
Design and Analysis of Algorithms February 26, 2015
Massachusetts Institute of Technology
Profs. Erik Demaine, Srini Devadas, and Nancy Lynch Problem Set 4

Problem Set 4

This problem set is due at 11:59pm on Thursday, March 5, 2015.

Each submitted solution should start with
your name, the course number, the problem number, your recitation section, the date, and the
names of any students with whom you collaborated.

Exercise 4-1. Read CLRS, Chapter 17.

Exercise 4-2. Exercise 17.1-3.

Exercise 4-3. Exercise 17.2-2.

Exercise 4-4. Exercise 17.3-2.

Exercise 4-5. Read CLRS, Chapter 7.

Exercise 4-6. Exercise 7.1-3.

Exercise 4-7. Exercise 7.2-5.

Exercise 4-8. Exercise 7.4-4.

Problem 4-1. Extreme FIFO Queues [25 points]

Design a data structure that maintains a FIFO queue of integers, supporting operations ENQUEUE,
DEUEUE, and FIND-MIN, each in O(1) amortized time. In other words, any sequence of m op
erations should take time O(m). You may assume that, in any execution, all the items that get
enqueued are distinct.

(a)	 [5 points] Describe your data structure. Include clear invariants describing its key

properties. Hint: Use an actual queue plus auxiliary data structure(s) for bookkeeping.

(b)	 [5 points] Describe carefully, in words or pseudo-code, your ENQUEUE, DEQUEUE

and FIND-MIN procedures.

(c)	 [5 points] Prove that your operations give the right answers. Hint: You may want to

prove that their correctness follows from your data structure invariants. In that case

you should also sketch arguments for why the invariants hold.

(d)	 [10 points] Analyze the time complexity: the worst-case cost for each operation, and

the amortized cost of any sequence of m operations.

6.046J/18.410J

Please turn in each problem solution separately.

2	 Problem Set 4

Problem 4-2. Quicksort Analysis [25 points]

In this problem, we will analyze the time complexity of QUICKSORT in terms of error probabilities,
rather than in terms of expectation. Suppose the array to be sorted is A[1 . . n], and write xi for the
element that starts in array location A[i] (before QUICKSORT is called). Assume that all the xi

values are distinct.

In solving this problem, it will be useful to recall a claim from lecture. Here it is, slightly restated:

Claim: Let c > 1 be a real constant, and let α be a positive integer. Then, with probability at least
1 −

n
1
α , 3(α + c) lg n tosses of a fair coin produce at least c lg n heads.

Note: High probability bounds, and this Claim, will be covered in Tuesday’s lecture.

(a)	 [5 points] Consider a particular element xi. Consider a recursive call of QUICKSORT

on subarray A[p . . p+m−1] of size m ≥ 2 which includes element xi. Prove that, with

probability at least 1

2 , either this call to QUICKSORT chooses xi as the pivot element,

or the next recursive call to QUICKSORT containing xi involves a subarray of size at

most 3

4 m.

(b)	 [9 points] Consider a particular element xi. Prove that, with probability at least 1−
n
1
2 ,

the total number of times the algorithm compares xi with pivots is at most d lg n, for
a particular constant d. Give a value for d explicitly.

(c)	 [6 points] Now consider all of the elements x1, x2, . . . , xn. Apply your result from

part (b) to prove that, with probability at least 1 −

n
1 , the total number of comparisons

made by QUICKSORT on the given array input is at most d'n lg n, for a particular

constant d'. Give a value for d' explicitly. Hint: The Union Bound may be useful for

your analysis.

(d)	 [5 points] Generalize your results above to obtain a bound on the number of compar
isons made by QUICKSORT that holds with probability 1 −

n
1
α , for any positive integer

α, rather than just probability 1 −
n
1 (i.e., α = 1).

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

