABLE-INSERT, on the other hand, depends on whether the table needs to be doubled, which depends
on the number of insertions which have happened prior to the current one. Specifically, starting from
an initial table of size zero, the cost ci of the ith insertion is

ci =

1 if the table has space

Θ(i) if the table has to be expanded:

i−1 to allocate the new table
i−1 to migrate the old entries

1 to make the insertion
1 to reassign T.arr

The “Chicken Little” analysis would say that the worst possible string of n operations would

consist entirely of operations which have the worst-case single-operation running time Θ(i), so that
the sequence has running time

Θ
(
1+2+·· ·+n

)=Θ(
n2)

.

This bound is not tight, however, because it is not possible for every operation to be worst-case.

11.4.2 Aggregate analysis

Aggregate analysis of our table’s operations amounts to keeping track of precisely which operations
will be worst-case. The table has to be expanded if and only if the table is full, so

ci =
{
Θ(i) if i−1 is zero or an exact power of 2
1 otherwise.

Thus, a string of n operations, m of which are insertion operations, would take time

T
(
n−m lookups

)+T
(
m insertions

)
=

((
n−m

) ·Θ(1)
)
+

 ∑
k−1 is not an

exact power of 2

Θ(1) + ∑
k−1 is an

exact power of 2

Θ(k)

Lec 11 – pg. 5 of 8

=
((

n−m
) ·Θ(1)

)
+

((
m− (

2+⌊
lg(m−1)

⌋)) ·Θ(1) +
blg(m−1)c∑

j=0
Θ

(
2 j

))

=Θ(n−m)+ (
Θ(m)−Θ(lgm)+Θ(2m)

)
=Θ(n)+Θ(m)

=Θ(n) (since m ≤ n).

Thus, a string of n operations takes Θ(n) time, regardless of how many of the operations are inser-
tions and how many are lookups. Thus, aggregate analysis gives an amortized running time of O(1)
per operation.

11.4.3 Accounting analysis

We can set up a balance sheet to pay for the operations on our table as follows:

• Lookups cost $1

• Insertions cost $3

– $1 to insert our element into the array itself

– $2 to save up for the next time the array has to be expanded

* One dollar will pay for migrating the element itself

* One dollar will go to charity.

Because the current incarnation of T.arr started with 1
2 |T.arr| elements pre-loaded, it follows that,

when T.arr is full, only 1
2 |T.arr| elements will have enough money in the bank to pay for their

migration. However, there will also be $1
2 |T.arr| of charity money saved up from the 1

2 |T.arr| most
recent insertions. This charity is exactly sufficient to pay for migrating the elements that don’t have
their own money. Thus, our balance sheet checks out; our assigned costs of $1 and $3 work. In
particular, each operation’s cost is O(1).

11.4.4 Potential analysis

In our potential analysis, the potential energy will play the role of money in the bank: when the
array needs to be doubled, the potential energy will exactly pay for migrating the old elements into
the new array. Thus, we want to find a function which equals zero immediately after doubling the
table and grows to size |T.arr| as it is filled up. (To simplify notation, assume that copying an array of
size k takes exactly k steps, rather than always using the more precise notation Θ(k).) The simplest
function which satisfies these properties, and the one that will be most convenient to work with, is

Φ(T)= 2 ·T.num−|T.arr| .
Right after expansion, we have T.num = 1

2 |T.arr|, so Φ(T) = 0; right before expasnion, we have
T.num= |T.arr|, so Φ(T)= 2 · |T.arr|− |T.arr| = |T.arr|.

The actual cost of a lookup is, as we said, clookup = 1. (Again, to simplify notation, let’s just write
1 instead of Θ(1).) Using the potential Φ, the amortized cost of a lookup is

ĉlookup = clookup +Φ (Tnew)−Φ (Told)= clookup = 1,

Lec 11 – pg. 6 of 8

since Tnew = Told.
To find the amortized cost of an insertion, we must split into cases. In the first case, suppose the

table does not need to be doubled as a result of the insertion. Then the amortized cost is

ĉ = c+Φ (Tnew)−Φ (Told)

= 1+ (
2 ·Tnew.num−|Tnew.arr|)− (

2 ·Told.num−|Told.arr|)
= 1+2

(
Tnew.num−Tnew.num

)− (|Tnew.arr|− |Told.arr|)
= 1+2(1)+0

= 3.

In the second case, suppose the table does need to be doubled as a result of the insertion. Then the
actual cost of insertion is |Tnew.num|, so the amortized cost of insertion is

ĉ = c+Φ (Tnew)−Φ (Told)

= Tnew.num+ (
2 ·Tnew.num−|Tnew.arr|)− (

2 ·Told.num−|Told.arr|)
= (|Told.arr|+1

)+2
(
Tnew.num−Told.num

)− (|Tnew.arr|− |Told.arr|)
= (|Told.arr|+1

)+2(1)− (
2 |Told.arr|− |Told.arr|)

= 3.

In both cases, the amortized running time of insertion is 3. (If we had picked a less convenient
potential function Φ, the amortized running time would probably be different in the two cases. The
potential analysis would still be valid if done correctly, but the resulting amortized running times
probably wouldn’t be as easy to work with.)

11.4.5 Exercise: Allowing deletions

Suppose we wanted our dynamically resized table to support pops (deleting the most recently in-
serted element) as well as insertions. It would be reasonable to want the table to halve itself when
fewer than half the slots in the array are occupied, so that the table only ever takes up at most
twice the space it needs to. Thus, a first attempt at a pop functionality might look like this (with the
TABLE-INSERT procedure unchanged):

Algorithm: NAÏVE-POP(T)
1 if T.num= 0 then
2 error “Tried to pop from an empty table”
3 r ← T.arr[T.num−1]
4 Unset T.arr[T.num−1]
5 T.num← T.num−1
6 if T.num≤ 1

2 |T.arr| then
7 arr′ ← new array of size

⌊1
2 |T.arr|⌋

8 Migrate all items from T.arr to arr′

9 T.arr← arr′

10 return r

Lec 11 – pg. 7 of 8

Unfortunately, the worst-case running time of NAÏVE-POP is not so good.

Exercise 11.1. Given n sufficiently large, produce a sequence of n TABLE-INSERT, lookup, and/or
NAÏVE-POP operations which have total running time Θ

(
n2)

. Thus, in any amortized analysis, at
least one of the operations must have amortized running time at least Ω (n).

Exercise 11.2. Devise a way of supporting pops which still retains O(1) worst-case amortized run-
ning time for each operation, and do an amortized analysis to prove that this is the case. You may
redefine TABLE-INSERT or add more data fields to T if you wish (and of course you will have to define
TABLE-POP), but it must still remain the case that, for every possible sequence of operations, T only
takes up O (T.num) space in memory at any given point in time.

[Hint: An adversary can choose a series of operations for which TABLE-INSERT and NAÏVE-POP

run slowly by making sure T.num repeatedly crosses the critical thresholds for table doubling and
table halving. (You must have used this fact somehow in your solution to Exercise 11.1.) So your first
step will be to figure out how to place decisions about doubling and halving outside the control of your
adversary.]

Lec 11 – pg. 8 of 8

Lecture 12

Competitive Analysis
Supplemental reading in CLRS: None

12.1 Online and Offline Algorithms

For some algorithmic problems, the optimal response to a sequence of calls to a procedure depends
not just on each input separately, but on the sequence of inputs as a whole. This is analogous to
amortized analysis, in which the best running time analysis required us to consider the running
time of an entire sequence of operations. When an algorithm expects to be given the entire sequence
of inputs ahead of time, it is called an offline algorithm; when the algorithm is expected to give
an answer after each individual input without knowledge of future inputs, it is called an online
algorithm.

Example. Traders are faced with the following algorithmic problem: given today’s stock prices (and
the history of stock prices in the past), decide which stocks to buy and which stocks to sell. Obvi-
ously, this is an online problem for everybody. An attempt to treat the trading problem as an offline
algorithmic problem is called insider trading.

Example. Tetris is an online game. The offline version of Tetris would be akin to a jigsaw puzzle,
and would not require quick thinking. Of course, we would expect players of the offline game to
produce much better packings than players of the online game.

Let’s lay out a general setup for analyzing online and offline algorithms. Assume we are given
an algorithm A, along with a notion of “cost” CA. That is, if S is a sequence of inputs, then CA(S)
is the cost of trusting A’s response to the inputs in S. For example, A might be a stock broker and
CA(S) might be the net profit after a sequence of days on the stock market. In that case, clients will
probably try to learn as much as the can about the function CA (for example, by observing its past
outputs) when deciding whether to hire the stock broker.

In general, no online algorithm will perform optimally on all sequences of inputs—in other words,
the so-called “God’s algorithm” (which performs optimally on every sequence of inputs) will usually
be impossible to describe in an online way. This is obvious in the stock market example: if you chose
to buy today, what if prices drop tomorrow? If you chose to sell today, what if prices go up tomorrow?

Although an online algorithm may not ever be able to match the performance of God’s algorithm,
it may be possible for an online algorithm to perform almost as well as God’s algorithm on every
input.

Definition. An online algorithm A is said to be α-competitive1 (where α is a positive constant) if
there exists a constant k such that, for every sequence S of inputs, we have

CA(S)≤α ·COPT(S)+k,

where OPT is the optimal offline algorithm, A.K.A. God’s algorithm.

12.2 Example: A Self-Organizing List

Problem 12.1. Design a data structure L representing a list of n key–value pairs (with distinct
keys), satisfying the following constraints:

• The key–value pairs are stored in a linked list

• There is only one supported operation: ACCESS(x), which returns the element with key x. (It
is assumed that the input x is always one of the keys which occurs in L.) The implementation
of ACCESS(x) has two phases:

1. Walk through the list until you find the element with key x. The cost of this phase is
rankL(x), the rank of the element with key x.

2. Reorder the list by making a sequence of adjacent transpositions2 (in this lecture, the
word “transposition” will always refer to adjacent transpositions). The cost of each trans-
position is 1; the sequence of transpositions performed is up to you, and may be empty.

Try to choose a sequence of transpositions which optimizes the performance of ACCESS, i.e., for which
ACCESS is α-competitive where α is minimal among all possible online algorithms.

12.2.1 Worst-case inputs

No matter how we define our algorithm, an adversary (who knows what algorithm we are using) can
always ask for the last element in our list, so that phase 1 always costs n, and the cost of a sequence
S of such costly operations is at least

CA(S)=Ω(|S| ·n)
,

even disregarding the cost of any reordering we do.

12.2.2 Heuristic: Random inputs

As a heuristic (which will seem particularly well-chosen in retrospect), let’s suppose that our inputs
are random rather than worst-case. Namely, suppose the inputs are independent random variables,
where the key x has probability p(x) of being chosen. It should be believable (and you can prove if

1 This is not the only notion of “competitive” that people might care about. We could also consider additive competitive-
ness, which is a refinement of the notion considered here: We say an algorithm A is k-additively competitive if there exists
a constant k such that CA(S)≤ COPT(S)+k for every sequence S of inputs. Thus, every k-additively competitive algorithm
is 1-competitive in the sense defined above.

2 An adjacent transposition is the act of switching two adjacent entries in the list. For example, transposing the elements
B and C in the list 〈A,B,C,D〉 results in the list 〈A,C,B,D〉.

Lec 12 – pg. 2 of 5

you wish) that, when |S| is much larger than n, the optimal expected cost is achieved by immediately
sorting L in decreasing order of p(x), and keeping that order for the remainder of the operations.3 In
that case, the expected cost of a sequence S of ACCESS operations is

E
S

[CA(S)]=
∑
x∈L

p(x) ·rankP
(
p(x)

) · |S| ,

where P = {p(y) : y ∈ L}.
In practice, we won’t be given the distribution p ahead of time, but we can still estimate what p

would be if it existed. We can keep track of the number of times each key appears as an input, and
maintain the list in decreasing order of frequency. This counting heuristic has its merits, but we will
be interested in another heuristic: the move-to-front (MTF) heuristic, which works as follows:

• After accessing an item x, move x to the head of the list. The total cost of this operation is
2 ·rankL(x)−1:

– rankL(x) to find x in the list

– rankL(x)−1 to perform the transpositions.4

To show that the move-to-front heuristic is effective, we will perform a competitive analysis.

Proposition 12.2. The MTF heuristic is 4-competitive for self-organizing lists.

As to the original problem, we are not making any assertion that 4 is minimal; for all we know,
there could exist α-competitive heuristics for α< 4.5

Proof.

• Let L i be MTF’s list after the ith access.
• Let L∗

i be OPT’s list after the ith access.
• Let ci be MTF’s cost for the ith operation. Thus ci = 2rankL i−1(x)−1.
• Let c∗i be OPT’s cost for the ith operation. Thus c∗i = rankL∗

i−1
(x)+ ti, where ti is the number of

transpositions performed by OPT during the ith operation.

We will do an amortized analysis. Define the potential function6,7

Φ (L i)= 2 · (# of inversions between L i and L∗
i
)

3 The intuition is that the most likely inputs should be made as easy as possible to handle, perhaps at the cost of making
some less likely inputs more expensive.

4 The smallest number of transpositions needed to move x to the head of the list is rankL(x)−1. These rankL(x)−1
transpositions can be done in exactly one way. Once they are finished, the relative ordering of the elements other than
x is unchanged. (If you are skeptical of these claims, try proving them.) For example, to move D to the front of the list
〈A,B,C,D,E〉, we can perform the transpositions D ↔ C, D ↔ B, and D ↔ A, ultimately resulting in the list 〈D, A,B,C,E〉.

5 The question of whether α = 4 is minimal in this example is not of much practical importance, since the costs used
in this example are not very realistic. For example, in an actual linked list, it would be easy to move the nth entry to
the head in O(1) time (assuming you already know the location of both entries), whereas the present analysis gives it cost
Θ(n). Nevertheless, it is instructive to study this example as a first example of competitive analysis.

6 The notation x <L i y means rankL i (x)< rankL i (y). In other words, we are using L i to define an order <L i on the keys,
and likewise for L∗

i .
7 Technically, this is an abuse of notation. The truth is that Φ

(
L i

)
depends not just on the list L i , but also on L0 and i

(since L∗
i is gotten by allowing OPT to perform i operations starting with L0). We will stick with the notation Φ

(
L i

)
, but

if you like, you can think of Φ as a function on “list histories” rather than just lists.

Lec 12 – pg. 3 of 5

x

x

A

B

C

D

L i−1

L∗
i−1

L i−1: x

rank r

A∪B C∪D

L∗
i−1: x

rank r∗

A∪C B∪D

Figure 12.1. The keys in L i−1 other than x fall into four categories, as described in the proof of Proposition 12.2.

= 2 ·
∣∣∣{unordered pairs {x, y} : x <L i y and y<L∗

i
x
}∣∣∣ .

For example, if L i = 〈E,C, A,D,B〉 and L∗
i = 〈C, A,B,D,E〉, then Φ(L i) = 10, seeing as there are 5

inversions: {E,C}, {E, A}, {E,D}, {E,B}, and {D,B}. Note the following properties of Φ:

• Φ(L i)≥ 0 always, since the smallest possible number of inversions is zero.
• Φ(L0)= 0 if MTF and OPT start with the same list.
• A transposition either creates exactly 1 inversion or destroys exactly 1 inversion (namely,

transposing x ↔ y toggles whether {x, y} is an inversion), so each transposition changes Φ by
∆Φ=±2.

Let us focus our attention on a single operation, say the ith operation. The keys of L fall into four
categories (see Figure 12.1):

• A: elements before x in L i−1 and L∗
i−1

• B: elements before x in L i−1 but after x in L∗
i−1

• C: elements after x in L i−1 but before x in L∗
i−1

• D: elements after x in L i−1 and L∗
i−1.

Let r = rankL i−1(x) and r∗ = rankL∗
i−1

(x). Thus

r = |A|+ |B|+1 and r∗ = |A|+ |C|+1.

Now, if we hold L∗
i−1 fixed and pass from L i−1 to L i by moving x to the head, we create exactly |A|

inversions (namely, the inversions {a, x} for each a ∈ A) and destroy exactly |B| inversions (namely,
the inversions {b, x} for each b ∈ B). Next, if we hold L i fixed and pass from L∗

i−1 to L∗
i by making

whatever set of transpositions OPT chooses to make, we create at most ti inversions (where ti is the
number of transpositions performed), since each transposition creates at most one inversion. Thus

Φ (L i)−Φ (L i−1)≤ 2
(|A|− |B|+ ti

)
.

The amortized cost of the ith insertion of MTF with respect to the potential function is therefore

ĉi = ci +Φ (L i)−Φ (L i−1)

Lec 12 – pg. 4 of 5

≤ 2r+2
(|A|− |B|+ ti

)
= 2r+2

(|A|− (r−1−|A|)+ ti
)

= 4 |A|+2+2ti

≤ 4
∣∣r∗+ ti

∣∣ (since r∗ = |A|+ |C|+1≥ |A|+1)

= 4c∗i .

Thus the total cost of a sequence S of operations using the MTF heuristic is

CMTF(S)=
|S|∑
i=1

ci

=
|S|∑
i=1

(
ĉi +Φ (L i−1)−Φ (L i)

)
≤

(|S|∑
i=1

4c∗i

)
+Φ (L0)︸ ︷︷ ︸

0

−Φ(
L|S|

)︸ ︷︷ ︸
≥0

≤ 4 ·COPT(S).

Note:

• We never found the optimal algorithm, yet we still successfully argued about how MTF com-
peted with it.

• If we decrease the cost of a transposition to 0, then MTF becomes 2-competitive.
• If we start MTF and OPT with different lists (i.e., L0 6= L∗

0), then Φ (L0) might be as large
as Θ

(
n2)

, since it could take Θ
(
n2)

transpositions to perform an arbitrary permutation on
L. However, this does not affect α for purposes of our competitive analysis, which treats n
as a fixed constant and analyzes the asymptotic cost as |S| → ∞; the MTF heuristic is still
4-competitive under this analysis.

Lec 12 – pg. 5 of 5

Lecture 13

Network Flow
Supplemental reading in CLRS: Sections 26.1 and 26.2

When we concerned ourselves with shortest paths and minimum spanning trees, we interpreted the
edge weights of an undirected graph as distances. In this lecture, we will ask a question of a different
sort. We start with a directed weighted graph G with two distinguished vertices s (the source) and
t (the sink). We interpret the edges as unidirectional water pipes, with an edge’s capacity indicated
by its weight. The maximum flow problem then asks, how can one route as much water as possible
from s to t?

To formulate the problem precisely, let’s make some definitions.

Definition. A flow network is a directed graph G = (V ,E) with distinguished vertices s (the source)
and t (the sink), in which each edge (u,v) ∈ E has a nonnegative capacity c(u,v). We require that E
never contain both (u,v) and (v,u) for any pair of vertices u,v (so in particular, there are no loops).
Also, if u,v ∈V with (u,v) 6∈ E, then we define c(u,v) to be zero. (See Figure 13.1).

In these notes, we will always assume that our flow networks are finite. Otherwise, it would be
quite difficult to run computer algorithms on them.

Definition. Given a flow network G = (V ,E), a flow in G is a function f : V ×V →R satisfying

1. Capacity constraint: 0≤ f (u,v)≤ c(u,v) for each u,v ∈V

s t

16

13

12

20

94

14

7

4

Figure 13.1. A flow network.

2. Flow conservation: for each u ∈V \{s, t}, we have1

∑
v∈V

f (v,u)︸ ︷︷ ︸
flow into u

= ∑
v∈V

f (u,v)︸ ︷︷ ︸
flow out of u

.

In the case that flow conservation is satisfied, one can prove (and it’s easy to believe) that the net flow
out of s equals the net flow into t. This quantity is called the flow value, or simply the magnitude,
of f . We write

| f |︸︷︷︸
flow value

= ∑
v∈V

f (s,v)− ∑
v∈V

f (v, s)= ∑
v∈V

f (v, t)− ∑
v∈V

f (t,v).

Note that the definition of a flow makes sense even when G is allowed to contain both an edge
and its reversal (and therefore is not truly a flow network). This will be important in §13.1.1 when
we discuss augmenting paths.

13.1 The Ford–Fulkerson Algorithm

The Ford–Fulkerson algorithm is an elegant solution to the maximum flow problem. Fundamen-
tally, it works like this:

1 while there is a path from s to t that can hold more water do
2 Push more water through that path

Two notes about this algorithm:

• The notion of “a path from s to t that can hold more water” is made precise by the notion of an
augmenting path, which we define in §13.1.1.

• The Ford–Fulkerson algorithm is essentially a greedy algorithm. If there are multiple possible
augmenting paths, the decision of which path to use in line 2 is completely arbitrary.2 Thus,
like any terminating greedy algorithm, the Ford–Fulkerson algorithm will find a locally opti-
mal solution; it remains to show that the local optimum is also a global optimum. This is done
in §13.2.

13.1.1 Residual Networks and Augmenting Paths

The Ford–Fulkerson algorithm begins with a flow f (initially the zero flow) and successively improves
f by pushing more water along some path p from s to t. Thus, given the current flow f , we need

1 In order for a flow of water to be sustainable for long periods of time, there cannot exist an accumulation of excess
water anywhere in the pipe network. Likewise, the amount of water flowing into each node must at least be sufficient to
supply all the outgoing connections promised by that node. Thus, the amount of water entering each node must equal the
amount of water flowing out. In other words, the net flow into each vertex (other than the source and the sink) must be
zero.

2 There are countless different versions of the Ford–Fulkerson algorithm, which differ from each other in the heuristic
for choosing which augmenting path to use. Different situations (in which we have some prior information about the
nature of G) may call for different heuristics.

Lec 13 – pg. 2 of 11

a way to tell how much more water a given path p can carry. To start, note that a chain is only as
strong as its weakest link: if p = 〈v0, . . . ,vn〉, then(

amount of additional water
that can flow through p

)
= min

1≤i≤n

(
amount of additional water that
can flow directly from vi−1 to vi

)
.

All we have to know now is how much additional water can flow directly between a given pair of
vertices u,v. If (u,v) ∈ E, then clearly the flow from u to v can be increased by up to c(u,v)− f (u,v).
Next, if (v,u) ∈ E (and therefore (u,v) 6∈ E, since G is a flow network), then we can simulate an
increased flow from u to v by decreasing the throughput of the edge (v,u) by as much as f (v,u).
Finally, if neither (u,v) nor (v,u) is in E, then no water can flow directly from u to v. Thus, we define
the residual capacity between u and v (with respect to f) to be

c f (u,v)=

c(u,v)− f (u,v) if (u,v) ∈ E
f (v,u) if (v,u) ∈ E
0 otherwise.

(13.1)

When drawing flows in flow networks, it is customary to label an edge (u,v) with both the capacity
c(u,v) and the throughput f (u,v), as in Figure 13.2.

Next, we construct a directed graph G f , called the residual network of f , which has the same
vertices as G, and has an edge from u to v if and only if c f (u,v) is positive. (See Figure 13.2.) The
weight of such an edge (u,v) is c f (u,v). Keep in mind that c f (u,v) and c f (v,u) may both be positive
for some pairs of vertices u,v. Thus, the residual network of f is in general not a flow network.

Equipped with the notion of a residual network, we define an augmenting path to be a path
from s to t in G f . If p is such a path, then by virtue of our above discussion, we can perturb the flow
f at the edges of p so as to increase the flow value by c f (p), where

c f (p)= min
(u,v)∈p

c f (u,v). (13.2)

The way to do this is as follows. Given a path p, we might as well assume that p is a simple path.3

In particular, p will never contain a given edge more than once, and will never contain both an edge
and its reversal. We can then define a new flow f ′ in the residual network (even though the residual
network is not a flow network) by setting

f ′(u,v)=
{

c f (p) if (u,v) ∈ p
0 otherwise.

Exercise 13.1. Show that f ′ is a flow in G f , and show that its magnitude is c f (p).

Finally, we can “augment” f by f ′, obtaining a new flow f ↑ f ′ whose magnitude is
∣∣ f

∣∣+ ∣∣ f ′
∣∣ =

3 Recall that a simple path is a path which does not contain any cycles. If p is not simple, we can always pare p down to
a simple path by deleting some of its edges (see Exercise B.4-2 of CLRS, although the claim I just made is a bit stronger).
Doing so will never decrease the residual capacity of p (just look at (13.2)).

Lec 13 – pg. 3 of 11

s t

11/16

8/13

12/12

15/20

4/91/4

11/14

7/7

4/4

Flow/Capacity

s t

4
5

11

5

8

12

13

5

15
5

4
7

4
3

11

Residual Network

s t

11/16

12/13

12/12

19/20

0/91/4

11/14

7/7

4/4

Augmented Flow

s t

5
11

1

12

12

13

1

19
9 7

4
3

11

New Residual Network

Figure 13.2. We begin with a flow network G and a flow f : the label of an edge (u,v) is “a/b,” where a = f (u,v) is the flow
through the edge and b = c(u,v) is the capacity of the edge. Next, we highlight an augmenting path p of capacity 4 in the
residual network G f . Next, we augment f by the augmenting path p. Finally, we obtain a new residual network in which
there happen to be no more augmenting paths. Thus, our new flow is a maximum flow.

Lec 13 – pg. 4 of 11

∣∣ f
∣∣+ c f (p). It is defined by4

(
f ↑ f ′

)
(u,v)=

f (u,v)+ c f (p) if (u,v) ∈ p and (u,v) ∈ E
f (u,v)− c f (p) if (v,u) ∈ p and (u,v) ∈ E
f (u,v) otherwise.

Lemma 13.1 (CLRS Lemma 26.1). Let f be a flow in the flow network G = (V ,E) and let f ′ be a flow
in the residual network G f . Let f ↑ f ′ be the augmentation of f by f ′, as described in (13.3). Then∣∣ f ↑ f ′

∣∣= ∣∣ f
∣∣+ ∣∣ f ′

∣∣ .

Proof sketch. First, we show that f ↑ f ′ obeys the capacity constraint for each edge in E and obeys
flow conservation for each vertex in V \ {s, t}. Thus, f ↑ f ′ is truly a flow in G. Next, we obtain
the identity

∣∣ f ↑ f ′
∣∣ = ∣∣ f

∣∣+ ∣∣ f ′
∣∣ by simply expanding the left-hand side and rearranging terms in the

summation.

13.1.2 Pseudocode Implementation of the Ford–Fulkerson Algorithm

Now that we have laid out the necessary conceptual machinery, let’s give more detailed pseudocode
for the Ford–Fulkerson algorithm.

Algorithm: FORD–FULKERSON(G)
1 B Initialize flow f to zero
2 for each edge (u,v) ∈ E do
3 (u,v). f ← 0
4 B The following line runs a graph search algorithm (such as BFS or DFS)∗ to find a

path from s to t in G f
5 while there exists a path p : s t in G f do
6 c f (p)←min

{
c f (u,v) : (u,v) ∈ p

}
7 for each edge (u,v) ∈ p do
8 B Because (u,v) ∈G f , it must be the case that either (u,v) ∈ E or (v,u) ∈ E.
9 B And since G is a flow network, the “or” is exclusive: (u,v) ∈ E xor (v,u) ∈ E.

10 if (u,v) ∈ E then
11 (u,v). f ← (u,v). f + c f (p)
12 else
13 (v,u). f ← (v,u). f − c f (p)

∗ For more information about breath-first and depth-first searches, see Sections 22.2 and 22.3 of CLRS.

Here, we use the notation (u,v). f synonymously with f (u,v); though, the notation (u,v). f suggests
a convenient implementation decision in which we attach the value of f (u,v) as satellite data to the

4 In a more general version of augmentation, we don’t require p to be a simple path; we just require that f ′ be some
flow in the residual network G f . Then we define

f ′(u,v)=
{

f (u,v)+ f ′(u,v)− f ′(v,u) if (u,v) ∈ E
0 otherwise.

(13.3)

Lec 13 – pg. 5 of 11

edge (u,v) itself rather than storing all of f in one place. Also note that, because we often need to
consider both f (u,v) and f (v,u) at the same time, it is important that we equip each edge (u,v) ∈ E
with a pointer to its reversal (v,u). This way, we may pass from an edge (u,v) to its reversal (v,u)
without performing a costly search to find (v,u) in memory.

We defer the proof of correctness to §13.2. We do show, though, that the Ford–Fulkerson algo-
rithm halts if the edge capacities are integers.

Proposition 13.2. If the edge capacities of G are integers, then the Ford–Fulkerson algorithm termi-
nates in time O

(
E · | f ∗|), where | f ∗| is the magnitude of any maximum flow for G.

Proof. Each time we choose an augmenting path p, the right-hand side of (13.2) is a positive integer.
Therefore, each time we augment f , the value of | f | increases by at least 1. Since | f | cannot ever
exceed | f ∗|, it follows that lines 5–13 are repeated at most | f ∗| times. Each iteration of lines 5–13
takes O(E) time if we use a breadth-first or depth-first search in line 5, so the total running time of
FORD–FULKERSON is O

(
E · | f ∗|).

Exercise 13.2. Show that, if the edge capacities of G are rational numbers, then the Ford–Fulkerson
algorithm eventually terminates. What sort of bound can you give on its running time?

Proposition 13.3. Let G be a flow network. If all edges in G have integer capacities, then there exists
a maximum flow in G in which the throughput of each edge is an integer. One such flow is given by
running the Ford–Fulkerson algorithm on G.

Proof. Run the Ford–Fulkerson algorithm on G. The residual capacity of each augmenting path p in
line 5 is an integer (technically, induction is required to prove this), so the throughput of each edge is
only ever incremented by an integer. The conclusion follows if we assume that the Ford–Fulkerson
algorithm is correct. The algorithm is in fact correct, by Corollary 13.8 below.

Flows in which the throughput of each edge is an integer occur frequently enough to deserve a
name. We’ll call them integer flows.

Perhaps surprisingly, Exercise 13.2 is not true when the edge capacities of G are allowed to be
arbitrary real numbers. This is not such bad news, however: it simply says that there exists a
sufficiently foolish way of choosing augmenting paths so that FORD–FULKERSON never terminates.
If we use a reasonably good heuristic (such as the shortest-path heuristic used in the Edmonds–Karp
algorithm of §13.1.3), termination is guaranteed, and the running time needn’t depend on | f ∗|.

13.1.3 The Edmonds–Karp Algorithm

The Edmonds–Karp algorithm is an implementation of the Ford–Fulkerson algorithm in which
the the augmenting path p is chosen to have minimal length among all possible augmenting paths
(where each edge is assigned length 1, regardless of its capacity). Thus the Edmonds–Karp algorithm
can be implemented by using a breadth-first search in line 5 of the pseudocode for FORD–FULKERSON.

Proposition 13.4 (CLRS Theorem 26.8). In the Edmonds–Karp algorithm, the total number of aug-
mentations is O(V E). Thus total running time is O

(
V E2)

.

Proof sketch.

• First one can show that the lengths of the paths p found by breadth-first search in line 5 of
FORD–FULKERSON are monotonically nondecreasing (this is Lemma 26.7 of CLRS).

Lec 13 – pg. 6 of 11

• Next, one can show that each edge e ∈ E can only be the bottleneck for p at most O(V) times. (By
“bottleneck,” we mean that e is the (or, an) edge of smallest capacity in p, so that c f (p)= c f (e).)

• Finally, because only O(E) pairs of vertices can ever be edges in G f and because each edge can
only be the bottleneck O(V) times, it follows that the number of augmenting paths p used in
the Edmonds–Karp algorithm is at most O(V E).

• Again, since each iteration of lines 5–13 of FORD–FULKERSON (including the breadth-first
search) takes time O(E), the total running time for the Edmonds–Karp algorithm is O

(
V E2)

.

The shortest-path heuristic of the Edmonds–Karp algorithm is just one possibility. Another in-
teresting heuristic is relabel-to-front, which gives a running time of O

(
V 3)

. We won’t expect you
to know the details of relabel-to-front for 6.046, but you might find it interesting to research other
heuristics on your own.

13.2 The Max Flow–Min Cut Equivalence

Definition. A cut (S, T = V \ S) of a flow network G is just like a cut (S,T) of the graph G in the
sense of §3.3, except that we require s ∈ S and t ∈ T. Thus, any path from s to t must cross the cut
(S,T). Given a flow f in G, the net flow f (S,T) across the cut (S,T) is defined as

f (S,T)= ∑
u∈S

∑
v∈T

f (u,v)− ∑
u∈S

∑
v∈T

f (v,u). (13.4)

One way to picture this is to think of the cut (S,T) as an oriented dam in which we count water
flowing from S to T as positive and water flowing from T to S as negative. The capacity of the cut
(S,T) is defined as

c(S,T)= ∑
u∈S

∑
v∈T

c(u,v). (13.5)

The motivation for this definition is that c(S,T) should represent the maximum amount of water
that could ever possibly flow across the cut (S,T). This is explained further in Proposition 13.6.

Lemma 13.5 (CLRS Lemma 26.4). Given a flow f and a cut (S,T), we have

f (S,T)= | f | .

We omit the proof, which can be found in CLRS. Intuitively, this lemma is an easy consequence of
flow conservation. The water leaving s cannot build up at any of the vertices in S, so it must cross
over the cut (S,T) and eventually pour out into t.

Proposition 13.6. Given a flow f and a cut (S,T), we have

f (S,T)≤ c(S,T).

Thus, applying Lemma 13.5, we find that for any flow f and any cut (S,T), we have

| f | ≤ c(S,T).

Lec 13 – pg. 7 of 11

Proof. In (13.4), f (v,u) is always nonnegative. Moreover, we always have f (u,v) ≤ c(u,v) by the
capacity constraint. The conclusion follows.

Proposition 13.6 tells us that the magnitude of a maximum flow is at most equal to the capacity
of a minimum cut (i.e., a cut with minimum capacity). In fact, this bound is tight:

Theorem 13.7 (Max Flow–Min Cut Equivalence). Given a flow network G and a flow f , the following
are equivalent:

(i) f is a maximum flow in G.

(ii) The residual network G f contains no augmenting paths.

(iii) | f | = c(S,T) for some cut (S,T) of G.

If one (and therefore all) of the above conditions hold, then (S,T) is a minimum cut.

Proof. Obviously (i) implies (ii), since an augmenting path in G f would give us a way to increase the
magnitude of f . Also, (iii) implies (i) because no flow can have magnitude greater than c(S,T) by
Proposition 13.6.

Finally, suppose (ii). Let S be the set of vertices u such that there exists a path s u in G f .
Since there are no augmenting paths, S does not contain t. Thus (S,T) is a cut of G, where T =V \S.
Moreover, for any u ∈ S and any v ∈ T, the residual capacity c f (u,v) must be zero (otherwise the path
s u in G f could be extended to a path s u → v in G f). Thus, glancing back at (13.1), we find that
whenever u ∈ S and v ∈ T, we have

f (u,v)=

c(u,v) if (u,v) ∈ E
0 if (v,u) ∈ E
0 (but who cares) otherwise.

Thus we have
f (S,T)= ∑

u∈S

∑
v∈T

c(u,v)− ∑
u∈S

∑
v∈T

0= c(S,T)−0= c(S,T);

so (iii) holds. Because the magnitude of any flow is at most the capacity of any cut, f must be a
maximum flow and (S,T) must be a minimum cut.

Corollary 13.8. The Ford–Fulkerson algorithm is correct.

Proof. When FORD–FULKERSON terminates, there are no augmenting paths in the residual network
G f .

13.3 Generalizations

The definition of a flow network that we laid out may seem insufficient for handling the types of
flow problems that come up in practice. For example, we may want to find the maximum flow in a
directed graph which sometimes contains both an edge (u,v) and its reversal (v,u). Or, we might
want to find the maximum flow in a directed graph with multiple sources and sinks. It turns out
that both of these generalizations can easily be reduced to the original problem by performing clever
graph transformations.

Lec 13 – pg. 8 of 11

u

v

5 3

u

v

w5

3

3

Figure 13.3. We can resolve the issue of E containing both an edge and its reversal by creating a new vertex and rerouting
one of the old edges through that vertex.

13.3.1 Allowing both an edge and its reversal

Suppose we have a directed weighted graph G = (V ,E) with distinguished vertices s and t. We would
like to use the Ford–Fulkerson algorithm to solve the flow problem on G, but G might not be a
flow network, as E might contain both (u,v) and (v,u) for some pair of vertices u,v. The trick is to
construct a new graph G′ = (V ′,E′) from G in the following way: Start with (V ′,E′)= (V ,E). For every
unordered pair of vertices {u,v} ⊆ V such that both (u,v) and (v,u) are in E, add a dummy vertex w
to V ′. In E′, replace the edge (u,v) with edges (u,w) and (w,v), each with capacity c(u,v) (see Figure
13.3). It is easy to see that solving the flow problem on G′ is equivalent to solving the flow problem
on G. But G′ is a flow network, so we can use FORD–FULKERSON to solve the flow problem on G′.

13.3.2 Allowing multiple sources and sinks

Next suppose we have a directed graph G = (V ,E) in which there are multiple sources s1, . . . , sk and
multiple sinks t1, . . . , t`. Again, it makes sense to talk about the flow problem in G, but the Ford–
Fulkerson algorithm does not immediately give us a way to solve the flow problem in G. The trick
this time is to add new vertices s and t to V . Then, join s to each of s1, . . . , sk with a directed edge
of capacity ∞,5 and join each of t1, . . . , t` to t with a directed edge of capacity ∞ (see Figure 13.4).
Again, it is easy to see that solving the flow problem in this new graph is equivalent to solving the
flow problem in G.

13.3.3 Multi-commodity flow

Even more generally, we might want to transport multiple types of commodities through our net-
work simultaneously. For example, perhaps G is a road map of New Orleans and the commodities
are emergency relief supplies (food, clothing, flashlights, gasoline. . .) in the wake of Hurricane Kat-
rina. In the multi-commodity flow problem, there are commodities 1, . . . ,k, sources s1, . . . , sk, sinks
t1, . . . , tk, and quotas (i.e., positive numbers) d1, . . . ,dk. Each source si needs to send di units of com-
modity i to sink ti. (See Figure 13.5.) The problem is to determine whether there is a way to do so
while still obeying flow conservation and the capacity constraint, and if so, what that way is.

5 The symbol ∞ plays the role of a sentinel value representing infinity (such that ∞ > x for every real number x).
Depending on your programming language (and on whether you cast the edge capacities as integers or floating-point
numbers), the symbol ∞ may or may not be supported natively. If it is not supported natively, you will have to either
implement it or add extra code to the implementation of FORD–FULKERSON so that operations on edge capacities support

Lec 13 – pg. 9 of 11

s

s1

s2

s3

s4

∞

∞

∞

∞

t

t1

t2

t3

∞

∞

∞

Figure 13.4. We can allow multiple sources and sinks by adding a “master” source that connects to each other source via
an edge of capacity ∞, and similarly for the sinks.

s1

s2

s3

t1 = t2

t3

Figure 13.5. An instance of the multi-commodity flow problem with three commodities.

Lec 13 – pg. 10 of 11

It turns out that the multi-commodity flow problem is NP-complete, even when k = 2 and all the
edge capacities are 1. Thus, most computer scientists currently believe that there is no way to solve
the multi-commodity flow problem in polynomial time, though it has not been definitively proved yet.

both numbers and the symbol ∞.

Lec 13 – pg. 11 of 11

Lecture 14

Interlude: Problem Solving
Supplemental reading in CLRS: None

This lecture was originally given as a pep talk before the take-home exam. In note form, this chapter
will be light reading, a break in which we look back at the course material as veterans.

14.1 What to Bring to the Table

In most technical undergraduate courses, questions are posed in such a way that all solutions are
equally valid; if a student is able to come up with any solution to a given problem, she is considered
to be in good shape. In 6.046, this is not the case. For most algorithmic problems, there is an obvious
but inefficient solution; your task is to find a better solution. It is worth appreciating that this way
of thinking may be new to you, and taking a moment to reflect metacognitively on strategies to help
you solve algorithmic problems.

There is no recipe for solving problems, but there are many things you can do which often, even-
tually, lead to good solutions.

• Knowledge. In academic research, one will usually pick up the relevant background material
over the course of working on a given problem. In an exam setting, you should come to the table
with as complete an understanding of the background material as possible; you will not have
time to learn many new concepts. In either case, you should strive to understand the relevant
background as deeply as possible. You should be able to implement a given algorithm correctly
in your computer language of choice. You should be able to answer CLRS-style exercises about
the pseudocode: What would be the effect on performance if we changed this line? Would the
algorithm still be correct? What would be the effect on performance if we used a different data
structure?

• Belief. Be optimistic. Remind yourself that you might solve this problem, even if it doesn’t look
tractable at first.

• Motivation. There is no substitute for a strong motivation to solve the problem at hand. Given
that you’re trying to learn algorithms from a set of lecture notes, I probably don’t even need to
tell you this.

14.2 How to Attack a Problem

We’ll now discuss several tips that might help you to crack a problem open. We’ll keep the following
concrete example in the back of our mind:

Problem 14.1 (Bipartite Matching). In a group of n heterosexual people, each woman has a list of
the men she is interested in marrying, and each man has a list of the women he is interested in
marrying. Find an algorithm that creates the largest possible number of weddings. (Each person can
marry at most one other person. In a couple, each member must be on the other member’s list.)

14.2.1 Understand the Problem

• Note everything that is given.

• Find some upper bounds and lower bounds. For example:

– If the algorithm has to read the entire input, then the running time is at least Ω(n). (This
is not always the case, however! For example, binary search runs in O(lgn) and does not
read the entire input.)

– If the output has to output k things, then the running time is at least Ω(k).

– If the algorithm can be used to perform a comparison-based sort, then the running time
is at least Ω(n lgn).1

– There are usually a finite number of possibilities for the output. In the case of our current
problem, arrange the men in a line (by alphabetical order of last name, say). For each man
who has a wife, place his wife behind him. Place the unmarried women at the front of the
line (by alphabetical order of last name, say). In this way, each possible matching gives a
different line. Thus, the total number of possible matchings is at most n!, the number of
ways to arrange all n people in a line.

– Usually there is an obvious algorithm that runs in exponential time. Sometimes it runs
faster.

– Sometimes it is easy to reduce the problem to another problem whose solution is well-
known. (Be careful, though—your special case may be amenable to a more efficient solu-
tion than the general problem!)

– Whatever your solution is, its running time must of course fall within the lower and upper
bounds you find.

• Is there a useful diagram?

1 A comparison-based sorting algorithm is a sorting algorithm which makes no assumptions about the items being
sorted except that there is a well-defined notion of “less than” and that, for objects a and b, we can check whether a < b in
constant time. The fact we are using here is that any comparison-based sorting algorithm takes at leastΩ(n lgn) time. The
proof is as follows. Suppose we have a comparison-based sorting algorithm A which takes as input a list L = 〈a1, . . . ,an〉 and
outputs a list of indices I = 〈i1, . . . , in〉 such that ai1 ≤ ·· · ≤ ain . Let k be the number of comparison operations performed
by A on a worst-case input of length n (where k depends on n). Because each comparison is a yes-or-no question, there are
at most 2k possible sets of answers to the at most k comparison operations. Since the output of a comparison-based sorting
algorithm must depend only on these answers, there are at most 2k possible outputs I. Of course, if A is correct, then all
n! permutations of the indices 〈1, . . . ,n〉 must be possible, so 2k ≥ n!. Thus k ≥ lg(n!). Finally, Stirling’s approximation tells
us that lg(n!)=Θ(n lgn). Thus the running time of A is Ω(k)=Ω(n lgn).

Lec 14 – pg. 2 of 5

• Is there a graph?

• Try examples!

14.2.2 Try to Solve the Problem

• Can we solve the problem under a set of simplifying assumptions? (What if every vertex has
degree 2? What if the edge weights are all 1?)

• Are there useful subproblems?

• Will a greedy algorithm work? Divide-and-conquer? Dynamic programming?

• Can this problem be reduced to a known problem?

• Is it similar to a known problem? Can we modify the known algorithm to suit it to this version?

• Can the problem be solved with convolution? If so, the fast Fourier transform will improve
efficiency.

• Is there any further way to take advantage of the given information?

• Can randomization help? It is often better to find a fast algorithm with a small probability of
error than a slower, correct algorithm.

Remember that a hard problem usually cannot be solved in one sitting. Taking breaks and chang-
ing perspective help. In the original setting of a pre–take-home exam pep talk, it was important to
remind students that “incubation time” is completely necessary and should be part of the exam sched-
ule. Thus, students should start the test early—the away-time when they are not actively trying to
solve test questions is crucial.

14.2.3 Work Out the Details

• What is the algorithm? (Write the algorithm down in as much detail as possible—it is easy to
end up with an incorrect algorithm or an incorrect running time analysis because you forgot
about a few of what seemed like unimportant implementation details.)

• Why is it correct?

• What is its asymptotic running time?

14.2.4 Communicate Your Findings

• Don’t be shy about writing up partial solutions, solutions to simplified versions of the problem,
or observations. This is the most common sort of writing that occurs in academia: often, the
complete solution to a problem is just the finishing touch on a large body of prior work by other
scientists. And even more often, no complete solution is found—all we have are observations
and solutions to certain tractable special cases. (In an exam setting, this sort of writing could
win you significant partial credit.)

Lec 14 – pg. 3 of 5

• To be especially easy on your reader, you can format your algorithm description as an essay,
complete with diagrams and examples. The essay should begin with a high-level “executive
summary” of how the algorithm works.

Now that you have been thinking about the bipartite matching problem for a while, here is a
solution:

Algorithm:
Let M be the set of men and let W be the set of women; let s and t be objects representing
a source and a sink. Create a bipartite directed graph∗ G with vertex set M ∪W ∪ {s, t}.
Draw an edge from s to each man and an edge from each woman to t. Next, for each man
m and each woman w, draw an edge from m to w if m is on w’s list and w is on m’s list.
Give all edges capacity 1. The graph G is now a flow network with source s and sink t (see
Figure 14.1).

Note that there is a bijection between valid matchings and integer flows in G. In one
direction, given a matching, we can saturate each edge between a man and a woman who
have been matched. The flows out of s and into t are then uniquely determined. In the
other direction, given an integer flow f in G, the fact that each edge out of s or into t has
capacity 1 means that there is at most one edge out of each man and at most one edge into
each woman. Thus, we obtain a valid matching by wedding a man m to a woman w if and
only if f (m,w)= 1. The magnitude of f is equal to the number of couples, so the number of
couples in any matching is bounded above by the maximum flow in G.

This bound is tight if and only if there exists a maximum flow f ∗ in G which is an
integer flow. Such a flow does exist, and is found by the Ford–Fulkerson algorithm, by
Proposition 13.3. Since the number of couples is at most O(n), we have | f ∗| =O(n), and the
running time of the Ford–Fulkerson algorithm is O (E · | f ∗|) = O

(
n2 ·n) = O

(
n3)

. Actually,
assuming each person has a relatively small list of acceptable spouses, we ought to be more
granular about this bound: we have

E =O

(
n+

n∑
i=1

(
size of the ith
person’s list

))
,

and the running time is at most

T =O

(
n ·

(
n+

n∑
i=1

(
size of the ith
person’s list

)))
.

∗ A graph G = (V ,E) is called bipartite if the vertex set V can be written as the union of two disjoint sets
V =V1 tV2 such that every edge in E has one endpoint in V1 and one endpoint in V2.

14.2.5 Reflect and Improve

• Can we achieve a better running time?2

2 For the bipartite matching problem, there exist better algorithms than the one given above. Still, I love this solution.
It shows how useful flow networks are, even in contexts that seem to have nothing to do with flow. There are many more
examples in which this phenomenon occurs.

Lec 14 – pg. 4 of 5

s t

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Figure 14.1. In this flow network, the nodes on the left (other than s) represent women and the nodes on the right (other
than t) represent men. All edges have capacity 1. A maximum flow is highlighted in black; it shows that the maximal
number of couples is 3.

• Can randomization help?

• Can amortization help?

• Can we use less space?

14.3 Recommended Reading

There are many great references and exercise books for algorithmic problem solving and mathemat-
ical problem solving in general. Two particular selections are:

• George Pólya, How to Solve It

• The Princeton Companion to Mathematics, VIII.1: “The Art of Problem Solving.”

Another good source of algorithms practice is web sites designed to help people prepare for technical
interviews. It is common for tech companies to ask algorithm questions to job applications during
interviews; students who plan to apply for software jobs may especially want to practice. Even for
those who aren’t looking for jobs, web sites like TechInterview.org can be a useful source of challeng-
ing algorthmic exercises.

Lec 14 – pg. 5 of 5

http://www.techinterview.org/

Lecture 15

van Emde Boas Data Structure
Supplemental reading in CLRS: Chapter 20

Given a fixed integer n, what is the best way to represent a subset S of {0, . . . ,n−1} in memory,
assuming that space is not a concern? The simplest way is to use an n-bit array A, setting A[i] = 1
if and only if i ∈ S, as we saw in Lecture 10. This solution gives O(1) running time for insertions,
deletions, and lookups (i.e., testing whether a given number x is in S).1 What if we want our data
structure to support more operations, though? Perhaps we want to be able not just to insert, delete
and lookup, but also to find the minimum and maximum elements of S. Or, given some element
x ∈ S, we may want to find the successor and predecessor of x, which are the smallest element of S
that is greater than x and the largest element of S that is less than x, respectively. On a bit array,
these operations would all take time Θ(|S|) in the worst case, as we might need to examine all the
elements of S. The van Emde Boas (vEB) data structure is a clever alternative solution which
outperforms a bit array for this purpose:

Operation Bit array van Emde Boas
INSERT O(1) Θ (lglgn)
DELETE O(1) Θ (lglgn)
LOOKUP O(1) Θ(lglgn)
MAXIMUM, MINIMUM Θ(n) O(1)
SUCCESSOR, PREDECESSOR Θ(n) Θ(lglgn)

We will not discuss the implementation of SUCCESSOR and PREDECESSOR; those will be left to
recitation.

15.1 Analogy: The Two-Coconut Problem

The following riddle nicely illustrates the idea of the van Emde Boas data structure. I am somewhat
embarrassed to give the riddle because it shows a complete misunderstanding of materials science
and botany, but it is a standard example and I can’t think of a better one.

Problem 15.1. There exists some unknown integer k between 1 and 100 (or in general, between
1 and some large integer n) such that, whenever a coconut is dropped from a height of k inches or

1 This performance really is unbeatable, even for small n. Each operation on the bit array requires only a single memory
access.

n

k

h

h

h

h

h

Figure 15.1. One strategy for the two-coconut problem is to divide the integers {1, . . . ,n} into blocks of size h, and then use
the first coconut to figure out which block k is in. Once the first coconut breaks, it takes at most h−1 more drops to find
the value of k.

more, the coconut will crack, and whenever a coconut is dropped from a height of less than k inches,
the coconut will be completely undamaged and it will be as if we had not dropped the coconut at all.
(Thus, we could drop the coconut from a height of k−1 inches a million times and nothing would
happen.) Our goal is to find k with as few drops as possible, given a certain number of test coconuts
which cannot be reused after they crack. If we have one coconut, then clearly we must first try 1 inch,
then 2 inches, and so on. The riddle asks, what is the best way to proceed if we have two coconuts?

An approximate answer to the riddle is given by the following strategy: Divide the n-inch range
into b blocks of height h each (we will choose b and h later; see Figure 15.1). Drop the first coconut
from height h, then from height 2h, and so on, until it cracks. Say the first coconut cracks at height
b0h. Then drop the second coconut from heights (b0 −1)h+1, (b0 −1)h+2, and so on, until it cracks.
This method requires at most b+h−1= n

h +h−1 drops, which is minimized when b = h =p
n.

Notice that, once the first coconut cracks, our problem becomes identical to the one-coconut ver-
sion (except that instead of looking for a number between 1 and n, we are looking for a number
between (b0−1)h+1 and b0h−1). Similarly, if we started with three coconuts instead of two, then it
would be a good idea to divide the range {1, . . . ,n} into equally-sized blocks and execute the solution
to the two-cononut problem once the first coconut cracked.

Exercise 15.1. If we use the above strategy to solve the three-coconut problem, what size should we
choose for the blocks? (Hint: it is not

p
n.)

15.2 Implementation: A Recursive Data Structure

Just as in the two-coconut problem, the van Emde Boas data structure divides the range {0, . . . ,n−1}
into blocks of size

p
n, which we call clusters. Each cluster is itself a vEB structure of size

p
n. In

addition, there is a “summary” structure that keeps track of which clusters are nonempty (see Figure

Lec 15 – pg. 2 of 6

vEB:

size= 16

max= 13

min= 2

summary=

clusters=

NIL

vEB of size 4 representing {0,1,3}

vEB of size 4 representing {2,3}

vEB of size 4 representing {1,3}

vEB of size 4 representing {1}

Figure 15.2. A vEB structure of size 16 representing the set {2,3,5,7,13}⊆ {0, . . . ,15}.

15.2). The summary structure is analogous to the first coconut, which told us what block k had to lie
in.

15.2.1 Crucial implementation detail

The following implementation detail, which may seem unimportant at first, is actually crucial to the
performance of the van Emde Boas data structure:

Do not store the minimum and maximum elements in clusters. Instead, store them as
separate data fields.

Thus, the data fields of a vEB structure V of size n are as follows:

• V .size – the size of V , namely n

• V .max – the maximum element of V , or NIL if V is empty

• V .min – the minimum element of V , or NIL if V is empty

• V .clusters – an array of size
p

n which stores the clusters. For performance reasons, the value
stored in each entry of V .clusters will initially be NIL; we will wait to build each cluster until
we have to insert something into it.

• V .summary – a van Emde Boas structure of size
p

n that keeps track of which clusters are
nonempty. As with the entries of V .clusters, we initially set V .summary ← NIL; we do not
build the recursive van Emde Boas structure referenced by V .summary until we have to insert
something into it (i.e., until the first time we create a cluster for V).

15.2.2 Insertions

To simplify the exposition, in this lecture we use a model of computation in which it takes constant
time to initialize any array (setting all entries equal to NIL), no matter how big the array is.2 Thus,

2 Of course, this is cheating; real computers need an initialization time that depends on the size of the array. Still,
there are use cases for which this assumption is warranted. We can preload our vEB structure by creating all possible vEB

Lec 15 – pg. 3 of 6

it takes constant time to create an empty van Emde Boas structure, and it also takes constant time
to insert the first element into a van Emde Boas structure:

Algorithm: VEB-FIRST-INSERTION(V , x)
1 V .min← x
2 V .max← x

Using this fact, we will show that the procedure V .INSERT(x) has only one non–constant-time step.
Say V .clusters[i] is the cluster corresponding to x (for example, if n = 100 and x = 64, then i = 6).
Then:

• If V .clusters[i] is NIL, then it takes constant time to create a vEB structure containing only
the element corresponding to x. (For example, if n = 100 and x = 64, then it takes constant
time to create a vEB structure of size 10 containing only 4.) We update V .clusters[i] to point to
this new vEB structure. Thus, the only non–constant-time operation we have to perform is to
update V .summary to reflect the fact that V .clusters[i] is now nonempty.

• If V .clusters[i] is empty3 (we can check this by checking whether V .clusters[i].min = NIL),
then it takes constant time to insert the appropriate entry into V .clusters[i]. So again, the only
non–constant-time operation we have to perform is to update V .summary to reflect the fact
that V .clusters[i] is now nonempty.

• If V .clusters[i] is nonempty, then we have to make the recursive call V .clusters[i].INSERT(x).
However, we do not need to make any changes to V .summary.

In each case, we find that the running time T of INSERT satisfies the recurrence

T(n)= T
(p

n
)+O(1). (15.1)

As we will see in §15.3 below, the solution to this recurrence is TINSERT =Θ (lglgn).

15.2.3 Deletions

Similarly, the procedure V .DELETE(x) requires only one recursive call. To see this, let i be as above.
Then:

• First suppose V has no nonempty clusters (we can check this by checking whether V .summary
is either NIL or empty; the latter happens when V .summary.min= NIL).

– If x is the only element of V , then we simply set V .min ← V .max ← NIL. Thus, deleting
the only element of a single-element vEB structure takes constant time; we will use this
fact later.

– Otherwise, V contains only two elements including x. Let y be the other element of V . If
x = V .min, then y = V .max and we set V .min ← y. If x = V .max, then y = V .min and we
set V .max← y.

substructures up front rather than using NIL for the empty ones. This way, after an initial O(n) preloading time, array
initialization never becomes an issue. Another possibility is to use a dynamically resized hash table for V .clusters rather
than an array. Each of these possible improvements has its share of extra details that must be addressed in the running
time analysis; we have chosen to ignore initialization time for the sake of brevity and readability.

3 This would happen if V .clusters[i] was once nonempty, but became empty due to deletions.

Lec 15 – pg. 4 of 6

• Next suppose V has some nonempty clusters.

– If x = V .min, then we will need to update V .min. The new minimum takes only constant
time to calculate, though: it is y, where

y←V .clusters[V .summary.min].min;

in other words, it’s the smallest element in the lowest nonempty cluster of V . After mak-
ing this update, we need to make a recursive call to

V .clusters[V .summary.min].DELETE(y)

to remove the new value of V .min from its cluster. At this point, there are two possibilities:

* y is not the only element in its cluster. Then V .summary does not need to be updated.

* y is the only element in its cluster. Then we must make a recursive call to

V .summary.DELETE(V .summary.min)

to reflect the fact that y’s cluster is now empty. However, since y was the only el-
ement in its cluster, it took constant time to remove y from its cluster: as we said
above, it takes only constant time to remove the last element from a one-element
vEB structure.

Either way, there is only one non–constant-time step in V .DELETE: a recursive call to
DELETE on a vEB structure of size

p
n.

– By entirely the same argument (perhaps in mirror-image), we find that the case x =V .max
has identical running time to the case x =V .min.

– If x is neither V .min nor V .max, then we must delete x from its cluster and, if this causes
x’s cluster to become empty, make a recursive call to V .summary.DELETE to reflect this
update. As above, the recursive call to V .summary.DELETE will only happen when the
deletion of x from its cluster took constant time.

In each case, the only non–constant-time step in DELETE is a single recursive call to DELETE on a
vEB structure of size

p
n. Thus, the running time T for DELETE satisfies (15.1), which we repeat

here for convenience:
T(n)= T

(p
n
)+O(1). (copy of 15.1)

Again, the solution is TDELETE =Θ(lglgn).

15.2.4 Lookups

Finally, we consider the operation V .LOOKUP(x), which returns TRUE or FALSE according as x is or
is not in V . The implementation is easy: First we check whether x =V .min, then whether x =V .max.
If neither of these is true, then we recursively call LOOKUP on the cluster corresponding to x. Thus,
the running time T of LOOKUP satisfies (15.1), and we have TLOOKUP =Θ(lglgn).

Exercise 15.2. Go through this section again, circling each step or claim that relies on the decision
not to store V .min and V .max in clusters. Be careful—there may be more things to circle than you
think!

Lec 15 – pg. 5 of 6

15.3 Solving the Recurrence

As promised, we now solve the recurrence (15.1), which we repeat here for convenience:

T(n)= T
(p

n
)+O(1). (copy of 15.1)

15.3.1 Base case

Before we begin, it’s important to note that we have to lay down a base case at which recursive
structures stop occurring. Mathematically this is necessary because one often uses induction to
prove solutions to recurrences. From an implementation standpoint, the need for a base case is
obvious: how could a vEB structure of size 2 make good use of smaller vEB substructures? So we
will lay down n = 2 as our base case, in which we simply take V to be an array of two bits.

15.3.2 Solving by descent

The equation (15.1) means that we start on a structure of size n, then pass to a structure of sizep
n = n1/2, then to a structure of size

√p
n = n1/4, and so on, spending a constant amount of time at

each level of recursion. So the total running time should be proportional to the number of levels of
recursion before arriving at our base case, which is the number ` such that n1/2` = 2. Solving for `,
we find

`= lglgn.

Thus T(n)=Θ(lglgn).

15.3.3 Solving by substitution

Another way to solve the recurrence is to make a substitution which reduces it to a recurrence that
we already know how to solve. Let

T ′(m)= T
(
2m)

.

Taking m = lgn, (15.1) can be rewritten as

T ′(m)= T ′ (m/2)+O(1),

which we know to have solution T ′(m)=Θ(lgm). Substituting back n = 2m, we get

T(n)=Θ(lglgn).

Lec 15 – pg. 6 of 6

Lecture 16

Disjoint-Set Data Structures
Supplemental reading in CLRS: Chapter 21 (§21.4 is optional)

When implementing Kruskal’s algorithm in Lecture 4, we built up a minimum spanning tree T by
adding in one edge at a time. Along the way, we needed to keep track of the connected components of
T; this was achieved using a disjoint-set data structure. In this lecture we explore disjoint-set data
structures in more detail.

Recall from Lecture 4 that a disjoint-set data structure is a data structure representing a
dynamic collection of sets S= {S1, . . . ,Sr}. Given an element u, we denote by Su the set containing u.
We will equip each set Si with a representative element rep[Si].1 This way, checking whether two
elements u and v are in the same set amounts to checking whether rep[Su]= rep[Sv]. The disjoint-set
data structure supports the following operations:

• MAKE-SET(u): Creates a new set containing the single element u.

– u must not belong to any already existing set

– of course, u will be the representative element initially

• FIND-SET(u): Returns the representative rep[Su].

• UNION(u,v): Replaces Su and Sv with Su ∪Sv in S. Updates representative elements as ap-
propriate.

In Lecture 4, we looked at two different implementations of disjoint sets: doubly-linked lists and
trees. In this lecture we’ll improve each of these two implementations, ultimately obtaining a very
efficient tree-based solution.

16.1 Linked-List Implementation

Recall the simple linked-list implementation of disjoint sets that we saw in Lecture 4:

1 This is not the only way to do things, but it’s just as good as any other way. In any case, we’ll need to have some symbol
representing each set Si (to serve as the return value of FIND-SET); the choice of what kind of symbol to use is essentially
a choice of notation. We have chosen to use a “representative element” of each set rather than create a new symbol.

Si : u1

rep[Si]
u2 u3 · · · uk

MAKE-SET(u) – initialize as a lone node Θ(1)

FIND-SET(u) – walk left from u until you reach the head of Su Θ(n) worst-case

UNION(u,v) – walk right (towards the tail) from u and left (towards
the head) from v. Reassign pointers so that the tail of
Su and the head of Sv become neighbors. The repre-
sentative is updated automatically.

Θ(n) worst-case

Do we really need to do all that walking? We could save ourselves some time by augmenting each
element u with a pointer to rep[Su], and augmenting rep[Su] itself with a pointer to the tail. That
way, the running time of FIND-SET would be O(1) and all the walking we formerly had to do in
UNION would become unnecessary. However, to maintain the new data fields, UNION(u,v) would
have to walk through Sv and update each element’s “head” field to point to rep[Su]. Thus, UNION

would still take O(n) time in the worst case.
Perhaps amortization can give us a tighter bound on the running time of UNION? At first glance,

it doesn’t seem to help much. As an example, start with the sets {1} , {2} , . . . , {n}. Perform UNION(2,1),
followed by UNION(3,1), and so on, until finally UNION(n,1), so that S1 = {1, . . . ,n}. In each call
to UNION, we have to walk to the tail of S1, which is continually growing. The ith call to UNION

has to walk through i−1 elements, so that the total running time of the n−1 UNION operations is∑n−1
i=1 (i−1)=Θ(

n2)
. Thus, the amortized cost per call to UNION is Θ(n).

However, you may have noticed that we could have performed essentially the same operations
more efficiently by instead calling UNION(1,2) followed by UNION(1,3), and so on, until finally
UNION(1,n). This way, we never have to perform the costly operation of walking to the tail of S1;
we only ever have to walk to the tails of one-element sets. Thus the running time for this smarter
sequence of n−1 UNION operations is Θ(n), and the amortized cost per operation is O(1).

The lesson learned from this analysis is that, when performing a UNION operation, it is best to
always merge the smaller set into the larger set, i.e., the representative element of the combined set
should be chosen equal to the representative of the larger constituent—that way, the least possible
amount of walking has to occur. To do this efficiently, we ought to augment each Si with a “size” field,
which we’ll call Si.weight (see Figure 16.1).

It turns out that the “smaller into larger” strategy gives a significant improvement in the amor-
tized worst-case running time of the UNION operation. We’ll show that the total running time of
any sequence of UNION operations on a disjoint-set data structure with n elements (i.e., in which
MAKE-SET is called n times) is O(n lgn). Thus, the running time of m operations, n of which are
MAKE-SET operations, is

O
(
m+n lgn

)
.

To start, focus on a single element u. We’ll show that the total amount of time spent updating u’s
“head” pointer is O(lgn); thus, the total time spent on all UNION operations is O(n lgn). When u is
added to the structure via a call to MAKE-SET, we have Su.weight = 1. Then, every time Su merges
with another set Sv, one of the following happens:

Lec 16 – pg. 2 of 7

Si : head

tail

weight= 3

u1

rep[Si]

u2 u3

Figure 16.1. A linked list augmented with data fields for the head, the tail, and the size (weight).

• Su.weight> Sv.weight. Then no update to u’s “head” pointer is needed.

• Sv.weight ≥ Su.weight. Then, we update u’s “head” pointer. Also, in this case, the value of
Su.weight at least doubles.

Because Su.weight at least doubles every time we update u’s “head” pointer, and because Su.weight
can only be at most n, it follows that the total number of times we update u’s “head” pointer is at
most lgn. Thus, as above, the total cost of all UNION operations is O(n lgn) and the total cost of any
sequence of m operations is O (m+n lgn).

Exercise 16.1. With this new augmented structure, do we still need the list to be doubly linked?
Which pointers can we safely discard?

16.2 Forest-of-Trees Implementation

In addition to the linked-list implementation, we also saw in Lecture 4 an implementation of the
disjoint-set data structure based on trees:

Si : u1

rep[Si]
u4 u3

u2 u5 u6

MAKE-SET(u) – initialize new tree with root node u Θ(1)

FIND-SET(u) – walk up tree from u to root Θ(height)=Θ(lgn) best-case

UNION(u,v) – change rep[Sv]’s parent to rep[Su] O(1)+2TFIND-SET

The efficiency of the basic implementation hinges completely on the height of the tree: the shorter
the tree, the more efficient the operations. As the implementation currently stands, the trees could

Lec 16 – pg. 3 of 7

u

u.rank

v

v.rank

Figure 16.2. Union by rank attempts to always merge the shorter tree into the taller tree, using rank as an estimate
(always an overestimate) of height.

be unbalanced and FIND-SET could take as long as Θ(n) in the worst case. However, this behavior
can be dramatically improved, as we will see below.

16.2.1 Union by rank

When we call UNION(u,v), rep[Sv] becomes a child of rep[Su]. Merging Sv into Su in this way results
in a tree of height

max
{
height[Su], height[Sv]+1

}
(16.1)

(why?). Thus, the way to keep our trees short is to always merge the shorter tree into the taller tree.
(This is analogous to the “smaller into larger” strategy in the linked-list implementation.) To help us
do this, we will introduce a new data field called rank. If u is the root of a tree (i.e., if u = rep[Su]),
then u.rank will be an upper bound on the height of Su.2 In light of (16.1), the pseudocode for UNION

will be as follows (see Figure 16.2):

Algorithm: UNION(ũ, ṽ)
1 u ← FIND-SET(ũ)
2 v ← FIND-SET(ṽ)
3 if u.rank= v.rank then
4 u.rank← u.rank+1
5 v.parent← u
6 else if u.rank> v.rank then
7 v.parent← u
8 else
9 u.parent← v

The following lemma shows that UNION preserves the fact that rank is an upper bound on height.

Lemma 16.1. Suppose initially the following hold:

• Su 6= Sv

2 If union by rank is the only improvement we use, then u.rank will actually be the exact height of Su. But in general,
we wish to allow other improvements (such as path compression) to decrease the height of Su without having to worry
about updating ranks. In such cases, the upper bound provided by u.rank may not be tight.

Lec 16 – pg. 4 of 7

• Su has height h1 and Sv has height h2

• rep[Su].rank= r1 and rep[Sv].rank= r2

• h1 ≤ r1 and h2 ≤ r2.

Suppose we then call UNION(u,v), producing a new set S = Su ∪Sv. Let h be the height of S and let
r = rep[S].rank. Then h ≤ r.

Proof. First, suppose r1 > r2. Then Sv has been merged into Su and r = r1. By (16.1), we have

h =max
{
h1, h2 +1

}
≤max

{
r1, r2 +1

}
= r1

= r.

A similar argument shows that h ≤ r in the case that r2 > r1. Finally, suppose r1 = r2. Then Sv has
been merged into Su and r = r1 +1= r2 +1, so

h =max
{
h1, h2 +1

}
≤max

{
r1, r2 +1

}
= r2 +1

= r.

It turns out that the rank of a tree with k elements is always at most lgk. Thus, the worst-case
performance of a disjoint-set forest with union by rank having n elements is

MAKE-SET O(1)
FIND-SET Θ(lgn)
UNION Θ(lgn).

Exercise 16.2. Amortization does not help this analysis. Given sufficiently large n and given m which
is sufficiently large compared to n, produce a sequence of m operations, n of which are MAKE-SET

operations (so the structure ultimately contains n elements), whose running time is Θ(m lgn).

Exercise 16.3. Above we claimed that the rank of any tree with k elements is at most lgk. Use
induction to prove this claim. (You may assume that UNION is the only procedure that modifies
ranks. However, you should not assume anything about the height of a tree except that it is less than
the rank.) What is the base case?

16.2.2 Path compression

The easiest kind of tree to walk up is a flat tree, where all non-root nodes are direct children of the
root (see Figure 16.3). The idea of path compression is that, every time we invoke FIND-SET and
walk up the tree, we should reassign parent pointers to make each node we pass a direct child of
the root (see Figure 16.4). This locally flattens the tree. With path compression, the pseudocode for
FIND-SET is as follows:

Lec 16 – pg. 5 of 7

u1

u4 u2 u5 u6 u3

Figure 16.3. In a flat tree, each FIND-SET operation requires us to traverse only one edge.

u1

u2 u3

u4 u5 u6 u7

u9 u8

u1

u2 u3 u7 u8

u4 u5 u6 u9

Figure 16.4. With path compression, calling FIND-SET (u8) will have the side-effect of making u8 and all of its ancestors
direct children of the root.

Algorithm: FIND-SET(u)
1 A ←;
2 n ← u
3 while n is not the root do
4 A ← A∪ {n}
5 n ← n.parent
6 for each x ∈ A do
7 x.parent← n
8 return n

What data structure should we use for A? In an ideal world, where n can truly be arbitrarily large,
we would probably want A to be a dynamically doubled array of the kind discussed in Lecture 10.
In real life, however, some assumptions can be made. For example, if you have less than a petabyte
(1024 TB, or 253 bits) of available memory, then the rank (and therefore the height) of any tree is at
most lg

(
253) = 53, and it would be slightly more efficient to maintain A as a static array of size 53

(with an end-marking sentinel value, perhaps).
It can be shown that, with path compression (but not union by rank), the running time of any

sequence of n MAKE-SET operations, f FIND-SET operations, and up to n−1 UNION operations is

Θ
(
n+ f

(
1+ log2+ f /n n

))
.

16.2.3 Both improvements together

The punch-line of this lecture is that, taken together, union by rank and path compression produce a
spectacularly efficient implementation of the disjoint-set data structure.

Lec 16 – pg. 6 of 7

Theorem 16.2. On a disjoint-set forest with union by rank and path compression, any sequence of m
operations, n of which are MAKE-SET operations, has worst-case running time

Θ
(
mα(n)

)
,

where α is the inverse Ackermann function. Thus, the amortized worst-case running time of each
operation is Θ (α(n)). If one makes the approximation α(n) = O(1), which is valid for literally all
conceivable purposes, then the operations on a disjoint-set forest have O(1) amortized running time.

The proof of this theorem is in §21.4 of CLRS. You can read it if you like; it is not essential. You
might also be interested to know that, in a 1989 paper, Fredman and Saks proved that Θ (α(n)) is
the fastest possible amortized running time per operation for any implementation of the disjoint-set
data structure.

The inverse Ackermann function α is defined by

α(n)=min
{
k : Ak(1)≥ n

}
,

where (k, j) 7→ Ak(j) is the Ackermann function. Because the Ackermann function is an extremely
rapidly growing function, the inverse Ackermann function α is an extremely slowly growing function
(though it is true that limn→∞α(n)=∞).

The Ackermann function A (at least, one version of it) is defined by

Ak(j)=
{

j+1 if k = 0
A(j+1)

k−1 (j) (that is, Ak−1 iterated j+1 times) for k ≥ 1.

Some sample values of the Ackermann function are

A1(1)= 3 A1(j)= 2 j+1

A2(1)= 7 A2(j)= 2 j+1(j+1)

A3(1)= 2047

A4(1)À 1080.

By current estimates, 1080 is roughly the same order of magnitude as the number of particles in the
observable universe. Thus, even if you are a theoretical computer scientist or mathematician, you
will still most likely never end up considering a number n so large that α(n)> 4.

Exercise 16.4. Write down a sequence of operations on the disjoint-set forest with union by rank
and path compression (including MAKE-SET operations) which cause a taller tree to be merged into a
shorter tree. Why do we allow this to happen?

Lec 16 – pg. 7 of 7

Lecture 17

Complexity and NP-completeness
Supplemental reading in CLRS: Chapter 34

As an engineer or computer scientist, it is important not only to be able to solve problems, but also to
know which problems one can expect to solve efficiently. In this lecture we will explore the complexity
of various problems, which is a measure of how efficiently they can be solved.

17.1 Examples

To begin, we’ll review three problems that we already know how to solve efficiently. For each of the
three problems, we will propose a variation which might not be so easy to solve.

• Flow. Given a flow network G with integer capacities, we can efficiently find an integer flow
that is optimal using the Edmonds–Karp algorithm.

• Multi-Commodity Flow. In §13.3, we considered a varation of network flow in which there are
k commodities which need to simultaneously flow through our network, where we need to send
at least di units of commodity i from source si to sink ti.

• Minimum Cut. Given an undirected weighted graph G, we can efficiently find a cut (S,V \ S)
of minimum weight.

Exercise 17.1. Design an efficient algorithm to solve the minimum cut problem. (Hint in this
footnote.1)

• Maximum Cut. What if we want to find a cut of maximum weight?

• Minimum Spanning Tree. Given an undirected weighted graph G = (V ,E), we know how
to efficiently find a spanning tree of minimum weight. A spanning tree of G is a subgraph
G′ = (V ′,E′)⊆G such that

– G′ is connected and contains no cycles
– V ′ =V .

1 Hint: Turn G into a flow network and find a maximum flow. In Theorem 13.7, we saw how to turn a maximum flow
into a minimum cut.

• Steiner Tree. What if, instead of requiring V ′ = V , we require V ′ = S for some given subset
S ⊆V?

Each of these three variations is NP-hard. The typical attitude towards NP-hard problems is

Don’t expect an efficient algorithm for this problem.

However, I prefer the following more optimistic interpretation:

If you find an efficient algorithm for this problem, you will get $1 million.2

Unlike the pessimistic interpretation, the above statement is 100% factual. The so-called P vs. NP
problem is one of seven important open research questions for which Clay Mathematics Institute is
offering a $1 million prize.3

17.2 Complexity

So far in the course, we have been ignoring the low-level details of the mathematical framework
underlying our analyses. We have relied on the intuitive notion that our ideal computer is “like a
real-world computer, but with infinite memory”; we have not worried about explicitly defining what
a “step” is. The fact of the matter is that there are many reasonable models of computation which
make these notions explicit. Historically the first one was the Turing machine, invented by Alan
Turing, considered by many to be the founding father of computer science. The model we have been
using throughout the course is similar to a Turing machine; the main difference is that a “step” on
our ideal computer closely resembles a processor cycle on a modern computer, whereas the “steps”
of a Turing machine involve sequentially reading and writing to the so-called tape which represents
its memory. For this lecture, you won’t have to go to the trouble of working with a particular model
of computation in full detail; but it is worth noting that such details are important in theoretical
computer science and should not be regarded as a triviality.

In what follows, we will define the complexity classes P and NP. Before doing so, we will need a
couple more definitions:

Definition. A decision problem is a computation problem to which the answer is either “yes” or
“no.” In mathematical language, we can think of a decision problem as a function whose domain is
the set of possible input strings4 and whose range is {0,1} (with 0 meaning “no” and 1 meaning “yes”).

Definition. A complexity class is simply a set of decision problems.

Most of the problems we have considered so far in the course are not decision problems but rather
search problems—they ask not just whether a solution exists, but also what the solution is. Given
a search problem, we can derive decision problems which ask yes-or-no questions about the solution;
for example, we might ask:

2 I should warn you though, most computer scientists believe that it is not possible to find one. (In other words, most
computer scientists believe that P 6=NP.)

3 One of the questions has already been solved, so currently there are six prizes remaining.
4 Strings over what alphabet? A typical choice is {0,1} (i.e., binary); another possible choice is the ASCII alphabet. The

main reason the choice of alphabet matters is that it determines what “an input of size n” is. The number 255 has size 8
in binary, size 1 in ASCII, and size 255 in unary. An algorithm whose running time is linear with respect to a unary input
would be exponential with respect to a binary input.

Lec 17 – pg. 2 of 7

Problem 17.1. Given a graph G and an integer k, is there a spanning tree of size less than k?

For most real-world applications, search problems are much more important than decision prob-
lems. So why do we restrict our attention to decision problems when defining complexity classes?
Here are a few reasons:

• The answer to a decision problem is simple.

• The answer to a decision problem is unique. (A search problem might have multiple correct
answers, e.g., a given graph might have multiple minimum spanning trees.)

• A decision problem which asks about the answer to a search problem is at most as difficult
as the search problem itself. For example, if we can find a minimum spanning tree efficiently,
then we can certainly also solve Problem 17.1 efficiently.

17.2.1 P and NP

The existence of many different models of computation is part of the reason for the following defini-
tion:

Definition. “Efficient” means “polynomial-time.” An algorithm is polynomial-time if there exists
a constant r such that the running time on an input of size n is O (nr). The set of all decision problems
which have polynomial-time solutions is called P.

Polynomial time is the shortest class of running times that is invariant across the vast majority
of reasonable, mainstream models of computation. To see that shorter running times need not be
invariant, consider the following program:

1 Read the first bit of memory
2 Read the nth bit of memory

In our model of computation, which has random access to memory, this would take constant time.
However, in a model of computation with only serial access to memory (such as a Turing machine),
this would take linear time. It is true, though, that any polynomial-time program in our model is
also polynomial-time on a Turing machine, and vice versa.

Search problems have the property that, once a solution is found, it can be verified quickly. This
verifiability is the motivation for the complexity class NP.

Definition. A decision problem P is in NP if there exists a polynomial-time algorithm A(x, y) such
that, for every input x to the problem P,

P(x)= 1 ⇐⇒ there exists some y such that A(x, y)= 1.

The string y is called a witness or certificate; the algorithm A is called a verifier or a nondeter-
ministic algorithm.5

For example, in Problem 17.1, the witness y could be the spanning tree itself—we can certainly
verify in polynomial time that a given object y is a spanning tree of size less than k.

5 The abbrevation NP stands for “nondeterministic polynomial-time.” The reason for this name is as follows. Imagine
receiving x (the input to the problem P) but leaving the choice of y unspecified. The result is a set of possible running
times of A, one for each choice of y. The problem P is in NP if and only if at least one of these possible running times is
bounded by a polynomial p (|x|) in the size of x. (The choice of y can depend on x, but p cannot depend on x.)

Lec 17 – pg. 3 of 7

B

A

Figure 17.1. A Cook reduction of A to B is a program that would run in polynomial time on an oracle machine—that is,
a Turing machine equipped with an oracle for B. If some day we find an efficient algorithm for B, then we can create an
efficient algorithm for A by replacing the oracle with a subroutine.

Proposition 17.2. P⊆NP.

Proof. Given a decision problem P, view P as a function whose domain is the set of strings and whose
range is {0,1}. If P can be computed in polynomial time, then we can just take A(x, y)= P(x). In this
case, the verifier just re-solves the entire problem.

The converse to the above proposition is a famous open problem:

Problem 17.3 (P vs. NP). Is it true that P=NP?

The vast majority of computer scientists believe that P 6= NP, and so the P vs. NP problem is
sometimes called the P 6= NP problem. If it were true that P = NP, then lots of problems that seem
hard would actually be easy: one such example is the algorithm search problem described in §17.3.

17.2.2 Polynomial-time reductions

It is possible to know that one problem is “at least as hard” as another without knowing exactly how
hard each problem is. If problem A can be polynomial-time reduced to problem B, then it stands
to reason B is at least as hard as A. There are two different notions of polynomial-time reduction,
which we now lay out.

Definition. We say that the decision problem A is Karp-reducible to the decision problem B if
there exists a polynomial-time computable function f such that, for every input x,

A(x)= 1 ⇐⇒ B (f (x))= 1.

Definition. Problem A is Cook-reducible to problem B if there exists an algorithm which, given
an oracle6 for B, solves A in polynomial time. (See Figure 17.1.)

Note that a Karp reduction is also a Cook reduction, but not vice versa. Historically, Karp reduc-
tions and Cook reductions correspond to different traditions.

Definition. A problem is NP-hard if every problem in NP can be Cook-reduced to it.

6 An oracle for B is a magical black-box which solves any instance of problem B in one step. A Cook reduction is a
program which is allowed to do any of the normal things a computer program does, and is also allowed to query the oracle.

Lec 17 – pg. 4 of 7

Problems with
efficient solution
(or equivalently,

NP-complete
problems)

Every decision
problem is
NP-hard

Problems with
efficient solution NP-hardNP-complete

P=NP P 6=NP

Figure 17.2. Left: If P=NP, then every decision problem is NP-hard (why?). Right: If P 6=NP.

Definition. A problem is NP-complete if it is both NP-hard and in NP.

Using the notion of NP-completeness, we can make an analogy between NP-hardness and big-O
notation:

O(f (n)) in NP
on the order of at most f (n) at most as hard as an NP-complete problem

Θ(f (n)) NP-complete
tightly on the order of f (n) exactly as hard as any other NP-complete problem

Ω(f (n)) NP-hard
on the order of at least f (n) at least as hard as an NP-complete problem

Showing that a given problem is in NP is relatively straightforward (or at least, it is clear what
the proof should look like): one must give a polynomial-time verifier. By contrast, it is much less clear
how one might show that a given problem is NP-hard. One strategy is to reduce another NP-hard
problem to it. But this strategy only works if one already knows certain problems to be NP-hard; it
could not have been used as the first ever proof that a problem was NP-hard. That first proof was
accomplished by Cook in 1971:

Theorem 17.4 (Cook’s Theorem). 3SAT is NP-complete.

Problem 17.5 (3SAT). Given a set of atomic statements x1, . . . , xn, a literal is either an atom xi or
its negation ¬xi. A clause is the disjunction (“or”) of a finite set of literals. The 3SAT problem asks,
given a propositional formula ϕ(x1, . . . , xn) which is the “and” of finitely many clauses of length 3, does
there exist an assignment of either TRUE or FALSE to each xi which makes ϕ(x1, . . . , xn) evaluate to
TRUE?

For example, one instance of 3SAT asks whether there exists an assignment of x1, . . . , x4 which
makes the proposition

(x1 ∨ x2 ∨¬x3)︸ ︷︷ ︸
clause

∧ (¬x1 ∨ x3 ∨ x4)︸ ︷︷ ︸
clause

∧ (¬x1 ∨¬x2 ∨¬x3)︸ ︷︷ ︸
clause

∧ (x1 ∨ x3 ∨¬x4)︸ ︷︷ ︸
clause

.

evaluate to TRUE. The answer to this instance happens to be “yes,” as shown by the assignment

x2 7→ TRUE, x1, x3, x4 7→ FALSE.

Lec 17 – pg. 5 of 7

17.3 Example: Algorithm Search

In this section, we solve an algorithmic problem whose output is itself an algorithm:

Problem 17.6. Given an algorithmic problem P and a function T(n), find an algorithm which runs
in time at most T(n), if such an algorithm exists. Output not just a description of the algorithm, but
also a proof of correctness and running time analysis.

Proposition 17.7. There exists a “meta-algorithm” which solves Problem 17.6 (but runs forever if no
algorithm exists). If P=NP, then the running time of this meta-algorithm is polynomial in the size of
the shortest possible output.

The formats of both the input and the output of this algorithm deserve some explanation. By “an
algorithmic problem,” we mean a mathematical description of the relationship between the input
and the output. For example, we could express the notion of “a flow with magnitude at least k” in
symbols as

∀u,v ∈V 0≤ f (u,v)≤ c(u,v)

∀u ∈V \{s, t}
∑
v∈V

f (u,v)= ∑
v∈V

f (v,u)

∑
v∈V

f (s,v)− ∑
v∈V

f (v, s)≥ k

.

In the case of a decision problem, this would be more along the lines of{
1 if there exists f satisfying the above
0 otherwise.

Regarding the output of our meta-algorithm, we need a format for “a description of the algo-
rithm.” One possibility is a text file containing the source code of an implementation in a particular
programming language. Next, we need a format for “a proof of correctness and running time analy-
sis.” For this we appeal to a machine-checkable proof language of the sort used by theorem-checking
software. One such software suite is Coq.7 If you’ve never seen Coq before, I suggest you check it
out!

The key to the proof of Proposition 17.7 is to consider the following problem:

Problem 17.8. Given an algorithmic problem P, a function T(n) and an integer k, does there exist
a solution to Problem 17.6 in which the output has length at most k?

Problem 17.8 is in NP, so if P=NP then there exists a polynomial-time algorithm for it.

Proof of Proposition 17.7. Consider the following search problem:

Problem 17.9. Given an algorithmic problem P, a function T(n), an integer k, and a prefix string s,
does there exist a solution to Problem 17.8 in which the output starts with s?

7 http://coq.inria.fr/

Lec 17 – pg. 6 of 7

http://coq.inria.fr/

Problem 17.9 is in NP, so if P = NP then there exists a polynomial-time algorithm for it. Thus, if
we let |P| denote the length of the description of P, |T| the length of the definition of the function
T, and |s| the length of s, then there exist constants a,b, c,d such that Problem 17.9 has a solution
A(P,T,k, s) which runs in time

O
(∣∣P∣∣a ∣∣T∣∣b kc ∣∣s∣∣d

)
.

We can use this algorithm to solve Problem 17.8 by probing longer and longer prefixes s. For example,
supposing we use the 26-letter alphabet A, . . . , Z for inputs, we would proceed as follows:

• Run A(P,T,k,A). If the answer is 0, then run A(P,T,k,B). Proceed in this way until you find a
prefix which returns 1. If all 26 letters return 0, then the answer to Problem 17.8 is “no.”

• Otherwise, let’s say for the sake of a concrete example that A(P,T,k,F)= 1. Then, run

A(P,T,k,FA), A(P,T,k,FB), etc.,

until you find a two-letter prefix that returns 1.
• Proceeding in this way, the prefix s will eventually become the answer to Problem 17.8.

The above procedure solves Problem 17.8. Because the length of s ranges from 1 to at most k, the
running time is

O
(
26

∣∣P∣∣a ∣∣T∣∣b kc1d +26
∣∣P∣∣a ∣∣T∣∣b kc2d +·· ·+26

∣∣P∣∣a ∣∣T∣∣b kckd
)

=O
(∣∣P∣∣a ∣∣T∣∣b kc

(
1d +2d +·· ·+kd

))
=O

(∣∣P∣∣a ∣∣T∣∣b kckd+1
)

=O
(∣∣P∣∣a ∣∣T∣∣b kc+d+1

)
.

Thus, we have done more than just show that Problem 17.8 is in P. We have shown that, for some
constants α,β,γ, there exists a solution to Problem 17.8 which runs in time O

(|P|α |T|β kγ
)

and also
returns the full algorithm-and-proofs, not just 0 or 1.

To conclude the proof, our meta-algorithm is to run the above procedure for k = 1,2,3, If the
shortest possible algorithm-and-proofs has length `, then the running time of the meta-algorithm is

O
(∣∣P∣∣α ∣∣T∣∣β1γ+ ∣∣P∣∣α ∣∣T∣∣β2γ+·· ·+ ∣∣P∣∣α ∣∣T∣∣β`γ)=O

(∣∣P∣∣α ∣∣T∣∣β`γ+1
)
.

Lec 17 – pg. 7 of 7

Lecture 18

Polynomial-Time Approximations
Supplemental reading in CLRS: Chapter 35 except §35.4

If you try to design algorithms in the real world, it is inevitable that you will come across NP-hard
problems. So what should you do?

1. Maybe the problem you want to solve is actually less general than the NP-hard problem.

• Perhaps the input satisfies certain properties (bounded degree, planarity or other geomet-
ric structure, density/sparsity. . .)

• Remember, if you are able to reduce your problem to an NP-hard problem, that doesn’t
mean your problem is NP-hard—it’s the other way around!

2. Maybe you can settle for an approximation.

3. Maybe an exponential algorithm is not so bad.

• There might be an O (cn) algorithm with c ≈ 1.

In this lecture we will focus on item 2: approximation algorithms. As the name suggests, an
approximation algorithm is supposed to return an answer that is close to the correct answer.
There are several types of approximations one might consider, each based on a different notion of
closeness.

Definition. Suppose A is an algorithm for the optimization problem Π. (So the answer to Π is a
number which we are trying to maximize or minimize, e.g., the weight of a spanning tree.) Given
input x, we denote the output of A by A(x), and the optimal answer by Π(x). The following are senses
in which A can be an “approximation algorithm” to the problem Π:

• The most common type of approximation is multiplicative. For a positive number α ∈R (which
may depend on the input), we say that A is a multiplicative α-approximation (or simply an
α-approximation) to Π if, for every input x,{

αΠ(x) ≤ A(x) ≤ Π(x) if Π is a maximization problem
Π(x) ≤ A(x) ≤ αΠ(x) if Π is a minimization problem

}
.

Of course, we must have 0 < α ≤ 1 for a maximization problem and α ≥ 1 for a minimization
problem. If someone talks about a “2-approximation” to a maximization problem, they are
probably referring to what here would be called a 1

2 -approximation.

• For a positive number β ∈ R, we say that A is a additive β-approximation to Π if, for every
input x,

Π(x)−β ≤ A(x) ≤ Π(x)+β.

• There are lots of other possibilities.1 There is no need to worry about memorizing different
definitions of approximation. When someone talks about an “approximation,” it is their job to
define precisely in what way it approximates the answer.

In this lecture we will see approximation algorithms for three NP-hard problems:

Problem Approximation factor
Vertex Cover 2
Set Cover lnn+1 (where n is the total number of elements)
Partition 1+ε for any given parameter ε> 0

Note that the (1+ε)-approximation algorithm to Partition is a so-called polynomial-time approxi-
mation scheme (PTAS). Given a parameter ε> 0, the PTAS generates a polynomial-time algorithm
which approximates the Partition problem to a factor of 1+ ε. Naturally, the polynomials will get
larger as we decrease ε, since we are asking for a better approximation.

The approximations to Vertex Cover and Set Cover in this lecture are conjectured to be optimal, in
the sense that giving a better approximation would be NP-hard.2,3 There exist better approximations
to Partition, though.4

18.1 Vertex Cover

NP-hard problem (Vertex Cover). Given an undirected graph G = (V ,E), a vertex cover of G is a
subset V ′ ⊆ V such that, for every edge (u,v) ∈ E, we have either u ∈ V ′ or v ∈ V ′. The Vertex Cover
problem asks, given a graph G, what is the smallest possible vertex cover?

Approximation Algorithm:
1 V ′ ←;
2 while E is nonempty do
3 Pick any (u,v) ∈ E
4 V ′ ←V ′∪ {u,v}
5 Remove from E all edges touching u or v
6 Remove u and v from V

1 As a final example, we might combine multiplicative and additive approximations to define an “α,β–affine-linear
approximation,” in which

α−1Π(x)−β ≤ A(x) ≤ αΠ(x)+β
for all inputs x, where α≥ 1.

2 If the so-called “Unique Games Conjecture” holds, then it is NP-hard to α-approximate Vertex Cover for any constant
α< 2. It was recently proved that it is NP-hard to (c lnn)-approximate Set Cover for any constant c < 1.

3 Proofs of such optimality typically use the probabilistically checkable proofs (PCP) theorem. The PCP theorem states
that a problem is in NP if and only if solutions to the problem can be verified (with high probability) by a certain kind of
randomized algorithm.

4 There exists a PTAS for Partition in which the running time depends only polynomially on 1/ε; this sort of PTAS
is known as a fully polynomial-time approximation scheme (FPTAS). As a consequence, for any given integer r
there exists a polynomial-time

(
1+1/nr)-approximation to Partition. Moreover, there exists a pseudo-polynomial–time

algorithm which solves the Partition problem exactly. A pseudo-polynomial–time algorithm is one whose running time
is polynomial in the size of the input and the numeric value of the output (in this case, the “cost” of the optimal partition).

Lec 18 – pg. 2 of 6

Figure 18.1. Example run of the approximation algorithm for Vertex Cover. The edges chosen by line 3 are highlighted in
orange and the chosen vertices are circled. The algorithm returns a cover of size 4, whereas the optimal covering has size
3.

Figure 18.2. The Set Cover problem gives us a covering of a universe set U and asks us to find a small subcovering. How
many of the sets in this picture are required to cover the array of dots?

It is clear that this algorithm always returns a vertex cover. Moreover, if G is given in the
adjacency-list format, then the algorithm runs in linear time.

Claim. The cover returned by this algorithm is at most twice the size of an optimal cover.

Proof. Let E′ denote the set of edges that get chosen by line 3. Notice that no two edges in E′ share an
endpoint. Thus, every vertex cover must contain at least one endpoint of each edge in E′. Meanwhile,
the output of our algorithm consists precisely of the two endpoints of each edge in E′.

18.2 Set Cover

NP-hard problem (Set Cover). Given a set U and subsets S1, . . . ,Sm ⊆U such that
⋃m

i=1 Si =U , find
indices I ⊆ {1, . . . ,m}, with |I| minimal, such that⋃

i∈I
Si =U .

Approximation Algorithm:
1 while U is not empty do
2 Pick the largest subset Si
3 Remove all elements of Si from U and from the other subsets
4 return a list of the sets we chose

Lec 18 – pg. 3 of 6

The running time for a good implementation of this algorithm is

O

(
m∑

i=1

∣∣Si
∣∣)

(see Exercise 35.3-3 of CLRS).

Claim. The above algorithm gives a (ln |U |+1)-approximation.

Proof. Assume the optimal cover has size k. Let Ui denote the value of U (our universe set) after i
iterations of the loop. Clearly, for all i, the set Ui can be covered by k sets. So one of these k sets
must contain at least |Ui |

k elements, and therefore the set chosen on line 2 has size at least |Ui |
k . Thus,

we have ∣∣Ui+1
∣∣≤ (

1− 1
k
)∣∣Ui

∣∣
for all i. This implies that ∣∣Ui

∣∣≤ (
1− 1

k
)i ∣∣U0

∣∣
for all i. Since 1− 1

k ≤ e−1/k, it follows that∣∣Ui
∣∣≤ e−i/k ∣∣U0

∣∣ .

In particular, letting n = |U0|, we have∣∣Uk(lnn+1)
∣∣< 1 =⇒ ∣∣Uk(lnn+1)

∣∣= 0.

Thus, the loop exits after at most k(lnn+1) iterations.

18.3 Partition

NP-hard problem (Partition). Given a sorted list of numbers s1 ≥ s2 ≥ ·· · ≥ sn, partition the indices
{1, . . . ,n} into two sets {1, . . . ,n}= AtB such that the “cost”

max

{∑
i∈A

si,
∑
i∈B

si

}

is minimized.

Example. For the partition
12 10 9 7 4 3 2

it is optimal to take A = {1,2,7} and B = {3,4,5,6}, so that∑
i∈A

si = 24 and
∑
i∈B

si = 23.

Lec 18 – pg. 4 of 6

Approximation Algorithm:
1 B ε is a parameter: for a given ε, the running time is polynomial in n when we view ε

as a constant
2 m ←b1/εc
3 By brute force, find an optimal partition {1, . . . ,m}= A′tB′ for s1, . . . , sm
4 A ← A′

5 B ← B′

6 for i ← m+1 to n do
7 if

∑
j∈A s j ≤∑

j∈B s j then
8 A ← A∪ {i}
9 else

10 B ← B∪ {i}
11 return 〈A,B〉

Note that this algorithm always returns a partition. The running time of a reasonable implementa-
tion is5

Θ
(
2m +n

)=Θ(n).

Claim. The above algorithm gives a (1+ε)-approximation.

Proof. Without loss of generality,6 assume ∑
i∈A′

si ≥
∑
i∈B′

si.

Let

H = 1
2

n∑
i=1

si.

Notice that solving the partition problem amounts to finding a set A ⊆ {1, . . . ,n} such that
∑

i∈A si is
as close to H as possible. Moreover, since

∑
i∈A si +∑

i∈B si = 2H, we have

max

{∑
i∈A

si,
∑
i∈B

si

}
= H+ D

2
,

where

D =
∣∣∣∣∣∑i∈A

si −
∑
i∈B

si

∣∣∣∣∣ .

• Case 1: ∑
i∈A′

si > H.

In that case, the condition on line 7 is always false, seeing as
∑

i∈A′ si > ∑
i∉A′ si. So A = A′

and B = {1, . . . ,n} \ A′. In fact, approximation aside, I claim that this must be the optimal
partition. To see this, first note that

∑
i∈B si < H < ∑

i∈A′ si. If there were a better partition

5 Of course, the dependence on ε is horrible. In a practical context, we would have to choose ε small enough to get a
useful approximation but big enough that our algorithm finishes in a reasonable amount of time. This would be helped if
we replaced line 3 with a more efficient subroutine.

6 We can have our algorithm check whether this equation holds, and switch the roles of A′ and B′ if it doesn’t.

Lec 18 – pg. 5 of 6

{1, . . . ,n}= A∗tB∗, then taking A′′ = A∗∩{1, . . . ,m} and B′′ = B∩{1, . . . ,m} would give a partition
of {1, . . . ,m} in which

max

{ ∑
i∈A′′

si,
∑

i∈B′′
si

}
< ∑

i∈A′
si,

contradicting the brute-force solution on line 3.

• Case 2: ∑
i∈A′

si ≤ H.

Note that, if A ever gets enlarged (i.e., if the condition on line 7 is ever true), then we have
D ≤ si (where i is as in line 6). And if A is never enlarged, then it must be the case that

∑
i∈B si

never exceeded
∑

i∈A si until the very last iteration of lines 6–10, in which sn is added to B. In
that case we have D ≤ sn (why?). Either way, we must have

D ≤ sm+1

and consequently

max

{∑
i∈A

si,
∑
i∈B

si

}
= H+ D

2
≤ H+ 1

2 sm+1.

Thus,

cost of the algorithm’s output
optimal cost

≤ cost of the algorithm’s output
H

≤ H+ 1
2 sm+1

H

= 1+
1
2 sm+1

H

= 1+
1
2 sm+1

1
2
∑m+1

i=1 si

= 1+ sm+1∑m+1
i=1 si

≤ 1+ sm+1

(m+1) sm+1

= 1+ 1
m+1

< 1+ε.

Lec 18 – pg. 6 of 6

Lecture 19

Compression and Huffman Coding
Supplemental reading in CLRS: Section 16.3

19.1 Compression

As you probably know at this point in your career, compression is a tool used to facilitate storing
large data sets. There are two different sorts of goals one might hope to achieve with compression:

• Maximize ease of access, manipulation and processing
• Minimize size—especially important when storage or transmission is expensive.

Naturally, these two objectives are often at odds with each other. In this lecture we will focus on the
second objective.

In general, data cannot be compressed. For example, we cannot losslessly represent all m-bit
strings using (m−1)-bit strings, since there are 2m possible m-bit strings and only 2m−1 possible
(m−1)-bit strings. So when is compression possible?

• If only a relatively small number of the possible m-bit strings appear, compression is possible.

• If the same “long” substring appears repeatedly, we could represent it by a “short” string.

• If we relax the requirement that every string have a unique representation, then compression
might work but make “similar” strings identical.

19.1.1 Lossless and lossy

Initial
Document

D

Compress−−−−−−−−−−−→
Compressed
Document

C

Decompress−−−−−−−−−−−−→
Reconstituted

Document
D′

In lossless compression, we require that D = D′. This means that the original document can always
be recovered exactly from the compressed document. Examples include:

• Huffman coding
• Lempel–Ziv (used in gif images)

In lossy compression, D′ is close enough but not necessarily identical to D. Examples include:

• mp3 (audio)
• jpg (images)
• mpg (videos)

19.1.2 Adaptive and non-adaptive

Compression algorithms can be either adaptive or non-adaptive.

• Non-adaptive – assumes prior knowledge of the data (e.g., character frequncies).

• Adaptive – assumes no knowledge of the data, but builds such knowledge.

19.1.3 Framework

For the remainder of this lecture, we consider the following problem:

Input: Known alphabet (e.g., English letters a,b,c,. . .)
Sequence of characters from the known alphabet (e.g., “helloworld”)

We are looking for a binary code—a way to represent each character as a binary string
(each such binary string is called a codeword).

Output: Concatenated string of codewords representing the given string of characters.

19.1.4 Fixed-length code

In a fixed-length code, all codewords have the same length. For example, if our alphabet is{
a, b, c, d, e, f, g, h

}
,

then we can represent each of the 8 characters as a 3-bit string, such as
a b c d e f g h
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

000 001 010 011 100 101 110 111

 .

Such a code is easy to encode and decode:

baba= 001
∣∣000

∣∣001
∣∣000

Just as in DNA encoding and decoding, it is important to keep track of register: the deletion or inser-
tion of a single bit into the binary sequence will cause a frame shift, corrupting all later characters
in the reconstituted document.

19.1.5 Run-length encoding

Imagine you are given the string of bits

000000︸ ︷︷ ︸
6

111︸︷︷︸
3

000︸︷︷︸
3

11︸︷︷︸
2

00000︸ ︷︷ ︸
5

.

Rather than create codewords, we could simply store this string of bits as the sequence 〈6,3,3,2,5〉.
This strategy is used in fax-machine transmission, and also in jpeg.

Lec 19 – pg. 2 of 7

19.1.6 Variable-length code

If we allow our codewords to have different lengths, then there is an obvious strategy:

Use shorter codewords for more frequent characters; use longer codewords for rarer char-
acters.

For example, consider a six-letter alphabet with the following character frequencies:

Character a b c d e f
Frequency 45% 13% 12% 16% 9% 5%
Codeword 0 101 100 111 1101 1100

(1 bit) (3 bits) (4 bits)

Using this code, the average number of bits used to encode 100 characters is

(45)1+ (13)3+ (12)3+ (16)3+ (9)4+ (5)4= 224.

Compare this to a 3-bit fixed-length code, in which it would take 300 bits to encode 100 characters.
Notice that I didn’t use 1, 01, or 10 as codewords, even though they would have made the encoding

shorter. The reason for this is that we want our code to be uniquely readable: it should never
be ambiguous as to how to decode a compressed document.1 One standard way to make uniquely
readable codes is to use prefix coding: no codeword occurs as a prefix (initial substring) of another
codeword. This allows unambiguous, linear-time decoding:

101
b

111
d

1100
f

0
a

100
c

1101
e

Prefix coding means that we can draw our code as a binary tree, with the leaves representing code-
words (see Figure 19.1).

19.2 The Huffman Algorithm

The problem of §19.1.3 amounts to the following. We are given an alphabet {ai} with frequencies{
f (ai)

}
. We wish to find a set of binary codewords C = {

c(a1), . . . , c(an)
}

such that the average number
of bits used to represent the data is minimized:

B(C)=
n∑

i=1
f (ai)

∣∣c(ai)
∣∣ .

Equivalently, if we represent our code as a tree T with leaf nodes a1, . . . ,an, then we want to minimize

B(T)=
n∑

i=1
f (ai) d(ai),

where d(ai) is the depth of ai, which is also equal to the number of bits in the codeword for ai.
The following algorithm, due to Huffman, creates an optimal prefix tree for a given set of char-

acters C = {ai}. Actually, the Huffman code is optimal among all uniquely readable codes, though we
don’t show it here.

1 For an example of non-unique readibility, suppose we had assigned to “d” the codeword 01 rather than 111. Then the
string 0101 could be decoded as either “ab” or “dd.”

Lec 19 – pg. 3 of 7

a= 0

c= 100 b= 101 d= 111

f= 1100 e= 1101

0 1

0 1

0 1 0 1

0 1

100%

45% 55%

25% 30%

12% 13% 14% 16%

5% 9%

Figure 19.1. Representation of a binary code as a binary tree.

Algorithm: HUFFMAN-TREE(C)
1 n ←|C|
2 Q ← C B a min–priority queue keyed by frequency
3 for i ← 1 to n−1 do
4 Allocate new node z
5 z.left← x ← EXTRACT-MIN(Q)
6 z.right← y← EXTRACT-MIN(Q)
7 z.freq← x.freq+ y.freq
8 Q.INSERT(z)
9 B Return the root of the tree

10 return EXTRACT-MIN(Q)

19.2.1 Running time

Initially, we build a minqueue Q with n elements. Next, the main loop runs n−1 times, with each
iteration consisting of two EXTRACT-MIN operations and one INSERT operation. Finally, we call
EXTRACT-MIN one last time; at this point Q has only one element left. Thus, the running time for Q
a binary minheap would be

Θ (n)︸ ︷︷ ︸
BUILD-QUEUE

+ Θ (n lgn)︸ ︷︷ ︸
Loop

+ O(1)︸︷︷︸
EXTRACT-MIN

=Θ (n lgn) .

If instead we use a van Emde Boas structure for Q, we achieve the running time

Θ (n lglgn) .

Lec 19 – pg. 4 of 7

f: 5% e: 9% c: 12% b: 13% d: 16% a: 45%

c: 12% b: 13% 14%

f: 5% e: 9%

d: 16% a: 45%

14%

f: 5% e: 9%

d: 16% 25%

c: 12% b: 13%

a: 45%

25%

c: 12% b: 13%

30%

14%

f: 5% e: 9%

d: 16%

a: 45%

a: 45% 55%

25%

c: 12% b: 13%

30%

14%

f: 5% e: 9%

d: 16%

100%

a: 45% 55%

25%

c: 12% b: 13%

30%

14%

f: 5% e: 9%

d: 16%

Figure 19.2. Example run of the Huffman algorithm. The six rows represent the state of the graph each of the six times
line 3 is executed.

Lec 19 – pg. 5 of 7

y

a b

x

y

x b

a

b

x y

a

T T ′ T ′′

Figure 19.3. Illustration of the proof of Lemma 19.1.

19.2.2 Correctness

The Huffman algorithm is a greedy algorithm: at each stage, we merge together the two nodes of
lowest frequency.

Lemma 19.1 (CLRS Lemma 16.2). Suppose x, y are the two most infrequent characters of C (with ties
broken arbitrarily). Then there exists an optimal prefix code for C with codewords for x and y of the
same length and differing only in the last bit. (In other words, there exists an optimal tree in which x
and y are siblings.)

Proof. Let T be an optimal tree. Let a be a leaf of maximal depth. If a has no sibling, then deleting
a from the tree (and using a’s parent to represent the character formerly represented by a) produces
a better code, contradicting optimality. So a has a sibling b, and since a has maximum depth, b is a
leaf. So a and b are nodes of maximal depth, and without loss of generality we can say a.freq≤ b.freq.

Also without loss of generality, say x.freq ≤ y.freq. Switch the leaves a and x; call the resulting
tree T ′ (see Figure 19.3). Then B(T ′) ≤ B(T), seeing as x.freq ≤ a.freq. So it must be the case that
x.freq= a.freq and T ′ is optimal as well. Similarly, switch the leaves b and y in T ′; call the resulting
tree T ′′. It must be the case that y.freq = b.freq and T ′′ is optimal. In T ′′, the leaves x and y are
siblings.

Lemma 19.2 (CLRS Lemma 16.3). Given an alphabet C, let:

• x, y be the two most infrequent characters in C (with ties broken arbitrarily)
• z be a new symbol, with z.freq← x.freq+ y.freq
• C′ = (

C \{x, y}
)∪ {z}

• T ′ be an optimal tree for C′.

Then T is an optimal tree for C, where T is a copy of T ′ in which the leaf for z has been replaced by
an internal node having x and y as children.

Proof. Suppose T is not optimal. By Lemma 19.1, let T be an optimal tree for C in which x and y
are siblings. Delete x and y from T , and label their parent (now a leaf) with the symbol z. Call the

Lec 19 – pg. 6 of 7

resulting tree T ′. Notice that T ′ is a tree for C′, and furthermore,

B(T ′)= B(T)− x.freq− y.freq

< B(T)− x.freq− y.freq

= B(T ′).

This contradicts the optimality of T ′. We conclude that T must have been optimal in the first place.

Corollary 19.3. The Huffman algorithm is correct.

Proof sketch. Let T be the tree produced by the Huffman algorithm. Construct a new tree U as
follows. Initially, let U consist of just one vertex. Then, perform a series of transformations on U .
In each transformation, append two children to what was previously a leaf node. In this way, we
can eventually transform U into T. Moreover, Lemma 19.2 guarantees that, at each stage, U is an
optimal tree for the alphabet formed by its leaves.

Lec 19 – pg. 7 of 7

Lecture 20

Sublinear-Time Algorithms
Supplemental reading in CLRS: None

If we settle for approximations, we can sometimes get much more efficient algorithms. In Lecture 18,
we saw polynomial-time approximations to a few NP-hard problems. In what follows, we will concern
ourselves with sublinear-time (that is, o(n)-time) approximation algorithms to problems whose exact
solutions require at least linear time. We will see two examples:

1. Estimating the number of connected components of a graph G

2. Estimating the size of a minimum spanning tree of a graph G, given that all of G’s edge weights
are integers between 1 and z for some given constant z.1

20.1 Estimating the Number of Connected Components

In this section we exhibit a polynomial-time approximation scheme for counting the connected com-
ponents of a graph. Given a graph G (in adjacency-list format) with n vertices and parameters
ε,δ> 0, we exhibit a randomized approximation algorithm which, with probability 1−δ, provides an
additive εn-approximation. That is,

Pr
[∣∣∣∣(output of

algorithm

)
−

(
correct number of

connected components

)∣∣∣∣> εn]
≤ δ. (20.1)

The running time of the algorithm is Poly(1/ε, lg(1/δ)).2

Given a vertex v, let mv denote the number of vertices in v’s connected component. Take a
moment to convince yourself of the following lemma:

Lemma 20.1. The number of connected components in G is

∑
v∈V

1
mv

.

1 The archaic Greek letter z (digamma) stood for the sound /w/. Although digamma fell out of use by the time of
Classical Greek, it is still occasionally used in Greek numerals (which are used in Greece in approximately the same way
that we use Roman numerals) to represent the number 6.

2 This notation means that the running time is polynomial in 1/ε and lg(1/δ); i.e., there exist positive constants r1, r2
such that the running time of the algorithm is O

((
1
ε

)r1
(
lg 1

δ

)r2
)
.

The idea of the algorithm is to approximate mv by a quantity m̃v which can be computed in constant
time. Then, for a set K of k randomly chosen vertices, we have(

number of connected
components

)
= ∑

v∈V

1
mv

≈ ∑
v∈V

1
m̃v

≈ n
k

∑
v∈K

1
m̃v

.

Algorithm: APPROX-#CC(G,ε,δ)

1 For some k =Θ
(

1
ε2 lg 1

δ

)
, pick k vertices v1, . . . ,vk at random

2 for i ← 1 to k do
3 Set

m̃vi ←min
{

mvi ,
2
ε

}
B computed using breadth-first search

4 return the value of
n
k

k∑
i=1

1
m̃vi

The key line to examine is line 3.

Exercise 20.1.

(i) The running time of a breadth-first search depends on the size of the graph. So how can there
be a bound on the running time of line 3 that doesn’t depend on n?

(ii) What is the running time of line 3? Show that the total running time of the algorithm is

O
(

1
ε2 k

)
=O

(
1
ε4 lg 1

δ

)
.

20.1.1 Correctness

We will prove (20.1) in two steps. First we will prove∣∣∣∣∣ ∑
v∈V

1
m̃v

− ∑
v∈V

1
mv

∣∣∣∣∣ ≤ εn
2

; (20.2)

then we will prove

Pr

[∣∣∣∣∣n
k

k∑
i=1

1
m̃vi

− ∑
v∈V

1
m̃v

∣∣∣∣∣ ≥ εn
2

]
≤ δ. (20.3)

Combining these two, we obtain∣∣∣∣∣n
k

k∑
i=1

1
m̃vi

− ∑
v∈V

1
mv

∣∣∣∣∣
≤

∣∣∣∣∣n
k

k∑
i=1

1
m̃vi

− ∑
v∈V

1
m̃v

∣∣∣∣∣ +
∣∣∣∣∣ ∑
v∈V

1
m̃v

− ∑
v∈V

1
mv

∣∣∣∣∣ ,

and with probability 1−δ,

· · · ≤ εn
2

+ εn
2

= εn,

which is (20.1).

Lec 20 – pg. 2 of 6

Proof of (20.2). This follows from the fact that

0 ≤ 1
m̃v

− 1
mv

< 1
m̃v

≤ 1(2
ε

) = ε

2

for each v ∈V .

Proof of (20.3). We use Hoeffding’s inequality, a relative of the Chernoff bound which is stated as
follows. Given independent real-valued random variables X1, . . . , Xk, let Y = 1

k
∑k

i=1 X i. Suppose
a,b ∈R are constants such that always3 a ≤ X i ≤ b for each i. Then Hoeffding’s inequality states that
for any η> 0, we have

Pr
[∣∣∣Y −E [Y]

∣∣∣≥ η] ≤ 2exp
(−2kη2

(b−a)2

)
.

We take X i = 1
m̃vi

, which gives E [Y]= 1
n

∑
v∈V

1
m̃v

; we take a = 0 and b = 1 and η= ε/2. Then Hoeffding’s
equality becomes

Pr

[∣∣∣∣∣1
k

k∑
i=1

1
m̃vi

− 1
n

∑
v∈V

1
m̃v

∣∣∣∣∣ ≥ ε

2

]
≤ 2exp

(
−2k

(
ε2

4

))
.

Thus, for a suitable k =Θ
(

lg(1/δ)
ε2

)
(namely, k = 2ln(2/δ)

ε2), we have

· · · ≤ 2exp
(− ln 2

δ

) = δ.

This is equivalent to (20.3).

20.2 Estimating the Size of a Minimum Spanning Tree

In this section, we exhibit an algorithm which solves the following problem:

Input: An undirected weighted graph G = (V ,E,w) with n vertices

all edge weights are integers in the set {1, . . . ,z}, where z≥ 2 is a given parameter
all vertices have degree at most d
given in adjacency-list format

Parameters ε,δ> 0

Output: A number t such that, with probability at least 1−δ,

(1−ε)w∗ ≤ t ≤ (1+ε)w∗,

where w∗ is the weight of a minimum spanning tree.

The running time of the algorithm is Poly
(1
ε
, lg 1

δ
, z, d

)
.

3 Or at least, with probability 1.

Lec 20 – pg. 3 of 6

20.2.1 Motivation

Imagine running Kruskal’s MST algorithm on a graph G = (V ,E,w) whose edge weights are all
integers from the set {1, . . . ,z}. The procedure would look like this:

1 T ←;
2 for i ← 1 to z do
3 while there exists an edge of weight i which has its endpoints in different

connected components do
4 add the edge to T
5 if |T| = n−1 then
6 return T

The number of connected components in T starts at n and decreases by 1 every time we add an edge.
This leads to the following insight, which will be crucial for us:

Observation 20.2. Let G(i) = (V ,E(i)), where E(i) = {e ∈ E : w(e)≤ i}, and let T(i) be the restriction
of T to G(i). Let c(i) be the number of connected components in G(i). Lines 3–6 (plus induction)
guarantee that the number of connected components in T(i) is also c(i). Moreover, the number of
connected components in T(i) is equal to

n−
(
edges in T(i)

)
(this is true for any forest with n vertices). Thus, we have(

edges in T with
weight at most i

)
=

(
edges in T(i)

)
= n− c(i).

Observation 20.2 plus some clever algebra lead to the following lemma:

Lemma 20.3. With G(i), T(i) and c(i) as above, we have

w(T)= n−z+
z−1∑
i=1

c(i).

Proof. Let

A i =
(
edges it T with
weight exactly i

)
and Bi =

(
edges in T with
weight at least i

)
.

Then

Bi = |T|−
(

edges in T with
weight at most i−1

)
= (n−1)−

(
n− c(i−1)

)
= c(i−1) −1.

Now, the clever algebra trick is to notice that

w(T) =
z∑

i=1
i · A i =

z∑
i=1

Bi.

Lec 20 – pg. 4 of 6

(Make sure you see how this works.) Completing the computation,

w(T)=
z∑

i=1
Bi

=
z∑

i=1

(
c(i−1) −1

)

=−z+
z−1∑
i=0

c(i)

= n−z+
z−1∑
i=1

c(i).

Algorithm: MST-APPROX(G,ε,δ,z,d)
1 for i ← 1 to z−1 do
2 B Let G(i) denote the subgraph of G consisting of those edges whose weight is at

most i
3 ĉ(i) ← APPROX-#CC

(
G(i), ε

2z , δ
z

)
4 return the value of

|G.V |−z+
z−1∑
i=1

ĉ(i)

The tricky part here is that we cannot compute G(i) and store it in memory, as that would take
Ω (n+G.E) time. So how does line 3 work? We must modify APPROX-#CC to so as to ignore any
edges of weight greater than i. However, this modification forces us to reconsider the running time
of APPROX-#CC, and is the reason for the dependence on d.

Exercise 20.2.

(i) Suppose we modify APPROX-#CC so as to ignore any edges of weight greater than i. Use an
example to show that, if we treat ε, δ and z as constants but do not allow any dependence on
d, then the breadth-first search on line 3 of APPROX-#CC has worst-case running time Ω(n).
(Hint: Every time we ignore an edge, it takes one step.)

(ii) Despite part (i), we can put a good bound on the running time of the modified version of
APPROX-#CC if we allow the bound to depend on d. Show that the modified breadth-first
search in line 3 of APPROX-#CC (with ε

2z and δ
z standing in for what in APPROX-#CC are

denoted ε and δ) takes O
(

dz
ε

)
time, and thus that the total running time of APPROX-MST is

O
(

dz4

ε3 lg z
δ

)
.

20.2.2 Correctness

The return value of APPROX-MST is

n−z+
z−1∑
i=1

ĉ(i),

Lec 20 – pg. 5 of 6

while in §20.2.1 we showed that

w∗ = n−z+
z−1∑
i=1

c(i).

Thus, to show correctness, we need to show that

Pr

[∣∣∣∣∣z−1∑
i=1

c(i) −
z−1∑
i=1

ĉ(i)

∣∣∣∣∣ > εw∗
]

≤ δ.

By the union bound, it suffices to show that

Pr
[∣∣∣c(i) − ĉ(i)

∣∣∣ > ε

z−1
w∗

]
≤ δ

z−1

for each i. Now, because each edge has weight at least 1, we know that w∗ ≥ n−1. So it suffices to
show that

Pr
[∣∣∣c(i) − ĉ(i)

∣∣∣ > ε

z−1
(n−1)

]
≤ δ

z−1
.

The correctness of APPROX-#CC guarantees that

Pr
[∣∣∣c(i) − ĉ(i)

∣∣∣ > ε

2z
n

]
≤ δ

z
,

so we are fine as long as
ε

z−1
(n−1) ≥ ε

2z
n,

which holds whenever n > 1. That is good enough.

Lec 20 – pg. 6 of 6

Lecture 21

Clustering
Supplemental reading in CLRS: None

Clustering is the process of grouping objects based on similarity as quantified by a metric. Each
object should be similar to the other objects in its cluster, and somewhat different from the objects in
other clusters.

Clustering is extremely useful; it is of fundamental importance in data analysis. Some applica-
tions include

• Scientific data from a wide range of fields
• Medical data, e.g., for patient diagnosis
• Identifying patterns of consumer behavior
• Categorizing music, movies, images, genes, etc.

Clustering is conceptually related to

• Unsupervised learning – the notion that objects which produce similar measurements may
share some intrinsic property.

• Dimensionality reduction.

Depending on the application, we may have to carefully choose which metric to use out of many
possible metrics. Or, we may have to apply a transformation to our data before we can get good
clustering. But ultimately, the (admittedly vague) problem we are trying to solve is this:

Figure 21.1. Left: Some data sets are relatively straightforward to cluster; most people would cluster these objects in
basically the same way. Right: It’s not always so easy, though. How would you make two clusters from this data set?

Input: Instance data D = {~x1,~x2, . . . ,~xn}
Desired number of clusters, k
Distance metric1 d(~xi,~x j)

Output: Assignment of instance data D to clusters C = {C1, . . . ,Ck}.

21.1 Hierarchical Agglomerative Clustering

The main idea of hierarchical agglomerative clustering is to build up a graph representing the cluster
set as follows:

• Initially, each object (represented as a vertex) is in its own cluster.
• Each time an edge is added, two clusters are merged together.
• Stops when we have k clusters.

The following is an implementation of hierarchical agglomerative clustering known as single-
linkage clustering.

Algorithm: SINGLE-LINKAGE-CLUSTER(D,d,k)

1. Let H be an undirected graph with one vertex for each object and no edges.

2. Sort the set of unordered pairs
{
{u,v} : u,v ∈ D, u 6= v

}
by distance:

d (pair 1)≤ d (pair 2)≤ ·· · ≤ d
(
pair

(n
2
))

.

3. Loop from i = 1 to
(n
2
)
:

• If the two members of pair i are in different connected components:
– Merge their clusters.
– Join pair i with an edge in H.

• Exit the loop and halt when there are only k components left.

Although we have couched the description of this algorithm in the language of graph theory, the
use of a graph data structure is not essential—all we need is a disjoint-set data structure to store
the connected components. The advantage of computing the graph is that the graph gives us more
information about the influence each object had on cluster formation.

21.1.1 Running time

In step 1, we initialize the graph and make n calls to MAKE-SET. Next, there are
(n
2
) = Θ(

n2)
unordered pairs of objects; sorting them in step 2 takes Θ

(
n2 lgn2) = Θ(

n2 lgn
)

time. Finally, each
iteration of the loop in step 3 makes two calls to FIND-SET and at most one call to UNION. The loop
is iterated at most O

(
n2)

times.
Thus, the total number of operations performed on the disjoint-set data structure is n+O

(
n2)=

O
(
n2)

. If we use a good implementation of the disjoint-set data structure (such as a disjoint-set forest

1 What we call here a “distance metric” corresponds to the notion of a metric space in mathematics. That is, our distance
metric is a symmetric, positive-definite scalar-valued function of two arguments which satisfies the triangle inequality.

Lec 21 – pg. 2 of 7

B (C)

Figure 21.2. Illustration of the quantity β (C), which is a measure of the amount of space between clusters.

with union by rank and path compression), these operations will take less time than the Θ
(
n2 lgn

)
sorting. Thus, the total running time of SINGLE-LINKAGE-CLUSTER is

Θ
(
n2 lgn

)
.

21.1.2 Correctness Discussion

This is where we would usually argue for the correctness of our algorithm. In the current case, there
is no precise notion of correctness because we didn’t state exactly what properties our clusters should
have—just that there are k of them and they represent some sort of nearness-based grouping. So
instead, we’ll discuss the properties of this clustering and consider other possibilities.

• This algorithm is essentially a special case of Kruskal’s MST algorithm. For k = 1, running
SINGLE-LINKAGE-CLUSTER is exactly the same as running Kruskal’s algorithm on the com-
plete graph whose edges are weighted by distance.

• For k > 1, the graph produced is an MST with the k−1 heaviest edges removed.

• This algorithm maximizes the “spacing” between clusters. More precisely, the minimum dis-
tance between a pair of clusters is maximized, in the sense that the quantity

β(C)=min
{
d (~x,~y) : ~x, ~y not in the same cluster

}
(21.1)

is maximized (see Figure 21.2), as we show below.

Proposition 21.1. Let C = {C1, . . . ,Ck} be the output of SINGLE-LINKAGE-CLUSTER. Then the quan-
tity β(C), as defined in (21.1), is maximized.

Proof. Let d∗ =β(C). Then d∗ is the distance between the first pair of vertices not considered by the
algorithm. All edges in the graph H were considered, so their weights are all ≤ d∗.

Consider a different clustering C ′ = {
C′

1, . . . ,C′
k
}
. There must exist some Cr ∈ C which is not a

subset of any C′
s ∈ C ′. (Make sure you can see why.2) So we can choose some ~x,~y ∈ Cr and some s

such that~x ∈ C′
s and ~y ∉ C′

s. Because Cr is a connected component of H, there exists a path~x ~y in

2 What would it mean if every Cr were a subset of some C′
s? This should not sit comfortably with the fact that C ′ 6=C .

Lec 21 – pg. 3 of 7

~x
~y

~z ~w

Cr

C′
s C′

t

Figure 21.3. Illustration of the proof of Proposition 21.1.

H. Somewhere in that path there must be an edge (~z,~w) which connects a vertex in C′
s to a vertex in

some other cluster C′
t (see Figure 21.3). Thus

β(C ′) ≤ (
distance between C′

s and C′
t
) ≤ d(~z,~w) ≤ d∗,

since (~z,~w) is an edge in H.

21.1.3 Other distance criteria

The procedure SINGLE-LINKAGE-CLUSTER is designed to always merge together the two “closest”
clusters, as determined by the distance criterion

dmin
(
Ci,C j

)= min
~x∈Ci ,~y∈C j

d (~x,~y) .

Other forms of hierarchical agglomerative clustering use different distance criteria, such as3

dmax
(
Ci,C j

)= max
~x∈Ci ,~y∈C j

d (~x,~y)

dmean
(
Ci,C j

)= 1
|Ci| · |C j|

∑
~x∈Ci ,~y∈C j

d (~x,~y)

dcentroid
(
Ci,C j

)= d

(
1

|Ci|
∑
~x∈Ci

~x,
1

|C j|
∑
~y∈C j

~y

)
.

Note that new algorithms are needed to implement these new criteria. Also, different criteria tend
to produce quite different clusters.

In general, hierarchical agglomerative clustering tends to perform worse on higher-dimensional
data sets.

3 The last of these, dcentroid, assumes that the points ~x belong to a vector space (hence, can be added together and
scaled). If you care about this sort of thing, you probably already noticed my choice of notation~x which suggests that the
ambient space is Rm. This is the most important case, but dcentroid makes sense in any normed vector space. (And the
rest of this lecture makes sense in an arbitrary metric space.)

Lec 21 – pg. 4 of 7

r

r

r

Figure 21.4. Given a positive integer k (in this case k = 3) and a desired radius r, we attempt to create k clusters, each
having radius at most r.

21.2 Minimum-Radius Clustering

Hierarchical agglomerative clustering focuses on making sure that objects in different clusters are
far apart. By contrast, minimum-radius clustering focuses on making sure that objects in the same
cluster are close together. Thus, rather than maximizing the minimum distance β(C), we will now
try to minimize a maximum (actually, maximin) distance. Namely, we will try to assign a “center”
C.center to each cluster C ∈C so as to minimize the quantity

F(C)=max
~x∈D

min
C∈C

d (~x,C.center) .

In principle, given k, we need only find the best possible set of k centers—then, each vertex will
belong to the cluster centered at whichever of these k points is closest to it. Thus, we can view the
quantity F(C) which we are trying to minimize as depending only on the choice of centers.

The problem of minimizing F(C) in this way is quite difficult. We will make things easier on
ourselves by assuming that we are given a goal radius r to strive for (rather than trying to figure out
what the minimum possible radius is) (see Figure 21.4).

Input: Instance data D = {~x1,~x2, . . . ,~xn} with a distance metric d
(
~xi,~x j

)
Desired number of clusters, k
Desired radius, r

Output: Ideally, a set of k points Γ = {~c1, . . . ,~ck} ⊆ D (the cluster centers) such that each ~x ∈ D is
within distance r of some element of Γ.

21.2.1 First strategy: Approximate k

The following algorithm gives the correct r but approximates k: assuming a clustering with the
desired k and r is possible, the number of clusters is at most k(lnn+1).

Lec 21 – pg. 5 of 7

Algorithm:
Imagine each~x ∈ D as the center of a cluster of radius r. The set

Si =
{
points in D within distance r of~xi

}
consists of all points which should be allowed to belong to this cluster. We now face the
following problem: we have a collection of sets S1, . . . ,Sn ⊆ D, and we wish to find a size-k
subcollection Si1 , . . . ,Sik such that

k⋃
j=1

Si j = D.

This is the set-cover problem, which is NP-hard. However, we can obtain an approximate
solution using the approximation algorithm of §18.2:

• Greedily choose the set with the largest coverage until all points are covered.
• Assuming a set cover exists, this algorithm gives a multiplicative α-approximation,

where α= ln |D|+1.

The running time of this algorithm is

O

(
n∑

i=1
|Si|

)
,

which, depending on the geometric configuration of D, could be anywhere from O(n) to O
(
n2)

.

21.2.2 Second strategy: Approximate r

Alternatively, we could strictly meet the k requirement but approximate r. Assuming that a clus-
tering with the desired k and r is possible, the following algorithm produces a set of k clusters with
radius at most 2r.

Algorithm:
1 i ← 0
2 while D is not empty do
3 i ← i+1
4 Pick an arbitrary~x ∈ D
5 Define cluster Ci to be all points within distance 2r of~x
6 Ci.center←~x
7 D ← D \ Ci
8 return {C1, . . . ,Ci}

The costliest line is line 5, which takes O(n) time. As we show below in Lemma 21.2, line 5 is
executed at most k times (assuming that a clustering with the desired k and r is possible). Thus, the
running time of this algorithm is O(kn).

Lemma 21.2. Suppose that a clustering with the desired k and r is possible. Then, after k passes
through the loop, D will be empty.

Proof. Let C ∗ = {
C∗

1 , . . . ,C∗
k
}

be a clustering with the desired k and r. Let ~x be as in line 4, and let
C∗

j ∈C ∗ be such that~x ∈ C∗
j . Let ~c = C∗

j .center. We claim that Ci (as defined on line 5) is a superset

Lec 21 – pg. 6 of 7

of C∗
j ∩D. (The intersection with D is necessary because D may have changed during prior iterations

of line 7.) To prove this, note that for any ~y ∈ C∗
j ∩D, we have by the triangle inequality

d (~x,~y) ≤ d (~x,~c)+d (~c,~y) ≤ r+ r = 2r.

Thus ~y ∈ Ci, which means that C∗
j ∩D ⊆ Ci.

Thus, each time line 7 is executed, a new element of C ∗ is removed from consideration. By the
time line 7 has been executed k times, all k of the clusters in C ∗ will have disappeared, so that D is
empty.

Lec 21 – pg. 7 of 7

Lecture 22

Derandomization
Supplemental reading in CLRS: None

Here are three facts about randomness:

• Randomness can speed up algorithms (e.g., sublinear-time approximations)

• Under reasonable assumptions, we know that the speed-up can’t be too large. Advances in
complexity theory in recent decades have provided evidence for the following conjecture, which
is generally believed to be true by complexity theorists:1

Conecture. Suppose there exists a randomized algorithm A which, on an input of size n, runs
in time T and outputs the correct answer with probability at least 2/3. Then there exists a
deterministic algorithm A′ which runs in time Poly(n,T) and always outputs the correct answer.

• In practice, randomization often doesn’t buy any (or much) speed-up. Moreover, the randomized
algorithm is often based on novel ideas and techniques which can equally well be used in a
deterministic algorithm.

As we said in Lecture 9, a randomized algorithm can be viewed as a sequence of random choices
along with a deterministic algorithm to handle the choices. Derandomization amounts to determinis-
tically finding a possible sequence of choices which would cause the randomized algorithm to output
the correct answer. In this lecture we will explore two basic methods of derandomization:

1. Conditional expectations. As we walk down the decision tree (see Figure 22.1), we may be able
to use probabilistic calculations to guide our step. In this way, we can make choices that steer
us toward a preponderance of correct answers at the bottom level.

2. Pairwise independence. Another way to find the correct answer is to simply run the randomized
algorithm on all possible sequences of random choices and see which answer is reported most
often (see Figure 22.2). In general this is not practical, as the number of sequences is exponen-
tial in the number of random choices, but sometimes it is sufficient to check only a relatively
small collection of sequences (e.g., those given by a universal hash family).

In what follows, we will use the big-cut problem to explore each of these two methods of derandom-
ization:

1 See, for example, Impagliazzo and Wigderson, “P = BPP unless E has sub-exponential circuits: Derandomizing the
XOR Lemma” 〈http://www.math.ias.edu/~avi/PUBLICATIONS/MYPAPERS/IW97/proc.pdf〉.

http://www.math.ias.edu/~avi/PUBLICATIONS/MYPAPERS/IW97/proc.pdf

head tail

head tail head tail

...
...

etc.

· · ·

Possible outputs, with correct outputs more concentrated in some regions than in others.

Figure 22.1. Probabilistic computations can often be used as a heuristic to find the regions in which correct answers are
most concentrated.

Lec 22 – pg. 2 of 5

algorithm

input

output

· · · (true randomness)· · ·0000110010 · · ·

algorithm

input

output

1110110110

1101000010

0001110111

1011101010

0100110101

uniform among
N possible strings

Figure 22.2. Sometimes the deterministic component of a randomized algorithm can’t distinguish between a truly random
sequence of choices and a well-chosen pseudorandom sequence of choices. Or, sometimes we can simulate a random choice
from a large sample set (e.g., the set of all binary strings) using a random choice from a small sample set (e.g., a fixed set
of N binary strings). If we can do this with N sufficiently small, it may be feasible to find the answer deterministically by
running the randomized algorithm on all N of the possible random inputs.

Lec 22 – pg. 3 of 5

Problem 22.1 (Big Cut). Given an undirected graph G = (V,E) with no loops, find a cut (S,V \ S)
which crosses at least half of the edges in E.

The solution to this problem is approximated by a simple randomized algorithm:

Algorithm:
1 S ←;
2 for each v ∈V do
3 Flip a coin
4 If heads, then S ← S∪ {v}
5 return (S,V \ S)

The running time is Θ(V).

Proof of approximation. For each edge (u,v) ∈ E, we have

Pr
[
(u,v) crosses the cut

]=Pr
[
(u ∈ S and v ∉ S) or

(u ∉ S and v ∈ S)

]
= 1

2
.

Thus, if I(u,v) denotes the indicator random variable which equals 1 if (u,v) ∈ S, then we have

E
[
edges crossed by S

]= E[∑
(u,v)∈E

I(u,v)

]
= ∑

(u,v)∈E
E
[
I(u,v)

]= 1
2

∣∣E∣∣ .

Chernoff ’s bound then tells us that, when E is large, it is extremely likely that the number of edges
crossed is at least 0.499

∣∣E∣∣.
22.1 Using Conditional Expectation

We can deterministically simulate the randomized approximation to Problem 22.1 by choosing to
include a vertex v if and only if doing so (and making all future decisions randomly) would re-
sult in a higher expected number of crossed edges than choosing to exclude v. In more detail, say
V = {v1, . . .vn}, and suppose we have already decided whether S should contain each of the vertices
v1, . . . ,vk. We pretend that all future decisions will be random (even though it’s not true), so that
we can use probabilistic reasoning to guide our choice regarding vk+1. Ideally, our choice should
maximize the value of

E
future random

choices

[
edges crossed

∣∣ our existing decisions about v1, . . . ,vk+1
]
. (22.1)

Consider the partition
E = E1 tE2 tE3,

where
E1 =

{
(vi,v j) ∈ E : i, j ≤ k

}
E2 =

{
(vi,vk+1) ∈ E : i ≤ k

}
E3 =

{
(vi,v j) ∈ E : j > k+1

}
.

Whether we choose to include or exclude vk+1 from S, the number of crossed edges in E1 is unaffected.
Moreover, since each edge in E3 has at least one of its vertices yet to be randomly assigned to S or

Lec 22 – pg. 4 of 5

V \ S, the expected number of crossed edges in E3 is 1
2 |E3| regardless of where we decide to put

vk+1. So in order to maximize (22.1), we should choose to put vk+1 in whichever set (either S or
V \ S) produces more crossings with edges in E2. (It will always be possible to achieve at least 1

2 |E2|
crossings.) We can figure out what the right choice is by simply checking each edge in E2.

Proceeding in this way, the value of E
[
edges crossed

]
starts at 1

2 |E| and is nondecreasing with
each choice. Once we make the nth choice, there are no more (fake) random choices left, so we have(

edges crossed
) = E

[
edges crossed

] ≥ 1
2

∣∣E∣∣ .

22.2 Using Pairwise Independence

The sequence of random choices in the randomized approximation to Problem 22.1 is equivalent to
picking the set S uniformly at random from the collection S =P (V) of all subsets of V . In hindsight,
the only reason we needed randomness was to ensure that

Pr
S∈S

[
S doesn’t cross (u,v)

]≤ 1
2

for each (u,v) ∈ E. (22.2)

Recall from §10.1 that a subset of V can be represented as a function V → {0,1}. In this way, S

becomes a hash family H : V → {0,1}, and (22.2) becomes

Pr
h∈H

[
h(u)= h(v)

]≤ 1
2

for each (u,v) ∈ E.

This will be satisfied as long as H is universal. So rather than taking H to be the collection {0,1}V

of all functions V → {0,1}, we can take H to be a much smaller universal hash family; there exist
universal hash families of size O(V).2 In this way, we have

E
h∈H

[
edges crossed by the
cut corresponding to h

]
≥ 1

2

∣∣E∣∣ .

In particular, this guarantees that there exists some h ∈H such that(
edges crossed by the
cut corresponding to h

)
≥ 1

2

∣∣E∣∣ .

We can simply check every h ∈H until we find it.

Exercise 22.1. What are the running times of the two deterministic algorithms in this lecture?

2 One such universal hash family is described as follows. To simplify notation, assume V = {1, . . . ,n}. Choose some prime
p ≥ n with p =O(n) and let

H = {
ha,b : a,b ∈Zp, a 6= 0

}
,

where
ha,b(x)= (ax+b) mod p.

Lec 22 – pg. 5 of 5

Lecture 23

Computational geometry
Supplemental reading in CLRS: Chapter 33 except §33.3

There are many important problems in which the relationships we wish to analyze have geometric
structure. For example, computational geometry plays an important role in

• Computer-aided design
• Computer vision
• Computer animation
• Molecular modeling
• Geographic information systems,

to name just a few.

23.1 Intersection Problem

Given a set of line segments S1, . . . ,Sn in the plane, does there exist an intersection? Humans, with
their sophisticated visual systems, are particularly well-equipped to solve this problem. The problem
is much less natural (but still important, given the above applications) for a computer.

Input: Line segments S = {S1, . . . ,Sn} in the plane, represented by the coordinates of their end-
points

Output: Goal I: Detect. Determine whether there exists an intersection.
Goal II: Report. Report all pairs of intersecting segments.

The obvious algorithm is to check each pair of line segments for intersection. This would take Θ
(
n2)

time. For Goal II, this can’t be improved upon, as it could take Θ
(
n2)

time just to report all the inter-
sections (see Figure 23.1). We will focus on Goal I and show that there exists a Θ (n lgn) algorithm.

For ease of exposition, we will assume that our line segments are in general position, i.e.,

• No two endpoints have the same x-coordinate. (In particular, there are no perfectly vertical
segments.)

• There are no instances of three segments intersecting at a single point.

Both of these assumptions are unnecessary and can be dropped after a couple of minor (but careful)
modifications to the algorithm.

Figure 23.1. If the segments S1, . . . ,Sn form a square grid, there could be as many as
(n

2
)(n

2
)= n2

4 =Θ(
n2)

intersections.
In other situations, it could happen that every pair of segments intersects.

23.1.1 Sweep line and preorder

Suppose you have a sheet of paper with the line segments S1, . . . ,Sn drawn on it. Imagine dragging
a vertical ruler across the page from left to right (see Figure 23.2). This is exactly what we have in
mind when we say,

For each x ∈R, let Lx be the vertical line at distance x from the y-axis.1

We imagine x increasing over time, so that Lx represents a sweep line which moves across the plane
from left to right.

For each x ∈R, there is a natural preorder2 on the set of non-vertical line segments in the plane:
for two non-vertical segments a,b, we say a ≥x b if the intersection of a (or its extension, if need be)
with Lx lies above the intersection of b with Lx. This relation needn’t be antisymmetric because it
could happen that a and b intersect Lx at the same point. In that case, we say that both a ≥x b and
b ≥x a; but of course, this does not imply that a = b. Of crucial importance is the following obvious
fact:

Given x ∈ R and line segments a and b, there exists an O(1)-time algorithm to check
whether a ≥x b.3

Also important is the following observation:

Observation 23.1. Suppose line segments a and b intersect at the point P = (x∗, y∗). Then one of
the following two statements holds:

(i) For x > x∗, we have a ≥x b. For x < x∗, we have b ≥x a.
(ii) For x > x∗, we have b ≥x a. For x < x∗, we have a ≥x b.

Conversely, if a and b do not intersect, then one of the following two statements holds:

(i) For all x such that Lx intersects a and b, we have a ≥x b.
(ii) For all x such that Lx intersects a and b, we have b ≥x a.

Another way to view the second part of Observation 23.1 is as follows:
1 It took me a while to figure out how to write down a definition of Lx that didn’t include the equation “x = x.”
2 A preorder is a binary relation that is reflexive and transitive, but not necessarily symmetric or antisymmetric.
3 It is not so obvious, however, what the best such algorithm is. Most naïve attempts involve calculating a slope, which

is numerically unstable. To remedy this, the best algorithms use cross products to compute orientations without using
division.

Lec 23 – pg. 2 of 8

I

a

b

c

d

L0.1

a

L1.2

b
a

L2.1

b
a
c

L3.1

b
d
c

L3.8

b
c
d

Figure 23.2. A sweep line traversing from left to right. Notice that b ≥x d ≥x c ≥x a for all x ∈ I, but b ≥3.8 c ≥3.8 d.

Thought Experiment 23.2. Consider a finite set of line segments; for concreteness let’s say we are
looking at the four segments {a,b, c,d}. There is some interval I (perhaps empty) such that, for each
x ∈ I, Lx intersects all four segments (see Figure 23.2). For each x ∈ I, the relation ≥x induces a
preorder structure on the set {a,b, c,d}. Observation 23.1 implies that, if there are no intersections
among {a,b, c,d}, then this preorder structure does not depend on the choice of x.

Thought Experiment 23.2 leads to the following strategy, which is quite ingenious. To introduce
the strategy, we first define the preorder data structure. The preorder data structure stores a
dynamic collection T of objects along with a preorder on those objects, which we denote by ≥. The
supported operations are4

• INSERT(a) – inserts a into the collection

• DELETE(a) – deletes a from the collection

• ABOVE(a) – returns the element immediately above a. If no such element exists, returns NIL.

• BELOW(a) – returns the element immediately below a. If no such element exists, returns NIL.

The obvious issue with using this data structure in conjunction with our plane sweep is that it only
stores a single preorder relation, which we have denoted above by ≥ (and the usual counterparts ≤,
>, <), whereas the relation ≥x has the potential to change as x varies. However, this needn’t be a
problem, as long as:

4 For ease of exposition, we have obscured one detail from view. It is possible for T to contain two elements d, e such
that d ≥ e and e ≥ d. In order for the operations ABOVE(d) and BELOW(d) to work correctly, there must be some rule for
breaking ties. To this end, T will also internally store an order º on its elements, such that b º a always implies b ≥ a
(but not necessarily conversely). Then, “the element immediately above a” is the element b such that b Â a and, whenever
c Â a, we always have c º b. (Similarly for “the element immediately below a.”) The choice of order º does not matter, as
long as it is persistent through insertions and deletions.

Lec 23 – pg. 3 of 8

Condition 23.3. During the lifetime5 of any particular element a, the ranking of a with respect to
the other elements of T does not ever need to be changed.

We are now prepared to give the algorithm:

Algorithm: DETECT-INTERSECTION(S)
1 Sort the endpoints of segments in S by x-coordinate
2 T ← new preorder structure
3 B Run the sweepline from left to right
4 for each endpoint (x, y), by order of x-coordinate do
5 if (x, y) is the left endpoint of a segment a then
6 Insert a into T, using the relation ≥x to decide where in the preorder a should

belong∗

7 Check a for intersection with T.ABOVE(a)
8 Check a for intersection with T.BELOW(a)
9 if there was an intersection then

10 return TRUE

11 else if (x, y) is the right endpoint of a segment a then
12 Check T.ABOVE(a) for intersection with T.BELOW(a)
13 if there was an intersection then
14 return TRUE

15 T.DELETE(a)
16 return FALSE

∗ This step needs justification. See the proof of correctness.

Proof of correctness. First, note the need to justify line 6. In implementation form, T will probably
store its entries in an ordered table or tree; then, when T.INSERT(a) is called, it will take advantage
of T ’s internal order by using a binary search to insert a in Θ

(
lg

∣∣T∣∣) time. In line 6, we are asking T
to use the relation ≥x to decide where to place a. This is fine, provided that ≥x agrees with T ’s internal
preorder when considered as a relation on the elements that currently belong to T. (Otherwise, a
binary search would not return the correct result.6) So, over the course of this proof, we will argue
that

Whenever line 6 is executed, the relation ≥x agrees with T ’s internal preorder when
considered as a relation on the elements that currently belong to T.

From Thought Experiment 23.2 we see that the above statement holds as long as the sweep line has
not yet passed an intersection point. Thus, it suffices to prove the following claim:

Claim. DETECT-INTERSECTION terminates before the sweep line passes an intersection point.

The claim obviously holds if there are no intersections, so assume there is an intersection. Let’s
say the leftmost intersection point is P, where segments a and b intersect. Assume without loss of
generality that a’s left endpoint lies to the right of b’s left endpoint (so that b gets inserted into T

5 By “the lifetime of a,” I mean the period of time in which a is an element of T.
6 Actually, in that situation, there would be no correct answer; the very notion of “binary search” on an unsorted list

does not make sense.

Lec 23 – pg. 4 of 8

a

b

Pc

Figure 23.3. If the left endpoint of c lies between a and b to the left of P and the right endpoint of c lies to the right of P,
then c must intersect either a or b.

before a does). If a ever becomes adjacent to b in T, then either lines 7–8 or line 12 will detect that
a and b intersect, and the algorithm will halt.

So we are free to assume that a and b are never adjacent in T until after the sweep line has
passed P. This means that there exists a line segment c such that the left endpoint of c lies between
a and b7 and to the left of P, and the right endpoint of c lies to the right of P. Geometrically, this
implies that c must intersect either a or b, and that intersection point must lie to the left of P (see
Figure 23.3). But this is impossibe, since we assumed that P was the leftmost intersection point. We
conclude that the claim holds.

Actually, we have done more than prove the claim. We have shown that, if there exists an inter-
section, then an intersection will be reported. The converse is obvious: if an intersection is reported,
then an intersection exists, since the only time we report an intersection is after directly checking
for one between a specific pair of segments.

23.1.2 Running time

The running time for this algorithm depends on the implementation of the preorder data struc-
ture. CLRS chooses to use a red–black tree8, which has running time O (lgn) per operation. Thus,
DETECT-INTERSECTION has total running time

Θ (n lgn) .

23.2 Finding the Closest Pair of Points

Our next problem is simple:

Input: A set Q of points in the plane

Output: The two points of Q whose (Euclidean) distance from each other is shortest.

The naïve solution is to proceed by brute force, probing all
(n
2
)

pairs of points and taking Θ
(
n2)

time.
In what follows, we will exhibit a subtle divide-and-conquer algorithm which runs in Θ (n lgn) time.

7 That is, if the left endpoint of c is (x, y), then either a ≤x c ≤x b or a ≥x c ≥x b.
8 For more information about red–black trees, see Chapter 13 of CLRS.

Lec 23 – pg. 5 of 8

In §23.1, the pseudocode would not have made sense without a few paragraphs of motivation
beforehand. By contrast, in this section we will give the pseudocode first; the proof of correctness
will elucidate some of the strange-seeming choices that we make in the algorithm. This is more or
less how the algorithm is presented in §33.4 of CLRS.

The algorithm begins by pre-sorting the points in Q according to their x- and y-coordinates:

Algorithm: CLOSEST-PAIR(Q)
1 X ← the points of Q, sorted by x-coordinate
2 Y ← the points of Q, sorted by y-coordinate
3 return CLOSEST-PAIR-HELPER(X ,Y)

Most of the work is done by the helper function CLOSEST-PAIR-HELPER, which makes recursive calls
to itself:

Algorithm: CLOSEST-PAIR-HELPER(X ,Y)
1 if |X | ≤ 3 then
2 Solve the problem by brute force and return
3 x∗ ← the median x-coordinate of X
4 Let XL ⊆ X consist of those points with x-coordinate ≤ x∗

5 Let XL ⊆ X consist of those points with x-coordinate > x∗

6 Let YL ⊆Y consist of those points which are in XL
7 Let YR ⊆Y consist of those points which are in XR
8 B Find the closest two points in the left half
9 〈pL, qL〉← CLOSEST-PAIR-HELPER(XL,YL)

10 B Find the closest two points in the right half
11 〈pR , qR〉← CLOSEST-PAIR-HELPER(XR ,YR)
12 δR ← distance from pL to qL
13 δR ← distance from pR to qR
14 δ←min {δL,δR}
15 Y ′ ← those points in Y whose x-coordinate is within δ of x∗

16 B Recall that Y ′ is already sorted by y-coordinate
17 ε←∞
18 for i ← 1 to

∣∣Y ′∣∣−1 do
19 p ←Y ′[i]
20 for q in Y ′[i+1, . . . ,min

{
i+7,

∣∣Y ′∣∣}] do
21 if ε> distance from p to q then
22 ε← distance from p to q
23 p∗ ← p
24 q∗ ← q
25 if ε< δ then
26 return 〈p∗, q∗〉
27 else if δR < δL then
28 return 〈pR , qR〉
29 else
30 return 〈pL, qL〉

Lec 23 – pg. 6 of 8

Left half Right half

Figure 23.4. CLOSEST-PAIR-HELPER divides the set X into a left half and a right half, and recurses on each half.

23.2.1 Running time

Within the procedure CLOSEST-PAIR-HELPER, everything except the recursive calls runs in linear
time. Thus the running time of CLOSEST-PAIR-HELPER satisfies the recurrence

T(n)= 2 ·T (n
2
)+O(n), (23.1)

which (by the Master Theorem in §4.5 of CLRS) has solution

T(n)=O (n lgn) . (23.2)

Note that, if we had decided to sort within each recursive call to CLOSEST-PAIR-HELPER, the
O(n) term in (23.1) would have instead been an O (n lgn) term and the solution would have been
T(n) = O

(
n (lgn)2)

. This is the reason for creating a helper procedure to handle the recursive calls:
it is important that the lists X and Y be pre-sorted so that recursive calls need only linear-time
operations.

Note also that, if instead of lines 20–24 we had simply checked the distance between each pair of
points in Y ′, the O(n) term in (23.1) would have instead been an O

(
n2)

term, and the solution would
have been T(n)=O

(
n2)

.

23.2.2 Correctness

CLOSEST-PAIR-HELPER begins by recursively calling itself to find the closest pairs of points on the
left and right halves. Thus, lines 15–24 are ostensibly an attempt to check whether there exists a
pair of points 〈p∗, q∗〉, with one point on the left half and one point on the right half, whose distance
is less than that of any two points lying on the same half. What remains to be proved is that lines
15–24 do actually achieve this objective.

By the time we reach line 15, the variable δ stores the shortest distance between any two points
that lie on the same half. It is easy to see that there will be no problems if δ truly is the shortest
possible distance. The case we need to worry about is that in which the closest pair of points—call it
〈p, q〉—has distance less than δ. In such a case, the x-coordinates of p and q would both have to be
within δ of x∗; so it suffices to consider only points within a vertical strip V of width 2δ centered at
x = x∗ (see Figure 23.5). These are precisely the points stored in the array Y ′ on line 15.

Say p = Y ′[i] and q = Y ′[j], and assume without loss of generality that i < j. In light of lines
20–24 we see that, in order to complete the proof, we need only show that j− i ≤ 7.

Lec 23 – pg. 7 of 8

δδ

V

Figure 23.5. It suffices to consider a vertical strip V of width 2δ centered at x = x∗.

δ SL SR

Figure 23.6. Each of SL and SR can hold at most 4 points. (Actually, in completely ideal geometry, SR cannot contain 4
points because its left boundary is excluded. But since the coordinates in a computational geometry problem are typically
given as floating point numbers, we are not always guaranteed correct handling of edge cases.)

Say p = (px, py). Let SL be the square (including boundaries) of side length δ whose right side
lies along the vertical line x = x∗ and whose bottom side lies along the horizontal line y = py. Let
SR be the square (excluding the left boundary) of side length δ whose left side lies along the vertical
line x = x∗ and whose bottom side lies along the horizontal line y = py. It is evident that q must lie
within either SL or SR (see Figure 23.6). Moreover, any two points in the region SL are separated
by a distance of at least δ; the same is true for any two points in the region SR . Thus, by a geometric
argument9, SL and SR each contain at most four points of Y ′. In total, then, SL ∪SR contains at
most eight points of Y ′. Two of these at-most-eight points are p and q. Moreover, since Y ′ consists
of all points in V sorted by y-coordinate, it follows that the at-most-eight points of SL ∪SR occur
consecutively in Y ′. Thus, j− i ≤ 7.

9 One such argument is as follows. Divide SL into northeast, northwest, southeast and southwest quadrants. Each
quadrant contains at most one point of Y ′ (why?), so SL contains at most four points of Y ′.

Lec 23 – pg. 8 of 8

Index
α-approximation, 18:1
α-competitive, 12:2
ε-universal, 10:3

accounting method, 11:2
Ackermann function, 16:7
acyclic, 3:2
additive approximation, 18:2
aggregate analysis, 11:1
amortized analysis, 10:7
amortized cost, 10:7, see also amortized analysis
approximation, see α-approximation
approximation algorithm, 18:1
associative array, 10:1
augmented flow, 13:3
augmenting path, 13:3

big-cut problem, 22:1
binary code, 19:2
binomial distribution, 9:2
bipartite graph, 14:4

capacity
of a cut in a flow network, 13:7
of an edge in a flow network, 13:1

certificate, 17:3
clustering, 21:1
codeword, 19:2
collision, 10:2
competitive, see α-competitive
competitive analysis, 12:3
complete graph, 3:2
complexity class, 17:2
compression, 19:1
connected components, 3:6
connected graph, 3:2
convolution, 5:5
Cook reduction, 17:4
correct algorithm, 1:2
cut

of a flow network, 13:7
of a graph, 3:5

cycle, 3:2

decision problem, 17:2
depth

of a node in a rooted tree, 4:3
directed graph, 3:2
disjoint-set data structure, 4:2, 16:1

divide-and-conquer, 5:1
dynamic programming, 2:6, 6:1

Edmonds–Karp algorithm, 13:6
“efficient” algorithm, 17:3

flow, 13:1
across a cut in a flow network, see net flow

flow network, 13:1
flow value, 13:2
Ford–Fulkerson algorithm, 13:2
FPTAS, see fully polynomial-time approximation scheme
fully polynomial-time approximation scheme, 18:2

Gaussian distribution, 9:1
God’s algorithm, 12:1
graph, 3:2
greedy algorithm, 3:1

hash family, 10:2
hash function, 10:1
hash table, 10:1

integer flow, 13:6
inverse Ackermann function, 16:7
isolated vertex, 4:4

Karp reduction, 17:4
keyed array, see associative array
Kruskal’s MST algorithm, 3:6

Las Vegas algorithm, 8:2
linear programming, 7:4
load

on an index in a hash table, 10:2
loop invariant, 1:4
lossless compression, 19:1
lossy compression, 19:1

maximum flow problem, 13:1
min-priority queue, 4:5
minimum spanning tree, 3:4
Monte Carlo algorithm, 8:2
move-to-front, 12:3
MST, see minimum spanning tree
MTF, see move-to-front
multi-commodity flow, 13:9
multiplicative approximation, 18:1

net flow, 13:7
nondeterministic algorithm, 17:3
normal distribution, 9:1
NP, 17:3
NP-complete, 17:5
NP-hard, 17:4

offline algorithm, 12:1
online algorithm, 12:1
optimal substructure, 6:1
oracle, 17:4

P, 17:3
P vs. NP, 17:2
path, 3:2
perfect hash table, 10:6
Poisson distribution, 10:4
polynomial-time, 17:3

in multiple variables, 20:1
polynomial-time approximation scheme, 18:2
polynomial-time reduction, 17:4
potential method, 11:3
prefix coding, 19:3
preorder, 23:2, see also preorder data structure
preorder data structure, 23:3
Prim’s MST algorithm, 4:4
pseudo-polynomial–time, 18:2
PTAS, see polynomial-time approximation scheme

rank, 1:3
reachable, 3:6
reduction, see polynomial-time reduction
residual capacity, 13:3
residual network, 13:3
restriction

of a graph to a set of vertices, 3:6
rooted tree, 4:3

safe choice, 4:4
search problem, 17:2
simple cycle, 3:3
simple path, 3:3
spanning tree, 3:3
stack, 11:1
sweep line, 23:2

table doubling, 10:6
tree, 3:2
Turing machine, 17:2

undirected graph, 3:2
union bound, 9:6
uniquely readable, 19:3
universal hash family, 10:2

van Emde Boas data structure, 15:1
vEB, see van Emde Boas data structure

verifier, 17:3

weighted undirected graph, 3:2
witness, 17:3

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Introduction & Median Finding
	The Course
	Algorithms
	Order Statistics (``Median Finding'')

	Recap & Interval Scheduling
	Recap of Median Finding
	Interval Scheduling

	Minimum Spanning Trees I
	Greedy Algorithms
	Graphs
	Minimum Spanning Trees

	Minimum Spanning Trees II
	Implementing Kruskal's Algorithm
	Prim's Algorithm
	Greedy Strategies

	Fast Fourier Transform
	Multiplication
	Convolution

	All-Pairs Shortest Paths I
	Dynamic Programming
	Shortest-Path Problems
	The Floyd–Warshall Algorithm

	All-Pairs Shortest Paths II
	Johnson's Algorithm
	Linear Programming

	Randomized Algorithms I
	Randomized Median Finding
	Another Example: Verifying Polynomial Multiplication
	The Markov Bound

	Randomized Algorithms II
	The Central Limit Theorem and the Chernoff Bound
	Analysis of Quicksort
	Monte Carlo Sampling
	Amplification

	Hashing and Amortization
	Arrays and Hashing
	Hash Families
	Amortization

	Amortized Analysis
	Aggregate Analysis
	Accounting Method
	Potential Method
	Example: A Dynamically Resized Table

	Competitive Analysis
	Online and Offline Algorithms
	Example: A Self-Organizing List

	Network Flow
	The Ford–Fulkerson Algorithm
	The Max Flow–Min Cut Equivalence
	Generalizations

	Interlude: Problem Solving
	What to Bring to the Table
	How to Attack a Problem
	Recommended Reading

	van Emde Boas Data Structure
	Analogy: The Two-Coconut Problem
	Implementation: A Recursive Data Structure
	Solving the Recurrence

	Disjoint-Set Data Structures
	Linked-List Implementation
	Forest-of-Trees Implementation

	Complexity and NP-completeness
	Examples
	Complexity
	Example: Algorithm Search

	Polynomial-Time Approximations
	Vertex Cover
	Set Cover
	Partition

	Compression and Huffman Coding
	Compression
	The Huffman Algorithm

	Sublinear-Time Algorithms
	Estimating the Number of Connected Components
	Estimating the Size of a Minimum Spanning Tree

	Clustering
	Hierarchical Agglomerative Clustering
	Minimum-Radius Clustering

	Derandomization
	Using Conditional Expectation
	Using Pairwise Independence

	Computational geometry
	Intersection Problem
	Finding the Closest Pair of Points

	Index

