
Lecture 16

Disjoint-Set Data Structures
Supplemental reading in CLRS: Chapter 21 (§21.4 is optional)

When implementing Kruskal’s algorithm in Lecture 4, we built up a minimum spanning tree T by
adding in one edge at a time. Along the way, we needed to keep track of the connected components of
T; this was achieved using a disjoint-set data structure. In this lecture we explore disjoint-set data
structures in more detail.

Recall from Lecture 4 that a disjoint-set data structure is a data structure representing a
dynamic collection of sets S= {S1, . . . ,Sr}. Given an element u, we denote by Su the set containing u.
We will equip each set Si with a representative element rep[Si].1 This way, checking whether two
elements u and v are in the same set amounts to checking whether rep[Su]= rep[Sv]. The disjoint-set
data structure supports the following operations:

• MAKE-SET(u): Creates a new set containing the single element u.

– u must not belong to any already existing set

– of course, u will be the representative element initially

• FIND-SET(u): Returns the representative rep[Su].

• UNION(u,v): Replaces Su and Sv with Su ∪Sv in S. Updates representative elements as ap-
propriate.

In Lecture 4, we looked at two different implementations of disjoint sets: doubly-linked lists and
trees. In this lecture we’ll improve each of these two implementations, ultimately obtaining a very
efficient tree-based solution.

16.1 Linked-List Implementation

Recall the simple linked-list implementation of disjoint sets that we saw in Lecture 4:

1 This is not the only way to do things, but it’s just as good as any other way. In any case, we’ll need to have some symbol
representing each set Si (to serve as the return value of FIND-SET); the choice of what kind of symbol to use is essentially
a choice of notation. We have chosen to use a “representative element” of each set rather than create a new symbol.

Si : u1

rep[Si]
u2 u3 · · · uk

MAKE-SET(u) – initialize as a lone node Θ(1)

FIND-SET(u) – walk left from u until you reach the head of Su Θ(n) worst-case

UNION(u,v) – walk right (towards the tail) from u and left (towards
the head) from v. Reassign pointers so that the tail of
Su and the head of Sv become neighbors. The repre-
sentative is updated automatically.

Θ(n) worst-case

Do we really need to do all that walking? We could save ourselves some time by augmenting each
element u with a pointer to rep[Su], and augmenting rep[Su] itself with a pointer to the tail. That
way, the running time of FIND-SET would be O(1) and all the walking we formerly had to do in
UNION would become unnecessary. However, to maintain the new data fields, UNION(u,v) would
have to walk through Sv and update each element’s “head” field to point to rep[Su]. Thus, UNION

would still take O(n) time in the worst case.
Perhaps amortization can give us a tighter bound on the running time of UNION? At first glance,

it doesn’t seem to help much. As an example, start with the sets {1} , {2} , . . . , {n}. Perform UNION(2,1),
followed by UNION(3,1), and so on, until finally UNION(n,1), so that S1 = {1, . . . ,n}. In each call
to UNION, we have to walk to the tail of S1, which is continually growing. The ith call to UNION

has to walk through i−1 elements, so that the total running time of the n−1 UNION operations is∑n−1
i=1 (i−1)=Θ(

n2)
. Thus, the amortized cost per call to UNION is Θ(n).

However, you may have noticed that we could have performed essentially the same operations
more efficiently by instead calling UNION(1,2) followed by UNION(1,3), and so on, until finally
UNION(1,n). This way, we never have to perform the costly operation of walking to the tail of S1;
we only ever have to walk to the tails of one-element sets. Thus the running time for this smarter
sequence of n−1 UNION operations is Θ(n), and the amortized cost per operation is O(1).

The lesson learned from this analysis is that, when performing a UNION operation, it is best to
always merge the smaller set into the larger set, i.e., the representative element of the combined set
should be chosen equal to the representative of the larger constituent—that way, the least possible
amount of walking has to occur. To do this efficiently, we ought to augment each Si with a “size” field,
which we’ll call Si.weight (see Figure 16.1).

It turns out that the “smaller into larger” strategy gives a significant improvement in the amor-
tized worst-case running time of the UNION operation. We’ll show that the total running time of
any sequence of UNION operations on a disjoint-set data structure with n elements (i.e., in which
MAKE-SET is called n times) is O(n lgn). Thus, the running time of m operations, n of which are
MAKE-SET operations, is

O
(
m+n lgn

)
.

To start, focus on a single element u. We’ll show that the total amount of time spent updating u’s
“head” pointer is O(lgn); thus, the total time spent on all UNION operations is O(n lgn). When u is
added to the structure via a call to MAKE-SET, we have Su.weight = 1. Then, every time Su merges
with another set Sv, one of the following happens:

Lec 16 – pg. 2 of 7

Si : head

tail

weight= 3

u1

rep[Si]

u2 u3

Figure 16.1. A linked list augmented with data fields for the head, the tail, and the size (weight).

• Su.weight> Sv.weight. Then no update to u’s “head” pointer is needed.

• Sv.weight ≥ Su.weight. Then, we update u’s “head” pointer. Also, in this case, the value of
Su.weight at least doubles.

Because Su.weight at least doubles every time we update u’s “head” pointer, and because Su.weight
can only be at most n, it follows that the total number of times we update u’s “head” pointer is at
most lgn. Thus, as above, the total cost of all UNION operations is O(n lgn) and the total cost of any
sequence of m operations is O (m+n lgn).

Exercise 16.1. With this new augmented structure, do we still need the list to be doubly linked?
Which pointers can we safely discard?

16.2 Forest-of-Trees Implementation

In addition to the linked-list implementation, we also saw in Lecture 4 an implementation of the
disjoint-set data structure based on trees:

Si : u1

rep[Si]
u4 u3

u2 u5 u6

MAKE-SET(u) – initialize new tree with root node u Θ(1)

FIND-SET(u) – walk up tree from u to root Θ(height)=Θ(lgn) best-case

UNION(u,v) – change rep[Sv]’s parent to rep[Su] O(1)+2TFIND-SET

The efficiency of the basic implementation hinges completely on the height of the tree: the shorter
the tree, the more efficient the operations. As the implementation currently stands, the trees could

Lec 16 – pg. 3 of 7

u

u.rank

v

v.rank

Figure 16.2. Union by rank attempts to always merge the shorter tree into the taller tree, using rank as an estimate
(always an overestimate) of height.

be unbalanced and FIND-SET could take as long as Θ(n) in the worst case. However, this behavior
can be dramatically improved, as we will see below.

16.2.1 Union by rank

When we call UNION(u,v), rep[Sv] becomes a child of rep[Su]. Merging Sv into Su in this way results
in a tree of height

max
{
height[Su], height[Sv]+1

}
(16.1)

(why?). Thus, the way to keep our trees short is to always merge the shorter tree into the taller tree.
(This is analogous to the “smaller into larger” strategy in the linked-list implementation.) To help us
do this, we will introduce a new data field called rank. If u is the root of a tree (i.e., if u = rep[Su]),
then u.rank will be an upper bound on the height of Su.2 In light of (16.1), the pseudocode for UNION

will be as follows (see Figure 16.2):

Algorithm: UNION(ũ, ṽ)
1 u ← FIND-SET(ũ)
2 v ← FIND-SET(ṽ)
3 if u.rank= v.rank then
4 u.rank← u.rank+1
5 v.parent← u
6 else if u.rank> v.rank then
7 v.parent← u
8 else
9 u.parent← v

The following lemma shows that UNION preserves the fact that rank is an upper bound on height.

Lemma 16.1. Suppose initially the following hold:

• Su 6= Sv

2 If union by rank is the only improvement we use, then u.rank will actually be the exact height of Su. But in general,
we wish to allow other improvements (such as path compression) to decrease the height of Su without having to worry
about updating ranks. In such cases, the upper bound provided by u.rank may not be tight.

Lec 16 – pg. 4 of 7

• Su has height h1 and Sv has height h2

• rep[Su].rank= r1 and rep[Sv].rank= r2

• h1 ≤ r1 and h2 ≤ r2.

Suppose we then call UNION(u,v), producing a new set S = Su ∪Sv. Let h be the height of S and let
r = rep[S].rank. Then h ≤ r.

Proof. First, suppose r1 > r2. Then Sv has been merged into Su and r = r1. By (16.1), we have

h =max
{
h1, h2 +1

}
≤max

{
r1, r2 +1

}
= r1

= r.

A similar argument shows that h ≤ r in the case that r2 > r1. Finally, suppose r1 = r2. Then Sv has
been merged into Su and r = r1 +1= r2 +1, so

h =max
{
h1, h2 +1

}
≤max

{
r1, r2 +1

}
= r2 +1

= r.

It turns out that the rank of a tree with k elements is always at most lgk. Thus, the worst-case
performance of a disjoint-set forest with union by rank having n elements is

MAKE-SET O(1)
FIND-SET Θ(lgn)
UNION Θ(lgn).

Exercise 16.2. Amortization does not help this analysis. Given sufficiently large n and given m which
is sufficiently large compared to n, produce a sequence of m operations, n of which are MAKE-SET

operations (so the structure ultimately contains n elements), whose running time is Θ(m lgn).

Exercise 16.3. Above we claimed that the rank of any tree with k elements is at most lgk. Use
induction to prove this claim. (You may assume that UNION is the only procedure that modifies
ranks. However, you should not assume anything about the height of a tree except that it is less than
the rank.) What is the base case?

16.2.2 Path compression

The easiest kind of tree to walk up is a flat tree, where all non-root nodes are direct children of the
root (see Figure 16.3). The idea of path compression is that, every time we invoke FIND-SET and
walk up the tree, we should reassign parent pointers to make each node we pass a direct child of
the root (see Figure 16.4). This locally flattens the tree. With path compression, the pseudocode for
FIND-SET is as follows:

Lec 16 – pg. 5 of 7

u1

u4 u2 u5 u6 u3

Figure 16.3. In a flat tree, each FIND-SET operation requires us to traverse only one edge.

u1

u2 u3

u4 u5 u6 u7

u9 u8

u1

u2 u3 u7 u8

u4 u5 u6 u9

Figure 16.4. With path compression, calling FIND-SET (u8) will have the side-effect of making u8 and all of its ancestors
direct children of the root.

Algorithm: FIND-SET(u)
1 A ←;
2 n ← u
3 while n is not the root do
4 A ← A∪ {n}
5 n ← n.parent
6 for each x ∈ A do
7 x.parent← n
8 return n

What data structure should we use for A? In an ideal world, where n can truly be arbitrarily large,
we would probably want A to be a dynamically doubled array of the kind discussed in Lecture 10.
In real life, however, some assumptions can be made. For example, if you have less than a petabyte
(1024 TB, or 253 bits) of available memory, then the rank (and therefore the height) of any tree is at
most lg

(
253) = 53, and it would be slightly more efficient to maintain A as a static array of size 53

(with an end-marking sentinel value, perhaps).
It can be shown that, with path compression (but not union by rank), the running time of any

sequence of n MAKE-SET operations, f FIND-SET operations, and up to n−1 UNION operations is

Θ
(
n+ f

(
1+ log2+ f /n n

))
.

16.2.3 Both improvements together

The punch-line of this lecture is that, taken together, union by rank and path compression produce a
spectacularly efficient implementation of the disjoint-set data structure.

Lec 16 – pg. 6 of 7

Theorem 16.2. On a disjoint-set forest with union by rank and path compression, any sequence of m
operations, n of which are MAKE-SET operations, has worst-case running time

Θ
(
mα(n)

)
,

where α is the inverse Ackermann function. Thus, the amortized worst-case running time of each
operation is Θ (α(n)). If one makes the approximation α(n) = O(1), which is valid for literally all
conceivable purposes, then the operations on a disjoint-set forest have O(1) amortized running time.

The proof of this theorem is in §21.4 of CLRS. You can read it if you like; it is not essential. You
might also be interested to know that, in a 1989 paper, Fredman and Saks proved that Θ (α(n)) is
the fastest possible amortized running time per operation for any implementation of the disjoint-set
data structure.

The inverse Ackermann function α is defined by

α(n)=min
{
k : Ak(1)≥ n

}
,

where (k, j) 7→ Ak(j) is the Ackermann function. Because the Ackermann function is an extremely
rapidly growing function, the inverse Ackermann function α is an extremely slowly growing function
(though it is true that limn→∞α(n)=∞).

The Ackermann function A (at least, one version of it) is defined by

Ak(j)=
{

j+1 if k = 0
A(j+1)

k−1 (j) (that is, Ak−1 iterated j+1 times) for k ≥ 1.

Some sample values of the Ackermann function are

A1(1)= 3 A1(j)= 2 j+1

A2(1)= 7 A2(j)= 2 j+1(j+1)

A3(1)= 2047

A4(1)À 1080.

By current estimates, 1080 is roughly the same order of magnitude as the number of particles in the
observable universe. Thus, even if you are a theoretical computer scientist or mathematician, you
will still most likely never end up considering a number n so large that α(n)> 4.

Exercise 16.4. Write down a sequence of operations on the disjoint-set forest with union by rank
and path compression (including MAKE-SET operations) which cause a taller tree to be merged into a
shorter tree. Why do we allow this to happen?

Lec 16 – pg. 7 of 7

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Disjoint-Set Data Structures
	Linked-List Implementation
	Forest-of-Trees Implementation

