Lecture 12

Competitive Analysis

Supplemental reading in CLRS: None

12.1 Online and Offline Algorithms

For some algorithmic problems, the optimal response to a sequence of calls to a procedure depends
not just on each input separately, but on the sequence of inputs as a whole. This is analogous to
amortized analysis, in which the best running time analysis required us to consider the running
time of an entire sequence of operations. When an algorithm expects to be given the entire sequence
of inputs ahead of time, it is called an offline algorithm; when the algorithm is expected to give
an answer after each individual input without knowledge of future inputs, it is called an online
algorithm.

Example. Traders are faced with the following algorithmic problem: given today’s stock prices (and
the history of stock prices in the past), decide which stocks to buy and which stocks to sell. Obvi-
ously, this is an online problem for everybody. An attempt to treat the trading problem as an offline
algorithmic problem is called insider trading.

Example. Tetris is an online game. The offline version of Tetris would be akin to a jigsaw puzzle,
and would not require quick thinking. Of course, we would expect players of the offline game to
produce much better packings than players of the online game.

Let’s lay out a general setup for analyzing online and offline algorithms. Assume we are given
an algorithm A, along with a notion of “cost” C4. That is, if S is a sequence of inputs, then C4(S)
is the cost of trusting A’s response to the inputs in S. For example, A might be a stock broker and
C 4(S) might be the net profit after a sequence of days on the stock market. In that case, clients will
probably try to learn as much as the can about the function C4 (for example, by observing its past
outputs) when deciding whether to hire the stock broker.

In general, no online algorithm will perform optimally on all sequences of inputs—in other words,
the so-called “God’s algorithm” (which performs optimally on every sequence of inputs) will usually
be impossible to describe in an online way. This is obvious in the stock market example: if you chose
to buy today, what if prices drop tomorrow? If you chose to sell today, what if prices go up tomorrow?

Although an online algorithm may not ever be able to match the performance of God’s algorithm,
it may be possible for an online algorithm to perform almost as well as God’s algorithm on every
input.

Definition. An online algorithm A is said to be a-competitivei (where a is a positive constant) if
there exists a constant % such that, for every sequence S of inputs, we have

Ca(S)=a-Copr(S)+£,

where OPT is the optimal offline algorithm, A.K.A. God’s algorithm.

12.2 Example: A Self-Organizing List

Problem 12.1. Design a data structure L representing a list of n key—value pairs (with distinct
keys), satisfying the following constraints:

¢ The key—value pairs are stored in a linked list

* There is only one supported operation: ACCESS(x), which returns the element with key x. (It
is assumed that the input x is always one of the keys which occurs in L.) The implementation
of ACCESS(x) has two phases:

1. Walk through the list until you find the element with key x. The cost of this phase is
ranky (x), the rank of the element with key x.

2. Reorder the list by making a sequence of adjacent transpositionsz (in this lecture, the
word “transposition” will always refer to adjacent transpositions). The cost of each trans-
position is 1; the sequence of transpositions performed is up to you, and may be empty.

Try to choose a sequence of transpositions which optimizes the performance of ACCESS, i.e., for which
ACCESS is a-competitive where « is minimal among all possible online algorithms.
12.2.1 Worst-case inputs

No matter how we define our algorithm, an adversary (who knows what algorithm we are using) can
always ask for the last element in our list, so that phase 1 always costs n, and the cost of a sequence
S of such costly operations is at least

Ca(8)=0Q(IS|n),

even disregarding the cost of any reordering we do.

12.2.2 Heuristic: Random inputs

As a heuristic (which will seem particularly well-chosen in retrospect), let’s suppose that our inputs
are random rather than worst-case. Namely, suppose the inputs are independent random variables,
where the key x has probability p(x) of being chosen. It should be believable (and you can prove if

L This is not the only notion of “competitive” that people might care about. We could also consider additive competitive-
ness, which is a refinement of the notion considered here: We say an algorithm A is k-additively competitive if there exists
a constant & such that C 4 (S) < Copp(S)+£ for every sequence S of inputs. Thus, every k-additively competitive algorithm
is 1-competitive in the sense defined above.

2 An adjacent transposition is the act of switching two adjacent entries in the list. For example, transposing the elements
B and C in the list (A,B,C, D) results in the list (A,C,B,D).

Lec 12 —pg. 2 of 5

you wish) that, when |S| is much larger than n, the optimal expected cost is achieved by immediately
sorting L in decreasing order of p(x), and keeping that order for the remainder of the operationsi In
that case, the expected cost of a sequence S of ACCESS operations is

E[CA(S) =} p(x)-rankp (p(x))-IS],
xeL

where P ={p(y):y€L}.

In practice, we won’t be given the distribution p ahead of time, but we can still estimate what p
would be if it existed. We can keep track of the number of times each key appears as an input, and
maintain the list in decreasing order of frequency. This counting heuristic has its merits, but we will
be interested in another heuristic: the move-to-front (MTF') heuristic, which works as follows:

e After accessing an item x, move x to the head of the list. The total cost of this operation is

2-ranky, (x)—1:

- ranky (x) to find x in the list
4

- ranky (x) — 1 to perform the transpositions.

To show that the move-to-front heuristic is effective, we will perform a competitive analysis.
Proposition 12.2. The MTF heuristic is 4-competitive for self-organizing lists.

As to the original problem, we are not making any assertion that 4 is minimal; for all we know,
there could exist a-competitive heuristics for a <4.?

Proof.

Let L; be MTF’s list after the ith access.

Let L7 be OPT’s list after the ith access.

Let ¢; be MTT’s cost for the ith operation. Thus ¢; = 2ranky,, ,(x)—1.

Let cf be OPT’s cost for the ith operation. Thus cf = rankL;_«_l(x) +t;, where t; is the number of
transpositions performed by OPT during the ith operation.

7

We will do an amortized analysis. Define the potential functionf’

®(L;)=2-(# of inversions between L; and L)

3 The intuition is that the most likely inputs should be made as easy as possible to handle, perhaps at the cost of making
some less likely inputs more expensive.

4 The smallest number of transpositions needed to move x to the head of the list is ranky (x) — 1. These rankj (x)—-1
transpositions can be done in exactly one way. Once they are finished, the relative ordering of the elements other than
x is unchanged. (If you are skeptical of these claims, try proving them.) For example, to move D to the front of the list
(A,B,C,D,E), we can perform the transpositions D — C, D — B, and D — A, ultimately resulting in the list (D,A,B,C,E).

5 The question of whether a =4 is minimal in this example is not of much practical importance, since the costs used
in this example are not very realistic. For example, in an actual linked list, it would be easy to move the nth entry to
the head in O(1) time (assuming you already know the location of both entries), whereas the present analysis gives it cost
B(n). Nevertheless, it is instructive to study this example as a first example of competitive analysis.

6 The notation x < 1, y means ranky, (x) <rankp, (y). In other words, we are using L; to define an order <y, on the keys,
and likewise for L.

7 Technically, this is an abuse of notation. The truth is that ®(L;) depends not just on the list L;, but also on L and i
(since L;‘ is gotten by allowing OPT to perform i operations starting with Lg). We will stick with the notation @ (L;), but
if you like, you can think of ® as a function on “list histories” rather than just lists.

Lec 12 —pg. 3 of 5

rank r
A c Lii: | AUB | x | cuD |
Liy: | AuC |x| BuD |
L*
-1
l B D T
\) rank r*

Figure 12.1. The keys in L;_; other than x fall into four categories, as described in the proof of Proposition 12.2.

=2. Hunordered pairs {x,y}: x<g, y and y <L xH

For example, if L; = (E,C,A,D,B) and L’ik =(C,A,B,D,E), then ®(L;) = 10, seeing as there are 5
inversions: {E,C}, {E,A}, {E,D}, {E,B}, and {D,B}. Note the following properties of ®:

e O(L;)=0 always, since the smallest possible number of inversions is zero.

e ®O(Ly)=0if MTF and OPT start with the same list.

¢ A transposition either creates exactly 1 inversion or destroys exactly 1 inversion (namely,
transposing x — y toggles whether {x,y} is an inversion), so each transposition changes ® by
AD = +2,

Let us focus our attention on a single operation, say the ith operation. The keys of L fall into four
categories (see Figure 12.1):

* A: elements before x in L;_; and L?_,
¢ B: elements before x in L;_1 but after x in L’i“_1
* C: elements after x in L;_; but before x in L;_,
* D: elements after xin L;—1 and L ;.

Let r =rankyz, ,(x) and r* =rankyz: (x). Thus
r=|A|+|B|+1 and r*=|A|+|C|+1.

Now, if we hold L;‘_l fixed and pass from L;_1 to L; by moving x to the head, we create exactly |A]
inversions (namely, the inversions {a,x} for each a € A) and destroy exactly |B| inversions (namely,
the inversions {b,x} for each b € B). Next, if we hold L; fixed and pass from L} ; to L} by making
whatever set of transpositions OPT chooses to make, we create at most ¢; inversions (where #; is the
number of transpositions performed), since each transposition creates at most one inversion. Thus

O (L;)-P(L;-1) <2(|Al-|Bl+t;).
The amortized cost of the ith insertion of MTF with respect to the potential function is therefore

Ci=c;+PWL;)-DL;-1)

Lec 12 —pg. 4 of 5

<2r+2(lA|-|Bl+t;)
=2r+2(|Al-(r-1-]AD+¢;)

=4|A|+2+2¢t;

<4|r*+¢;| (sincer* =|A[+|C|+1=]A|+1)

=4c;.
Thus the total cost of a sequence S of operations using the MTF heuristic is

IS|
Cmrr(S) =) c;
i=1
IS|
Y (a+oin-ow)

12

1

IS|
<> 4c!
=

12

+®(L0)—®(L|S|)
_ ~——
=0
<4-Copr(S).

Note:

* We never found the optimal algorithm, yet we still successfully argued about how MTF com-
peted with it.

¢ If we decrease the cost of a transposition to 0, then MTF becomes 2-competitive.

* If we start MTF and OPT with different lists (i.e., Lo # L)), then ®(L¢) might be as large
as @(nz), since it could take @(n2) transpositions to perform an arbitrary permutation on
L. However, this does not affect a for purposes of our competitive analysis, which treats n
as a fixed constant and analyzes the asymptotic cost as |S| — oo; the MTF heuristic is still
4-competitive under this analysis.

Lec 12 —pg. 5 0of 5

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Competitive Analysis
	Online and Offline Algorithms
	Example: A Self-Organizing List

