
Lecture 21 Hashing Spring 2015

Lecture 21: Cryptography: Hashing

In this lecture, we will be studying some basics of cryptography. Specifically, we
will be covering

• Hash functions

• Random oracle model

• Desirable Properties

• Applications to security

1 Hash Functions

A hash function h maps arbitrary strings of data to fixed length output. The function
is deterministic and public, but the mapping should look “random”. In other words,

h : {0, 1} ∗ → {0, 1}d

for a fixed d. Hash functions do not have a secret key. Since there are no secrets and
the function itself is public, anyone can evaluate the function. To list some examples,

Hash function MD4 MD5 SHA-1 SHA-256 SHA-512
d 128 128 160 256 512

In practice, hash functions are used for “digesting” large data. For example, if
you want to check the validity of a large file (potentially much larger than a few
megabytes), you can check the hash value of that file with the expected hash. There­
fore, it is desirable (especially for cryptographic hash functions covered here) that
the function is collision resistant. That is, it should be “hard” to find two inputs m1

and m2 for hash function h such that h(m1) = h(m2). Most modern hash functions
hope to achieve security level of 264 or better, which means that the attacker needs
to test more than 264 different inputs to find a collision. Unfortunately, MD4 and
MD5 aimed to provide 264 security, but has been shown to be broken using 26 and
237 inputs respectively. SHA-1 aimed to provide 280 security, but has been shown (at
least theoretically) to be no more than 261 security.

1

6.046J

Lecture 21 Hashing Spring 2015

1.1 Random Oracle

The Random Oracle model is an ideal model of the hash function that is not achievable
in practice. In this model, we assume there exists an oracle h such that on input
x ∈ {0, 1}∗, if h has not seen x before, then it outputs a random value as h(x).
Otherwise, it returns h(x) it previously output. The random oracle gives a random
value for all new inputs, and gives deterministic answers to all inputs it has seen
before. Unfortunately, a random oracle does not exist since it requires infinite storage,
so in practice we use pseudo-random functions.

1.2 Desirable Properties

There are many desirable properties of a hash function.

1. One-way (pre-image resistance): Given y ∈ {0, 1}d, it is hard to find an x such
that h(x) = y.

2. Strong collision-resistance: It is hard to find any pair of inputs x, x' such that
h(x) = h(x').

3. Weak collision-resistance (target collision resistance, 2nd pre-image resistance):
Given x, it is hard to find x' such that h(x) = h(x').

4. Pseudo-random: The function behaves indistinguishable from a random oracle.

5. Non-malleability: Given h(x), it is hard to generate h(f(x)) for any function f .

Some of the properties imply others, and some others do not. For example,

• 2 ⇒ 3

• 1 ⇒ 2, 3.

Furthermore, collision can be found in O(2d/2) (using birthday paradox), and inversion
can be found in O(2d).

To give more insight as to why some properties do not imply others, we provide
examples here. Consider h that satisfies 1 and 2. We can construct a new h' such that
h' takes in one extra bit of input, and XORs the first two bits together to generate
an input for h. That is, h'(a, b, x2, . . . , xn) = h((a⊕ b), x2, . . . , xn). h' is still one-way,
but is not weak collision resistant. Now consider a different h'' that evaluates to 0||x
if |x| ≤ n, and 1||h(x) otherwise. h'' is weak collision resistant, but is not one-way.

2

6.046J

Lecture 21	 Hashing Spring 2015

1.3 Applications

There are many applications of hash functions.

1. Password Storage: We can store hash h(p) for password p instead of p directly,
and check h(p) to authenticate a user. If it satisfies the property 1, adversary
comprising h(p) will not learn p.

2. File Authenticity:	 For each file F , we can store h(F) in a secure location. To
check authenticity of a file, we can recompute h(F). This requires property 3.

3. Digital Signature: We can use hash functions to generate a signature that guar­
antees that the message came from a said source. For further explanation, refer
to Recitation 11.

4. Commitments:	 In a secure bidding, Alice wants to bid value x, but does not
want to reveal the bid until the auction is over. Alice then computes h(x), and
publicize it, which serves as her commitment. When bidding is over, then she
can reveal x, and x can be verified using h(x).

It should be “binding” so that Alice cannot generate a new x that has the same
commitment, and it should “hide” x so no ones learns anything before x is re­
vealed. Furthermore, it should be non-malleable. To guarantee secrecy, we need
more than the properties from the previous section, as h ' (x) = h(x)||MSB(x)
actually satisfies 1, 2, and 5. In practice, this problem is bypassed by adding
randomness in the commitment, C(x) = h(r||x) for r ∈R {0, 1}256, and reveal
both randomness and x at the end.

3

6.046J

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

