
MITOCW | watch?v=xVka6z1hu-I

The following content is provided under a Creative Commons license. Your support will help

MIT OpenCourseWare continue to offer high quality educational resources for free. To make a

donation or view additional materials from hundreds of MIT courses, visit MIT

OpenCourseWare at ocw.mit.edu.

PROFESSOR: All right, let's get started. Today we have another data structures topic which is, Data Structure

Augmentation. The idea here is we're going to take some existing data structure and augment

it to do extra cool things.

Take some other data structure there we've covered. Typically, that'll be a balanced search

tree, like an AVL tree or a 2-3 tree. And then we'll modify it to store extra information which will

enable additional kinds of searches, typically, and sometimes to do updates better.

And in 006, you've seen an example of this where you took AVL trees and augmented AVL

trees so that every node knew the number of nodes in that rooted subtree. Today we're going

to see that example but also a bunch of other examples, different types of augmentation you

could do. And we'll start out with a very simple one, which I call easy tree augmentation, which

will include subtree size as a special case.

So with easy tree augmentation, the idea is you have a tree, like an AVL tree, or 2-3 tree, or

something like that. And you'd like to store, for every node x, some function of the subtree,

rooted at x. Such as the number of nodes in there, or the sum of the weights of the nodes, or

the sum of the squares of the weights, or the min, or the max, or the median maybe, I'm not

sure. Some function f of x which is a function of that. Maybe not f of x, but we want to store

some function of that subtree.

Say the goal is to store f of the subtree rooted at x at each node x in a field which I'll call x.f.

So, normally nodes have a left child, right child, parent. But we're going to store an extra field

x.f for some function that you define. This is not always possible, but here's a case where it is

possible. That's going to be the easy case. Suppose x.f can be computed locally using lower

information, lower nodes.

And we'll say, let's suppose it can be computed in constant time from information in the node x

from x's children and from the f value that's stored in the children. I'll call that children.f. But

really, I mean left child.f, right child.f, or if you have a 2-3 tree you have three children,



potentially. And the .f of each of them.

OK. So suppose you can compute x.f locally just using one level down in constant time. Then,

as you might expect, you can update whenever a node ends up changing. So more formally. If

some set of nodes change-- call this at s.

So I'm stating a very general theorem here. If there is some set of nodes, which we changed

something about them. We change either their f field, we change some of the data that's in the

node, or we do a rotation, loosen those around. Then we count the total number of ancestors

of these nodes. So this subtree. Those are the nodes that need to be updated because we're

assuming we can compute x.f just given the children data. So if this data is changing, we have

to update it's parents value of f because it depends on this child value. We have to update all

those parents, all the way up to the root. So however many nodes there are there, that's the

total cost.

Now, luckily, in an AVL tree, or 2-3 tree, most balanced search structures, the updates you do

are very localized. When we do splits in a 2-3 tree we only do it up a single path to the root. So

the number of ancestors here is just going to be log n. Same thing with an AVL tree. If you

look at the rotations you do, they are up a single leaf to root path. And so the number of

ancestors that need to be updated is always order log n. Things change, and there's an order

log n ancestors of them.

So this is a little more general than we need, but it's just to point out if we did log n rotation

spread out somewhere in the tree, that would actually be bad because the total number of

ancestors could be log squared. But because in the structures we've seen, we just work on a

single path to the root, we get log n. So in a little more detail here, whenever we do a rotation

in an AVL tree. Let's say A, B, C, x, y.

Remember rotations? Been a while since we've done rotations. So we haven't changed any of

the nodes in A, B, C, but we have changed the nodes x and y. So we're going to have to

trigger an update of y. First, we'd want to update y.f and then we're going to trigger the update

to x.f. And as long as this one can be computed from its children, then we compute y.f, then

we can compute x from its children.

All right. So a constant number of extra things we need to do whenever we do rotation. And

because the rotations lie on a single path, total cost that-- once we stop doing the rotations, in

AVL insert say, then we still have to keep updating up to the root. But there's only log n at



most log n nodes to do that.

OK. Same thing with 2-3 trees. We have a node split. So we have, I guess, three keys, four

children. That's too many. So we split to two nodes and an extra node up here. Then we just

trigger an update of this f value, an update of this f value, and an update of that f value. And

because that just follows a single path everything's log n.

So this is a general theorem about augmentation. Any function that's well behaved in this

sense, we can maintain in AVL trees and 2-3 trees. And I'll remind you and state, a little more

generally, what you did in 006, which are called order statistic trees in the textbook.

So here we're going to-- let me first tell you what we're trying to achieve. This is the abstract

data type, or the interface of the data structure. We want to do insert, delete, and say,

successor searches. It's the usual thing we want out of a binary search tree. Predecessor too,

sure. We want to do rank of a given key which is, tell me what is the index of that key in the

overall sorted order of the items, of the keys?

We've talked about rank a few times already in this class. Depends whether you start at 0 or 1,

but let's say we start at one. So if you say rank of the key that happens to be the minimum,

you want to get one. If you say rank of the key that happens to be the median, you want to get

n over 2 plus 1, and so on.

So it's a natural thing you might want to find out. And the converse operation is select, let's say

of i, which is, give me the key of rank i.

We've talked about select as an offline operation. Given an array, find me the median. Or find

me the n over seventh rank item. And we can do that in linear time given no data structure.

Here, we want a data structure so that we can find the median, or the seventh item, or the n

over seventh key, whatever in log n time. We want to do all of these in log n per operation.

OK. So in particular, rank of selective i should equal i. We're trying to find the item of that rank.

So far, so good. And just to plug these two parts together. We have this data structure

augmentation tool, we have this goal we want to achieve, we're going to achieve this goal by

applying this technique where f is just the subtree size. It's the number of nodes in that subtree

because that will let us compute rank.

So we're going to use easy tree augmentation with f of subtree equal to the number of nodes



in the subtree. So in order for this to apply, we need to check that given a node x we can

compute x.f just using its children. This is easy. We just add everything up. So x.f would be

equal to 1. That's for x. Plus the sum of c.f for every child c.

I'll write this as a python interpolation so it looks a little more like an algorithm. I'm trying to be

generic here. If it's a binary search tree you just do x.left.f, plus x.right.f. But this will work also

for 2-3 trees. Pick your favorite data structure. As long as there's a constant number of

children then this will take constant time. So we satisfied this condition. So we can do easy tree

augmentation. And now we know we have subtree sizes. So given any node. We know the

number of descendants below that node. So that's cool.

It lets us compute rank in select. I'll just give you those algorithms, quickly. We can check that

they're log n time.

Yeah. So the idea is pretty simple. You have some key-- let's think about binary trees now,

because it's a little bit easier. We have some item x. It has a left subtree, right subtree. And

now let's look up from x. Just keep calling x.parent. So sometimes the parent is to the right of

us and sometimes the parent is to the left of us. I'm going to draw this in a, kind of, funny way.

But this funny way has a very special property, which is that the x-coordinate in this diagram is

the key value. Or is the sorted order of the keys, right? Everything in the left subtree of x has a

value less than x. If we say all the keys are different. Everything to the right of x has a value

greater than x. If x was the left child of its parent, that means this thing is also greater than x.

And if we follow a parent and this was the right child of that parent, that means this thing is

less than x. So that's why I drew it all the way over to the left. This thing is also less than x

because it was a, I'll call it a left parent. Here we have a right parent, so that means this is

something greater than x. And over here we have a left parent, so this is something less than

x. Let's say that's the root.

In general, there's going to be some left edges and some right edges as we go up. These

arrows will go either left or right in a binary tree. So the rank of x is just 1 plus the number of

nodes that are less than x. Number of keys that are less than x. So there's these guys, there's

these guys, and there's whatever's hanging off-- OK. Here I've almost violated my x-

coordinate rule. If I make these really narrow, that's right. All of these things, all of these nodes

in the left subtrees of these less than x nodes will also be less than x. If you think about these

other subtrees, they're going to be bigger than x. So we don't really care about them.



So we just want to count up all these nodes and all of these nodes. So the algorithm to do that

is pretty simple. We're just going to start out with--

I'm going to switch from this f notation to size. That's a little more natural. In general, you

might have many functions. Size is the usual notation for subtree size. So we start out by

counting up how many items are here. And if we want to start at a rank of 1, if the min has

rank 1, then I should also do plus 1 for x itself. If you wanted to start at zero you just omit that

plus 1. And then, all I do is walk up from x to the root of the tree. And whenever we go left

from, say x to x prime. So that means we have an x prime. It's right child is x. And so when we

went from x to its parent we went to the left.

Then we say rank plus equals x prime.left.size plus 1 for x prime itself. And maybe x

prime.left.size is zero. Maybe there's no nodes over there. But at the very least we have to

count those nodes that are to the left of us. And if there's anything down here we add up all

those things. So that lets us compute rank.

How long does it take? Well, we're just walking up one path from a leaf to a root-- or not

necessarily a leaf, but from some node x to the root. And as long we're using a balance

structure like AVL trees. I guess I want binary here, so let's say AVL trees. Then this will take

log n time. So I'm spending constant work per step, and there's log n steps. Clear?

So that's good old rank. Easy to do once you have subtree size. Let's do select for fun.

This may seem like review, but I drew out this picture explicitly because we're going to do it a

lot today. We'll have pictures like this a bunch of times. Really helps to think about where the

nodes are, which ones are less than x, which ones are greater than x. Let's do select first. This

you may not have seen in 006.

So we're going to do the reverse. We're going to start at the root and we're going to walk

down. Sounds easy enough. But now walking down is kind of like doing a search but we don't

have a key we're searching for, we have a rank we're searching for. So what is that rank?

Rank is i. OK. So on the other hand, we have the node x. We'd like to know the rank of x and

compare that to i. That will tell us whether we should go left, or go right, or whether we happen

to find the item.

Now one possibility is we call rank of x to find the rank of x. But that's dangerous because I'm

going to have a four loop here and it's going to take log n iterations. If at every iteration of



computing rank of x, and rank costs log n, then overall cost might be log squared n. So I can't

afford to-- I want to know what the rank of x is but I can't afford to say rank, open paren, x.

Because that recursive call will be too expensive. So what is the rank of x in this case? This is

a little special. What's that?

AUDIENCE: Number of left children plus 1.

PROFESSOR: Number of left, or the size of the left subtree plus 1. Yep. Plus 1 if we're counting, starting at

one. Very good. I'm slowly getting better. Didn't hit anyone this time. OK.

So at least for the root, this is the rank, and that only takes us constant time in the special

case. So we'll have to check that it's still holds after I do the loop. But it will. So, cool. Now

there are three cases. If i equals rank. If the rank we're searching for is the rank that we

happen to have, then we're done, right? We just return x. That's the easy case.

More likely is that I will be either less than or greater than the rank of x. OK. So if i is less than

the rank, this is fairly easy. We just say x equals x.left.

Did I get that right? Yep. In this case, the rank. So here we have x. It's at rank, rank. And then

we have the left subtree and the right subtree. And so if the rank were searching for is less

than rank, that means we know it's in here. So we should go left. And if we just said x equals

x.left you might ask, well what rank are we searching for in here? Well, exactly the same rank.

Fine. That's easy case.

In the other situation, if we're searching in here, we're searching for rank greater than rank.

Then I want to go right but the new rank that I'm searching for is local to this subtree. I'm

searching for i minus this stuff. This stuff is rank. So I'm going to let i be i minus rank.

Make sure I don't have any off by 1 errors. That seems to be right. OK. And then I do a loop.

So I'll write repeat.

So then I'm going to go up here and say, OK. Now relative to this thing. What is the rank of the

root of this subtree? Well, it's again going to be that node .left.size plus 1. And now I have the

new rank I'm searching for, i. And I just keep going. You could write this recursively if you like,

but here's an iterative version.

So it's actually very familiar to the select algorithm that we had, like when we did deterministic

linear time median finding or randomized median finding. They had a very similar kind of



recursion. But in that case, they were spending linear time to do the partition and that was

expensive. Here, we're just spending constant time at each node and so the overall cost is log

n. So that's nice. Any questions about that?

OK. I have a note here. Subtree size is obvious once you know that's what you should do.

Another natural thing to try to do would be to augment, for each node, what is the rank of that

node? Because then rank is really easy to find. And then select would basically be a regular

search. I just look at the rank of the root, I see whether the rank I'm looking for is too big, or

too small, and I go left or right, accordingly.

What would be bad about augmenting with rank of a node? Updates. Why? What's a bad

example for an update?

AUDIENCE: If you add new in home element.

PROFESSOR: Right. Say we insert a new minimum element.

Good catch, cameraman. That was for the camera, obviously. So, right. If we insert, this is off

to the side, but say we insert, I'll call it minus infinity. A new key that is smaller than all other

keys, then the rank of every node changes. So that's bad. It means that easy tree

augmentation, in particular, isn't going to apply. And furthermore, it would take linear time to

do this. And you could keep inserting, if you insert keys in decreasing order from there, every

time you do an insert, all the ranks increase by one. Maintaining that's going to cost linear time

per update.

So you have to be really careful that the function you want to store actually can be maintained.

Be very careful about that, say, on the quiz coming up, that when you're augmenting

something you can actually maintain it. For example, it's very hard to maintain the depths of

nodes because when you do a rotation a whole lot of depths change.

Depth is counting from the root. How deep am I? When I do a rotation then this entire subtree

went down by one. This entire subtree went up by one. In this picture. But it's very easy to

maintain heights, for example. Height counting from the bottom is OK, because I don't affect

the height of a, b, and c. I affect it for x and y but that's just two nodes. That I can afford. So

that's what you want to be careful of in the easy tree augmentation.

So most the time easy tree augmentation does the job. But in the remaining two examples, I

want to show you cooler examples of augmentation. These are things you probably wouldn't



be expected to come up with on your own, but they're cool. And they let us do more

sophisticated operations.

So the first one is called level linking. And here we're going to do it in the context of 2-3 trees,

partly for variety. So the idea of level linking is very simple. Let me draw a 2-3 tree.

Not a very impressive 2-3 tree. I guess I don't feel like drawing too much. Level linking is the

idea of, in addition to these child and parent pointers, we're going to add links on all the levels.

Horizontal links, you might call them.

OK. So that's nice. Two questions-- can we do this? And what's it good for? So let's start with

can we do this. Remember in 2-3 trees all we have to think about are splits and merges. So in

a split, we have, for a brief period, let's say three keys, four children. That's too many. So we

change that to--

I'm going to change this in a moment. For now, this is the split you know and love, maybe. At

least know. And if we think about where the leveling pointers are, we have one before. And

then we just need to distribute those pointers to the two resulting nodes. And then we have to

create a new pointer between the nodes that we just created. This is, of course, easy to do.

We're here. We're taking this node. We're splitting it in half. So we have the nodes right in our

hands so just add pointers between them. And key thing is, there's some node over here on

the left. It used to point to this node, now we have to change it to point to the left version. The

left half of the node. And there's some node over on the right. We have to change it's left

pointer to point to this right half of the node. But that's it. Constant time.

So this doesn't fall under the category of easy tree augmentation because this is not isolated

to the subtree. We're also dealing with it's left and right subtrees. But still easy to do in

constant time.

Merging nodes is going to be similar. If we steal a node from our parents or former sibling,

nothing happens in terms of level links. But if we have, say, an empty node and a node that

cannot afford any stealing. So we have single child here, two children, and we merge it into--

We're taking something from our parent. Bringing it down. Then we have three children

afterwards. Again, we used to have these level pointers. Now we just have these level

pointers. It's easy to maintain. It's just a constant size neighborhood.



Because we have the level links, we can get to our left and right neighbors and change where

the links point to. So easy to maintain in constant time. I'll call it constant overhead. Every time

we do a split or merge we spend additional constant time to do it. We're already spending

constant time. So just changes everything by constant factor. So far, so good.

Now, I'm going to have to tweak this data structure a little bit. But let me first tell you why. What

am I trying to achieve with this data structure? What I'm trying to achieve is something called

the finger search property.

So let's just think about the case where I'm doing a successful search. I'm searching for key x

and I find it in the data structure. I find it in the tree. Suppose I found one-- I search for x, I

found it. And then I search for another key y. Actually I think I'll do the reverse. First I found y,

now I'm searching for x. If x and y are nearby in the tree, I want this to run especially fast. For

example, if x is the successor of y I want this to take constant time. That would be nice.

In the worst case x and y are very far away from me in the tree then I want it to take log n

time. So how could I interpolate between constant time for finding the successor and log n

time for finding the worst case search. So I'm going to call this search of x from y. Meaning,

this is a little imprecise, but what I mean is when I call search, I tell it where I've already found

y. And here it is. Here's the node storing y. And now I'm given a key x. And I want to find that

key x given the node that stores key y. So how long should this take? Will be a good way to

interpolate between constant time at one extreme. The good case, when x and y are basically

neighbors in sorted order, versus log n time, in the worst case.

AUDIENCE: Distance along the graph.

PROFESSOR: Distance along the graph. That would be one reasonable definition. So I have a tree which you

could think of as a graph. Measure the shortest path length from x to y. Or we have a more

sophisticated graph over here. Maybe that length. The trouble with the distance in the graph,

that's a reasonable suggestion, but it's very data structure specific. If I use an AVL tree without

level links, then the distance could be one thing, whereas if I use a 2-3 tree, even without level

lengths, it's going to be a different distance. If I use a 2-3 tree with level lengths it's going to be

yet another distance. So that's a little unsatisfying. I want this to be an answer to a question. I

don't want to phrase the question in terms of that data structure.

AUDIENCE: Difference between ranks of x and y?



PROFESSOR: Difference between ranks between x and y. That's close.

So I'm going to look at the rank of x and rank of y. Let's say, take the absolute difference.

That's kind of how far away they are in sorted order. Do you want to add anything?

AUDIENCE: Log?

PROFESSOR: Log. Yeah. Because in the worst case the difference in ranks could be linear. So I want to add

a log out here to get log n in that worst case.

Add a big o for safety. That's how much time we want to achieve. So this would be the finger

search property that you can solve this problem in this much time. Again, difference in ranks is

at most n. So this is at most log n. But if y is the successor of x this will only be constant and

this will be constant.

So this is great if you're doing lots of searches and you tend to search for things that are

nearby, but sometimes you search for things are far away. This gives you a nice bound.

On the one hand, we have, this is our goal. Log difference of ranks. On the other hand, we

have the suggestion that what we can achieve is something like the distance in the graph.

But we have a problem with this. I used to think that data structure solved this problem, but it

doesn't. Let me just draw-- actually I have a tree right there. I'm going to use that one.

Suppose x is here and y is here. OK. This is a bit of a small tree but if you think about it long

enough, this node is the predecessor of this node. So their difference in ranks should be 1.

But the distance in the graph here is two. Not very impressive. But in general, you have a tree

of height log n. If you look at the root, and the predecessor of the root, they will have a rank

difference of one by definition of predecessor. But the graph distance will be log n. So that's

bad news, because if we're only following pointers there's no way to get from here to there in

constant time. So we're not quite there.

We're going to use another tweak that data structure, which is store the data in the leaves.

Tried to find a data structure that didn't require this and still got finger search. But as far as I

know, there is none. No such data structure. If you look at, say, Wikipedia about B-trees, you'll

see there's a ton of variations of B-trees. B+-trees, B*-trees. This is one of those. I think B+-

trees.



As you saw, B-trees or 2-3 trees, every node stored one or two keys. And each key only

existed in one spot. We're still only going to put each key in one spot, kind of. But it's only

going to be the leaf spots. OK. Good news is most nodes are leaves, right? Constant fraction

of the nodes are going to be leaves. So it doesn't change too much from a space efficiency

standpoint. If we just put data down here and don't put-- I'm not going to put any keys up here

for now.

So this a little weird. Let me draw an example of such a tree. So maybe we have 2, and 5, and

7, and 8, 9, let's say. Let's put 1 here. So I'm going to have a node here with three children, a

node here with two children, and here's a node with two children. So I think this mimics this

tree, roughly. I got it exactly right.

So here I've taken this tree structure. I've redrawn it. There's now no keys in these nodes. But

everything else is going to be the same. Every node is going to have 0 children if it's a leaf, or

two, or three children otherwise. Never have one child because then you wouldn't get

logarithmic depth. All the leaves are going to be at the same depth.

And that's it. OK. That is a 2-3 tree with the data stored in the leaves. It's a useful trick to

know. Now we're going to do a level linked 2-3 tree. So in addition to that picture, we're going

to have links like this.

OK. And I should check that I can still do insert and delete into these structures. It's actually

not too hard. But let's think about it.

I think, actually, it might be easier. Let's see. So if I want to do an insert-- OK. I have to first

search for where I'm inserting. I haven't told you how to do search yet. OK. So let's first think

about search.

What we're going to do is data structure augmentation. We have simple tree augmentation. So

I'm going to do it and each node, what the functions I'm going to store are the minimum key in

the subtree, and the maximum key in the subtree. There are many ways to do this, but I think

this is kind of the simplest. So what that means is at this node, I'm going to store 1 as the min

and 7 as the max.

And at this node it's going to be 1 at the min and 9 at the max. And here we have 8 as the min

and 9 as the max. Again min and max of subtrees are easy to store. If I ever change a node I

can update it based on its children, just by looking at the min of the leftmost child and the max



of the rightmost child. If I didn't know 1 and 9, I could just look at this min and that max and

that's going to be the min and the max of the overall tree. So in constant time I can update the

min and the max of a node given the min and the max of its children. Special case is at the

leaves. Then you have to actually look at keys and compare them. But leaves only have, at

most, two keys. So pretty easy to compare them in constant time. OK.

So that's how I do the augmentation. Now how do I do a search? Well, if I'm at a node and I'm

searching for a key. Well, let's say I'm at this node. I'm searching for a key like 8. What I'm

going to do is look at all of the children. In this case, there's two. In the worst case there's

three. I look at the min and max and I see where does 8 fall? Well it falls in this interval. If I

was searching for 7 1/2 I know it's not there. It's going to be in between here. If I'm doing a

successor then I'll go to the right. If I'm doing predecessor I'll go to the left. And then take

either the maximum item or the minimum item.

If I'm searching for 8 I see, oh. 8 falls in the interval between 8 and 9, so I should clearly take

the right child among those two children. In general, there's three children. Three intervals.

Constant time. I can find where my key falls in the interval. OK.

So search is going to take log n time again, provided I have these mins and maxs. If you stare

at it long enough, this is pretty much the same thing as regular search in a 2-3 tree. But I've

put the data just one level down. OK. Good.

That was regular search. I still need to do finger search, but we'll get there. And now, if I want

to do an insert into this data structure, what happens. Well I search for the key let's say I'm

inserting 6. So maybe I go here. I say because 6. Is in this interval. 6 is in neither of these

intervals. But it's closest to the interval 2, 5, or the interval 7. Let's say I go down to 2, 5. And

well, to insert 6 I'll just add a 6 on there. Of course, now that node is too big.

So there's still going to be a split case at the leaves where I have let's say, a,b,c, too many

keys. I'm going to split that into a,b and c. This is different from before. It used to be I would

promote b to the parent because the parent needed the key there. Now parents don't have

keys. So I'm just going to split this thing, roughly, in half. It works. It's still the case that

whoever was the parent up here now has an additional child. One more child. So maybe that

node now has four children but it's supposed to be two or three. So if I have a node with four

children, what I'm going to do, I'm suppose to use these fancy arrows. What do I do in this

case? It's just going to split that into two nodes with two children. And again this used to have



a parent. Now that parent has an additional child, and that may cause another split.

It's just like before. Was just potentially split all the way up to the root. If we split the root then

we get an additional level. But we could do all this and we can still maintain our level links, if

we want.

But everything will take log n. I won't draw the delete case, as delete is slightly more annoying.

But I think, in this case, you never have to worry about where is the key coming from, your

child or your parent? You're just merging nodes so it's a little bit simpler. But you have to deal

with the leaf case separately from the nonleaf case. OK.

So all this was to convince you that we can store data in the leaves. 2-3 trees still work fine.

Now I claim that the graph distance in level link trees is within a constant factor of the finger

search bound. So I claim I can get the finger search property in 2-3 trees, with data in the

leaves, with level links. So lots of changes here. But in the end, we're going to get a finger

search bound. Let's go over here.

So here's a finger search operation. First thing I want to do is identify a node that I'm working

with. I want to start from y's node. So we're supposing that we're told the node, a leaf, that

contains y. So I'm going to let v be that leaf.

OK. Because we're supposing we've already found y, and now all the data is in the leaves. So

give me the leaf that contains y. So that should take constant time. That's just part of the input.

Now I'm going to do a combination of going up and horizontal. So starting at a leaf. And the

first thing I'm going to do is check, does this leaf contain what I want? Does it contain the key

I'm searching for, which is x? So that's going to be the case. At every node I store the min and

the max. So if x happens to fall between the min and the max, then I'm happy.

Then I'm going to do a regular search in v's subtree. This seems weird in the case of a leaf. In

the case of a leaf, this is just to check the two keys that are there. Which one is x. OK. But in

general I gave you this search algorithm which was, if I decide which child to take, according to

the ranges, that's a downward search. So that's what I'm calling regular search here. Maybe

downward would be a little better.

This is the usual log n time thing. But we're going to claim a bound better than log n. If this is

not the case, then I know x either falls before v.min or after v.max.



So if x is less than v.min then I'm going to go left. v equals v. I'll call it level left to be clear. You

might say left is the left child. There's no left child here, of course. But level left is clear. We

take the horizontal left pointer. And otherwise x is greater than v.max. And in that case I will go

right. That seems logical.

And in both cases we're going to go up. x equals x.parent Whoops. v equals v.parent. X is not

changing here. X is a key we're searching for. v is the node. V for vertex. So we're always

going to go up, and then we're going to go either left or right, and we're going to keep doing

that until we find a subtree that contains x in terms of key range. Then we're going to stop this

part and we're just going to do downward search. I should say return here or something. I'm

going to do a downward search, which was this regular algorithm. And then whatever it finds,

that's what I return.

I claim the algorithm should be clear. What's less clear is that it achieves the bound that we

want. But I claim that this will achieve the finger search property. Let me draw a picture of what

this thing looks like kind of generically. On small examples it's hard to see what's going on. So

I'm going to draw a piece of a large example.

Let's say we start here. This is where y was. I'm searching for x. Let's suppose x is to the right.

'Cause otherwise I go to the other board. So x is to the right. I'll discover that the range with

just this node, this node maybe contains one other key. I'll find that range is too small. So I'm

going to go follow the level right pointer, and I get to some other node.

Then I'm going to go to the parent. Maybe the parent was the parent of those two children so

I'm going to draw it like that. Maybe I find this range is still too low. I need to go right to get to

x, so I'm going to follow a level pointer to the right. I find a new subtree. I'll go to its parent.

Maybe I find that this subtree, still the max is too small. So I have to go to the right again. And

then I take the parent. So this was an example of a rightward parent. Here's an example of a

leftward parent. This is maybe the parent of both of these two children.

Then maybe this subtree is still too small, the max is still smaller than x. So then I go right one

more time. Then I follow the parent. Always alternating between right and parent until I find a

node whose subtree contains x. It might have actually, x may be down here, because I

immediately went to the parent without checking whether I found where x is.

But if I know that x is somewhere in here then I will do a downward search. It might go left and

then down here, or it might go right, or there's actually potentially three children. One of these



searches will find the key x that I'm looking for because I'm in the case where x is between

v.min and v.max, so I know it's in there, somewhere. It could be x doesn't exist, but it's

predecessor or successor is in there somewhere.

And so one of these three subtrees will contain the x range. And then I go follow that path. And

keep going down until I find x or it's predecessor or successor. Once I find it's predecessor I

can use a level right pointer to find its successor, and so on.

So that's kind of the general picture what's going on. We keep going rightward and we keep

going up. Suppose we do k up steps. Let's look at this last step here. Step k.

How high am I in the tree? I started at the leaf level. Remember in a 2-3 tree all the leaves

have the same level. And I went up every step.

Sorry. I don't know what this is, like the 2-step dance where, let's say every iteration of this

loop I do one left or right step, and then a parent step. So I should call this iteration k. I guess

there's two k steps, then.

Just to be clear. So in iteration k, that means I've gone up k times and I've gone either right or

left k times. You can show if you start going right you keep going right. If you initially go left

you'll keep going left. Doesn't matter too much.

At iteration k I am at height k, or k minus 1, or however you want to count. But let's call it k. So

when I do this right pointer here I know that, for example, I am skipping over all of these keys.

All the keys down-- the keys are in the leaves, so all these things down here, I'm jumping over

them. How many keys are down there? Can you tell me, roughly, how many keys I'm skipping

over when I'm moving right at height k? It's not a unique answer. But you can give me some

bounds.

Say again. Number of children to the k power. Yeah. Except we don't know the number of

children. But it's between 2 and 3 Closer one should be easy but I fail. So it's between two and

three children. So there's the number-- if you look at a height k tree, how many leaves does it

have? It's going to be between 2 to the k and 3 to the k. Because I have between 2 and 3

children at every node. And so it's exponential in k. That's all I'll need.

OK. When I'm at height k here, I'm skipping over a height k minus 1 tree or something. But it's

going to be--



So in iteration k I'm skipping, at least, some constant times 2 to the k. Maybe to the k minus 1,

or to the k minus 2. I'm being very sloppy. Doesn't matter. As long as it's exponential in k, I'm

happy. Because I'm supposing that x and y are somewhat close. Let's call this rank difference

d. Then I claim the number of iterations I'll need to do in this loop is, at most, order log d.

Because if, when I get to the k-th iteration, I'm jumping over 2 to the k elements. How large

does k have to be before 2 to the k is larger than d? Well, log d. Log base 2

The number of iterations is order log d, where d is the rank difference. d is the absolute value

between rank of x and rank of y. And I'm being a little sloppy here. You probably want to use

an induction. You need to show that they're really, these items here that you're skipping over

that are strictly between x and y. But we know that there's only d items between x or y. Actually

d minus 1, I guess. So as soon as we've skipped over all the items between x and y, then we'll

find a range that contains x, and then we'll go do the downward search.

Now how long does the downward search cost? Whatever the height of the tree is. What's the

height of the tree? That's the number of iterations. So the total cost. The downward search will

cost the same as the rest of the search. And so the total cost is going to be order log d. Clear?

Any questions about finger searching with level linked data at the leaves, 2-3 trees?

AUDIENCE: Sir, I'm not sure why [INAUDIBLE] d, why is that?

PROFESSOR: I'm defining d to be the rank of x minus rank of y. My goal is to achieve a log d bound. And I'm

claiming that because once I've skipped over d items, then I'm done. Then I've found x. And at

step k I'm skipping over 2 to the k items. So how big is k going to be? Log d. That's all. I used

d for a notation here. Cool.

Finger searching. It's nice. Especially if you're doing many consecutive searches that are all

relatively close to each other. But that was easy. Let's do a more difficult augmentation.

So the last topic for today is range trees. This is probably the coolest example of

augmentation, at least, that you'll see in this class. If you want to see more you should take

advanced data structure 6851.

And range trees solve a problem called orthogonal range searching. Not orthogonal search

ranging. Orthogonal range search.

So what's the problem? I'm going to give you a bunch of points. Draw them as fat dots so you



can actually see them. In some dimension. So this is, for example, a 2D point set. OK. Over

here I will draw a 3D point set. You can tell the difference, I'm sure.

There. Now it's a 3D point set. And this is a static point set. You could make this dynamic but

let's just think about the static case. Don't want the 2D points and the 3D points to mix. Now,

you get to preprocess this into a data structure. So this is a static data structure problem. And

now I'm going to come along with a whole bunch of queries. A query will be a box. OK. In two

dimensions, a box is a rectangle.

Something like this. Axis aligned. So I give you an x min, x max, a y min, and a y max. I want

to know what are the points inside. Maybe I want you to list them. If there's a lot of them it's

going to take a long time to list them. Maybe I just want to know 10 of them as examples.

Maybe this is a Google search or something. I just get the first 10 results in the first page, I hit

next then want the next 10, that kind of thing. Or maybe I want to know how many search

results there are. Number of points in the rectangle. Bunch of different problems.

In 3D, it's a 3D box. Which is a little harder to draw. You can't really tell which points are inside

the box. Let's say these three points are all inside the box. I give you an interval in x, an

interval in y, and an interval in z, and I want to know what are the points inside. How many are

there? List them all. List 10 of them, whatever. OK.

I want to do this in poly log time, let's say. I'm going to achieve today log squared for the 2D

problem and log cubed for the 3D problem, plus whatever the size output is. So let me just

write that down. So the goal is to preprocess n points in d dimensions.

So you get to spend a bunch of time preprocessing to support a query which is, given a box,

axis aligned box, find let's say the number of points in the box. Find k points in the box. I think

that's good. That includes a special case of find all the points in the box. So this, of course, we

have to pay a penalty of order k for the output. No getting around that. But I want the rest of

the time to be log to the d.

So we're going to achieve log to the d n plus size of the output. And you get to control how big

you want the output to be. So it's a pretty reasonable data structure. In a certain sense we will

understand what the output is in log to the d time. If you actually want to list points, well, then

you have to spend the time to do it.

All right. So 2D and 3D are great, but let's start with 1D. First we should understand 1D



All right. So 2D and 3D are great, but let's start with 1D. First we should understand 1D

completely, then we can generalize. 1D we already know how to do. 1D I have a line. I have

some points on the line.

And I'm given, as a query, some interval. And I want to know how many points are in the

interval, give me the points in the interval, and so on. So how do I do this? Any ways?

If d is 1. So I want to achieve log d, sorry, log n, plus size of output. I hear whispers. Yeah?

AUDIENCE: Segment trees?

PROFESSOR: Segment tree? That's fancy. We won't cover segment trees. Probably segment trees do it.

Yeah. We know lots of ways to do this. Yeah?

AUDIENCE: Sorted array?

PROFESSOR: Sorted array is probably the simplest. If I store the items in a sorted array and I have two

values, I'll call them x1 and x2, because it's the x min and x max. Binary search for x1. Binary

search for x2. Find the successor of x1 and the predecessor of x2. I'll find these two guys. And

then I know all the ones in between. That's the match. So that'll take log n time to find those

points and then we're good.

So we could do a sorted array. Of course, sorted array is a little hard to generalize. I don't

want to do a 2D array, that sounds bad. You could, of course, do a binary search tree. Like an

AVL tree. Same thing. Because we have log n search, find successor, and predecessor, I

guess you could use Van Emde Boas, but that's hard to generalize to 2D.

You could use level links. Here's a fancy version. We could use level linked 2-3 trees with data

in the leaves. Then once I find x min, I find this point, I can go to the successor in constant

time because that's a finger search with a rank difference of 1. And I could just keep calling

successor and in constant time per item I will find the next item. So we could do that easily with

the sorted array.

BST is not so great because successor might cost log n each time. But if I have the level links

then basically I'm just walking down the link list at the bottom of the tree. OK. So actually level

linked is even better. BST would achieve something like log n plus k log n, where k is the size

of the output. If I want k points in the box I have to pay log n. For each level linked I'll only pay

log n plus k. Here I actually only need the levels at the leaves. Level links.



OK. All good. But I actually want to tell you a different way to do it that will generalize better.

The pictures are going to look just like the pictures we've talked about.

So these would actually work dynamically. My goal here is just to achieve a static data

structure. I'm going to idealize this solution a little bit. And just say, suppose I have a perfectly

balanced binary search tree. That's going to be my data structure. OK. So the data structure is

not hard, but what's interesting is how I do a range search.

So if I do range query of the interval, I'll call it ab. Then what I'm going to do is do a binary

search for a, do a binary search for b, trim the common prefix of those search paths. That's

basically finding the lowest common ancestor of a and b.

And then I'm going to do some stuff. Let me draw the picture. So here is, suppose here's the

node that contains a. Here's the node that contains b. They may not be at the same depth,

who knows. Then I'm going to look at the parents of a. I just came down from some path here,

and some path down to b. I want to find this branching point where the paths to a and the

paths to b diverge.

So let's just look at the parent of a. It could be a right parent, in which case there's a subtree

here. Could be a left parent in which case, subtree here. I'm going to follow my convention

again. That x-coordinate corresponds roughly to key. Left parent here. Maybe right parent

here. Something like that.

OK. Remember it's a perfect tree. So, actually, all the leaves will be at the same level. And,

roughly here, x-coordinate corresponds to key. So here is a. And I want to return all the keys

that are between a and b. So that's everything in this sweep line.

The parents of the LCA don't matter, because this parents either going to be way over to the

right or way over to the left. In both cases, it's outside the interval a to b. So what I've tried to

highlight here, and I will color it in blue, is the relevant nodes for the search between a and b.

So a is between a and b. This subtree is greater than a and less than b. This node, and these

nodes. This node, and these nodes. This node and these nodes. The common ancestor. And

then the corresponding thing over here. All the nodes in all these blue subtrees, plus these

individual nodes, fall in the interval between a and b, and that's it.

OK. This should look super familiar. It's just like when we're computing rank. We're trying to

figure out how many guys are to our left or to our right. We're basically doing a rightward rank



from a and a leftward rank from b. And that finds all the nodes. And stopping when those two

searches converge. And then we're finding all the nodes between a and b. I'm not going to

write down the pseudocode because it's the same kind of thing. You look at right parents and

left parents.

You just walk up from a. Whenever you get a right parent then you want that node, and the

subtree to its right. And so that will highlight these nodes. Same thing for b, but you look at left

parents. And then you stop when those two searches converge. So you're going to do them in

lock step. You do one step for a and b. One step for a and b. And when they happen to hit the

same node, then you're done. You add that node to your list. And what you end up with is a

bunch of nodes and rooted subtrees.

The things I circled in blue is going to be my return value. So I'm going to return all of these

nodes, explicitly. And I'm also going to return these subtrees. I'm not going to have to write

them down. I'm just going to return the root of the subtree, and say, hey look. Here's an entire

subtree that contains points that are in the answer. Don't have to list them explicitly, I can just

give you the tree.

Then if I want to know how many results are in the answer, well, just augment to store subtree

size at the beginning. And then I can count how many nodes are down here, how many nodes

are down here, add that up for all the triangles, and then also add one for each of the blue

nodes, and then I've counted the size of the answer in how much time? How many subtrees

and how many nodes am I returning here? Log.

Log n nodes and log n rooted subtrees because at each step, I'm going up by one for a, and

up by one for b. So it's like 2 log n. Log n.

So I would call this an implicit representation of the answer. From that implicit representation

you can do subtree size. Augmentation to count the size the answer. You can just start walking

through one by one, do an inter traversal of the trees, and you'll get the first k points in the

answer in order k time. Question?

AUDIENCE: Just a clarification. You said when we were walking up, you want to get all the ancestors in

their right subtrees. But you don't do that for the left parent, right?

PROFESSOR: That's right. As I'm walking up the tree, if it's a right parent then I take the right subtree and

include that in the answer. If it's a left parent just forget about it. Don't do anything. Just keep



following parents. Whenever I do right parent then I also add that node and the right subtree.

If it's a left parent I don't include the node, I don't include the left subtree. I also don't include

the right subtree. That would have too much stuff.

It's easy when you see the picture, you would write down the algorithm. It's clear. It's left

versus right parents.

AUDIENCE: Would you include the left subtree of b?

PROFESSOR: I would also-- thank you. I should color the left subtree of b. I didn't apply symmetry perfectly.

So we have the right subtree of a and the left subtree of b. Thanks. I would also include b if it's

a closed interval.

Slightly more general. If a and b are not in the tree then this is really the successor of a and

this is the predecessor of b. So then a and b don't have to be in there. This is still a well

defined range search. OK. Now we really understand 1D. I claim we've almost solved all

dimensions. All we need is a little bit of augmentation. So let's do it.

Let's start with 2D. But then 3D, and 4D, and so on will be easy. Why do I care about 4D range

trees? Because maybe I have a database. Each of these points is actually just a row in the

database which has four columns, four values. And what I'm trying to do here is find all the

people in my database that have a salary between this and this, and have an age between this

and that, and have a profession between this and this. I don't know what that means. Number

of degrees between this and this, whatever.

You have some numerical data representing a person or thing in your database, then this is a

typical kind of search you want to do. And you want to know how many answers you've got

and then list the first hundreds of them, or whatever. So this is a practical thing in databases.

This is what you might call an index in the database.

So let's start. Suppose your data is just two dimensional. You have two fields for every item.

What I'm going to do is store a 1D range tree on all points by x. So this data structure makes

sense if you fix a dimension. Say x is all I care about. Forget about y. So my point set. Yeah.

So what that corresponds to is projecting each of these points onto the x-axis. And now also

projecting my query.

So my new query is from here to here in x. And so this data structure will let me find all these

points that match in x. That's not good because there's actually only two points that I want, but



I find four points in this picture. But it's half of the answer. It's all the x matches forgetting about

y.

Now here's the fun part. So when I do a search here I get log n nodes. Nodes are good

because they have a single key in them. So I'll just check for each of those log n nodes. Do

they also match in y? If they do, add it to the answer. If they don't forget about it. OK.

But the tricky part is I also get log n subtrees representing parts of the answer. So potentially it

could be that your search, this rectangle, only has like five points. But if you look at this whole

vertical slab there's a billion points. Now, luckily, those billion points are represented succinctly.

There's just log n subtrees saying, well there's half a billion here, and a quarter billion here,

and an eighth of a billion here.

Now for each of that big chunk of output, I want to very quickly find the ones that match in y.

How would I find the ones matching in y? A range tree. Yeah. OK. So here's what we're going

to do. For each node, call it x. x is overloaded. It's a coordinate. So many things. Let's call it v.

In the, this thing I'm going to call the x-tree. So for every node in the x-tree I'm going to store

another 1D range tree. But this time using the y-coordinate on all points in these rooted

subtree.

At this point I really want to draw a diagram. So, rough picture. Forgive me for not drawing this

perfectly.

This is roughly what the answer looks like for the 1D range search. This is the x-tree. And here

I've searched between this value and this value in the x-coordinate. Basically I have log n

nodes. I'm going to check those separately. Then I also have these log n subtrees. For each

of those log n sub trees I'm going to have a pointer-- this is the augmentation-- to another tree

of exactly the same size. On exactly the same data that's in here. It's also over here. But it's

going to be sorted by y. And it's a 1D range tree by y. Tons of data duplication here. I took all

these points and I copied them over here, but then built a 1D range tree in y. This is all

preprocessing. So I don't have to pay for this. It's polynomial time. Don't worry too much.

And then I'm going to search in here. What does the search in there look? I'm going to get,

you know, some more trees and a couple more nodes. OK. But now those items, those points,

match in x and y because this whole subtree matched in x and I just did a y search, so I found

things that matched in y.



So I get here another log n trees that are actually in my answer. And for each of these nodes I

have a corresponding other data structure where I do a little search and I get part of the

answer.

Every one. Sounds huge. This data structure sounds huge, but it's actually small. But one

thing that's clear is it takes log squared n time, because I have log n triangles over here. For

each of them I spend log n to find triangles over here. The total output is log squared n nodes,

for each of them I have to check manually. Plus, so over here, there's log n, different searches

I'm doing. Each one has size log n. So I get log squared little triangles that contain the results

that match in x and y.

How much space in this data structure? That's the remaining challenge. Actually, it's not that

hard, because if you look at a key. So look at some key in this x-tree. Let's look at a leaf

because that's maybe the most interesting.

Here's the x-tree. x-tree has linear size. Just one tree. If I look at some key value, well, it lives

in this subtree. And so there's going to be a corresponding blue structure of that size that

contains that key. And then there's the parent. So there's a structure here. That has a

corresponding blue triangle. And then its parent, that's another triangle. That contains-- I'm

looking at a key k here. All of these triangles contain the key k. And so key k will be duplicated

all this many times, but how many sub trees is k in? Log n. Each key, fundamental fact about

balanced binary search trees, each key lives in log n subtrees. Namely all of its ancestors.

Awesome. Because that means the total space is n log n. There's n keys. Each of them is

duplicated at most log n times. In general, log to the d minus 1. So If you do it in 3D, each of

the blue trees, every node in it has a corresponding pointer to a red tree that's sorted by z.

And you just keep doing this, sort of, nested searching, like super augmentation. But you're

only losing a log factor each dimension you add.


