
Design and Analysis of Algorithms February 6, 2015
Massachusetts Institute of Technology
Profs. Erik Demaine, Srini Devadas and Nancy Lynch Recitation 1

Matrix Multiplication and the Master Theorem

1 Weighted interval scheduling

Consider requests 1,. . . ,n. For request i, s(i) is the start time and f(i) is the finish time, s(i) < f(i).
Two requests i and j are compatible if they don’t overlap, i.e., f(i) ≤ s(j) or f(j) ≤ s(i). Each
requet i has a weight w(i). Goal: schedule the subset of compatible requests with maximum
weight.

1.1 The n log n dynamic programming solution

Sort requests in earliest finish time order.

f(1) ≤ f(2) ≤ · · · ≤ f(n)

Definition p(j) for interval j is the largest index i < j such that request i and j are compatible.

Array M [0 . . . n] holds the optimal solution’s values. M [k] is the maximum weight if requests
from 1 to k are considered.

1 M[0] = 0
2 for j = 1 to n
3 M[j] = max(w(j) + M[p(j)], M[j - 1])

Once we have M, the optimal solution can be derived by tracing it back in O(n) time. Sorting
requests in earliest finish time takes O(n log n) time. And the whole algorithm takes O(n log n)
time.

2 Strassen

2.1 Matrix Multiplication

Take matrices A, B, multiply row i of A by column j of B to fill in entry i,j of resulting matrix, C.
Running time is Θ(n3) on square matrices, where n is the dimension of each matrix.

6.046J/18.410J

� � � � � �

2 Recitation 1: Matrix Multiplication and the Master Theorem

2.2 The Strassen Algorithm

•	 powerful early application of Divide and Conquer

•	 not the fastest matrix multiplication (though it was at time of discovery)

–	 Don Coppersmith, Shmuel Winograd, Andrew Stothers, and Vassilevska Williams con
tributed to the current fastest method. See http://en.wikipedia.org/wiki/
Coppersmith-Winograd_algorithm for details.

2.2.1 Steps

•	 Make A, B each 2k x 2k by filling remaining rows/columns with 0:

–	 Why can you do this?

∗	 Each dimension increases by less than a factor of 2

∗	 Even with traditional Θ(n3) matrix multiplication, this makes the running time
always increase by a factor of less than 8, not dependent on the magnitude of N,
and constant factors are always ignored when discussing complexity.

•	 Partition A, B, and C (elements unknown for C, but same dimensions) into 4 matrices of
dimension 2k−1 each

•	 We can see that the 4 submatrices of C can be found by standard matrix multiplications of A
and B, using the submatrices as “elements”

A1,1 A1,2 B1,1 B1,2 C1,1 C1,2A = , B = , C =
A2,1 A2,2 B2,1 B2,2 C2,1 C2,2

C1,1 = A1,1B1,1 + A1,2B2,1

C1,2 = A1,1B1,2 + A1,2B2,2

C2,1 = A2,1B1,1 + A2,2B2,1

C2,2 = A2,1B1,2 + A2,2B2,2

•	 Optimization is derived from the fact that matrix addition is much, much simpler than mul
tiplication (Θ(n2) instead of Θ(n3))

http://en.wikipedia.org/wiki
http://en.wikipedia.org/wiki

Recitation 1: Matrix Multiplication and the Master Theorem 3

Define M1 = (A1,1 + A2,2)(B1,1 + B2,2)

M2 = (A2,1 + A2,2)B1,1

M3 = A1,1(B1,2 − B2,2)

M4 = A2,2(B2,1 − B1,1)

M5 = (A1,1 + A1,2)B2,2

M6 = (A2,1 − A1,1)(B1,1 + B1,2)

M7 = (A1,2 − A2,2)(B2,1 + B2,2)

Thus, C1,1 = M1 + M4 − M5 + M7 = A1,1B1,1 + A1,2B2,1

C1,2 = M3 + M5 = A1,1B1,2 + A1,2B2,2

C2,1 = M2 + M4 = A2,1B1,1 + A2,2B2,1

C2,2 = M1 − M2 + M3 + M6 = A2,1B1,2 + A2,2B2,2

Proof of correctness follows from arithmetic.

We can recursively calculate each of the above submatrices using equally-sized submatrices of

A1,1, etc., which is why we needed dimensions of 2n instead of merely even dimensions.
When you have C, strip out rows/columns of 0s that correspond to the same parts of A and B.

•	 Each recursive step takes 7 multiplications and 18 additions, instead of 8 multiplications

•	 We can see that this would be less efficient than 8 multiplications for small matrices. For a
2-element matrix being broken into 4 1-element matrices, it’s over triple the work!

log2(7)) ≈ Θ(n2.8074)Running time: T(n) = Θ(n
How do we get this value? (next up)

3 Master Theorem

3.1 General use
General form of a recurrence:

T (n) = aT (n/b) + f(n)

logb(a))
•	 f(n) polynomially less than nlogb(a): T (n) = Θ(n

•	 f(n) is Θ(nlogb(a) logk(n)), where k ≥ 0: T (n) = Θ(f(n) log(n)) = Θ(nlogb(a) logk+1(n))

•	 nlogb(a) polynomially less than f(n), and af(n/b) ≤ cf(n) for some constant c < 1 and all
sufficiently large n: T (n) = Θ(f(n))

If nlogb(a) is greater, but not polynomially greater, than f(n), the Master Theorem cannot be
used to determine a precise bound.

(e.g. T (n) = 2T (n/2) + Θ(n/ log(n)))

� �

4 Recitation 1: Matrix Multiplication and the Master Theorem

3.2 Strassen Runtime
Now, think about Strassen’s algorithm. It performs 7 multiplications and 18 additions/subtractions
each iteration. The addition is performed directly; the multiplications are done recursively using
the Strassen Algorithm.

In each recursive step, we divide the matrix into 4 parts; however, remember that we consider
the running time in terms of the dimension of the matrix, not the total number of elements.

Thus, the recurrence becomes

T (n) = 7T (n/2) + 18Θ(n 2) = 7T (n/2) + Θ(n 2)

We can then examine the Master Theorem:
nlog2(7)) is polynomially greater than n2

Thus, Θ(nlog2(7)) is the solution to the recurrence.

3.3 Median Finding m v
nProve that T (n) = T (
5) + T (7

10
n + 6) + Θ(n) solves for T (n) = Θ(n).

Proof: We use the substitution method (details can be found in the CLRS textbook) to solve
the recurrence. We first guess the form of the answer to be O(n), and try to prove that T (n) ≤ dn
for some value of d. We first assume that the bound holds for all positive m < n, and thus it holds m v

nfor T (
5) and T (7

10
n + 6) if n is large enough. Substituting into the recurrence yields

n 7n
T (n) = T () + T (+ 6) + cn (1)

5 10
n 7n ≤ d(+ 1) + d(+ 6) + cn (2)
5 10

9
= dn + 7d + cn (3)

10
≤ dn (4)

The last inequality holds if d > 10c when n is large enough.

3.4 Extra details
Drawing a recursion tree using the recurrence T (n) = 4T (n/2) + Θ(n2) will show why the log

logb(a)factor is used if f(n) is not polynomially greater than n . Think of the total amount of work
that must be done.

Feel free to examine T (n) = 4T (n/2) + Θ(n2 log(n)) to see why the solution must be
Θ(n2 log2(n)) instead of just Θ(n2 log(n)).

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

