
Lecture 15 Linear Programming  Spring 2015
 

Lecture 15: Linear Programming
 

Linear programming (LP) is a method to achieve the optimum outcome under 
some requirements represented by linear relationships. More precisely, LP can solve 
the problem of maximizing or minimizing a linear objective function subject to some 
linear constraints. 

In general, the standard form of LP consists of 
• Variables: x = (x1, x2, . . . , xd)

T 

• Objective function: c · x 

• Inequalities (constraints): Ax ≤ b, where  A is a n× d matrix 

and we maximize the objective function subject to the constraints and x ≥ 0. 
LP has many different applications, such as flow, shortest paths, and even politics. 

In this lecture, we will be covering different examples of LP, and present an algorithm 
for solving them. We will also learn how to convert any LP to the standard form in 
this lecture. 

1 Examples of Linear Programming: Politics 

In this example, we will be studying how to campaign to win an election. In general, 
there are n demographics, each with pi people, and m issues that the voters are 
interested in. Given the information on how many votes can be obtained per dollar 
spent advertising in support of an issue, how can we guarantee victory by ensuring a 
majority vote in all demographics?1 

In particular, consider the example with 3 demographics and 4 issues shown in 
Table 1. What is the minimum amount of money we can spend to guarantee majority 
in all demographics? 

Let x1, x2, x3, x4 denote the dollars spent per issue. We can now formulate this 
problem as an LP problem: 

Minimize x1 + x2 + x3 + x4 

Subject to − 2x1 + 8x2 + 0x3 + 10x4 ≥ 50, 000 (Urban Majority) (1) 

5x1 + 2x2 + 0x3 + 0x4 ≥ 100, 000 (Suburban Majority) (2) 

3x1 − 5x2 + 10x3 − 2x4 ≥ 25, 000 (Rural Majority) (3) 

x1, x2, x3, x4 ≥ 0 (Can’t unadvertise) (4) 

1We will assume that the votes obtained by advertising different issues are disjoint. 
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Policy Demographic 
Urban Suburban Rural 

Building roads -2 5 3 
Gun Control 8 2 -5 

Farm Subsidies 0 0 10 
Gasoline Tax 10 0 2 

Population 100,000 200,000 50,000 

Table 1: Votes per dollar spent on advertising, and population.
 

1.1 Certificate of Optimality 

Though we have not presented an algorithm for solving this problem, given a solution, 
we can verify that the solution is optimal with a proper certificate. For example, 

2050000 
x1 = 

111 
425000 

x2 = 
111 

x3 = 0  
625000 

x4 = 
111 

3100000 
x1 + x2 + x3 + x4 = 

111 

is a solution to this problem. Now consider the following equation (certificate): 

25 46 14 140 · (1) + · (2) + · (3) = x1 + x2 + x3 + x4
222 222 222 222
 

25 46 14
 ≥ · 50000 + · 100000 + · 25000 
222 222 222 
3100000 

= 
111 

140 3100000 ⇒ x1 + x2 + x3 + x4 ≥ 
222 111 

We also know that x1 + x2 + x3 + x4 ≥ x1 + x2 + 140 x3 + x4. Therefore, the given 
222 

solution is an optimal solution to the problem. 
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2 Linear Programming Duality 

The short certificate provided in the last section is not a coincidence, but a conse­
quence of duality of LP problems. For every primal LP problem in the form of 

Maximize c · x 

Subject to Ax ≤ b, x ≥ 0, 

there exists an equivalent dual LP problem 

Minimize b · y 

Subject to AT y ≥ c, y ≥ 0. 

This property of LP can be used show many important theorems. For instance, the 
max-flow min-cut theorem can be proven by formulating the max-flow problem as the 
primal LP problem. 

3 Converting to Standard Form 

The natural LP formulation of a problem may not result in the standard LP form. In 
these cases, we can convert the problem to standard LP form without affecting the 
answers by using the following rules. 

•	 Minimize an objective function: Negate the coefficients and maximize. 

•	 Variable xj does not have a non-negativity constraint: Replace xj with 
" "" " ""x	 − x , and  xj , x ≥ 0.j j j 

•	 Equality constraints: Split into two different constraints; x = b ⇒ x ≤ b, x ≥ 
b. 

•	 Greater than or equal to constraints: Negate the coefficients, and translate 
to less than or equal to constraint. 

4 Formulating LP Problems 

In this section, we will give brief descriptions of how to formulate some problems seen 
previously in this class as LP problems. Once we have a LP formulation, we can 
convert the problem into the standard form as described in Section 3. 
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4.1 Maximum Flow 

We can model the max flow problem as maximization of sum of flows, under some 
constraints which will model different properties of the flow. Given G(V, E), the 
capacity c(e) for  each  e ∈ E, the source s, and the sink t, 

L 
Maximize f(s, v) 

v∈V 

Subject to f(u, v) =  −f(v, u) ∀u, v ∈ V skew symmetry 
L 

f(u, v) = 0  ∀u ∈ V − {s, t} conservation 
v∈V 

f(u, v) ≤ c(u, v) ∀u, v ∈ V capacity. 

4.2 Shortest Paths 

We can model the shortest paths problem as minimization of the sum of all distances 
from a node. Note that this sum is minimized only when all distances are minimized. 
Given G(V, E), the weight w(e) for  each  e ∈ E, and the source s, 

L 
Maximize d(v) 

v∈V 

Subject to d(v) − d(u) ≤ w(u, v)∀u, v ∈ V triangular inequality 
L 

d(s) = 0. 
v∈V 

Note the maximization above, so all distances don’t end up being zero. There is no 
solution to this LP if and only if there exists a negative weight cycle reachable from 
s. 

5 Algorithms for LP 

There are many algorithms for solving LP problems: 

•	 Simplex algorithm: In the feasible region, x moves from vertex to vertex in 
direction of c. The algorithm is simple, but runs in exponential time in the 
worst case. 

•	 Ellipsoid algorithm: It starts with an ellipsoid that includes the optimal 
solution, and keeps shrinking the ellipsoid until the optimal solution is found. 
This was the first poly-time algorithm, and was a theoretical breakthrough. 
However, the algorithm is impractical in practice. 
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•	 Interior Point Method: x moves inside the polytope following c. This algo­
rithm runs in poly-time, and is practical. 

In this lecture, we will study only the simplex algorithm. 

5.1 Simplex Algorithm 

As mentioned before, the simplex algorithm works well in practice, but runs in ex­
ponential time in the worst case. At a high level, the algorithm works as Gaussian 
elimination on the inequalities or constraints. The simplex algorithm works as follows: 

•	 Represent LP in “slack” form. 

•	 Convert one slack form into an equivalent slack form, while likely increasing the 
value of the objective function, and ensuring that the value does not decrease. 

•	 Repeat until the optimal solution becomes apparent. 

5.1.1 Simplex Example 

Consider the following example: 

Minimize 3x1 + x2 + x3 

Subject to x1 + x2 + 3x2 ≤ 30 

2x1 + 2x2 + 5x3 ≤ 24 

4x1 + x2 + 2x3 ≤ 36 

x1, x2, x3 ≥ 0 

Change the given LP problem to slack form, consisting of the original variables 
called nonbasic variables, and new variables representing slack called basic variables. 

z = 3x1 + x2 + 2x3 

x4 = 30  − x1 − x2 − 3x3 

x5 = 24  − 2x1 − 2x2 − 5x3 

x6 = 36  − 4x1 − x2 − 2x3 

We start with a basic solution: we set all nonbasic variables on the right hand side 
to some feasible value, and compute the values of the basic variables. For instance, 
we can set x1 = x2 = x3 = 0. Note that the all 0 solution satisfies all constraints in 
this problem, but may not do so in the general case. 

We now perform the pivoting step: 
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•	 Select a nonbasic variable xe whose coefficient in the objective function is posi­
tive. 

•	 Increase the value of xe as much as possible without violating any constraints. 

•	 Set xe to be basic, while some other basic variable becomes nonbasic. 

In this example, we can increase the value of x1. The third constraint will limit 
the value of x1 to 9. We then get 

x2 x3 x6 
x1 = 9  − − − . 

4 2 4 

Now rewrite the other constraints with x6 on the right hand side. 

x2 x3 3x6 
z = 27 +  + − 

4 2 4 
x2 x3 x6 

x1 = 9  − − − 
4 2 4 
3x2 5x3 x6 

x4 = 21  − − + 
4 2 4 

3x2 x6 
x5 = 6  − − 4x3 + 

2 2 

We note the equivalence of the solutions. That is, the original basic solution 
(0, 0, 0, 30, 24, 36) satisfies the rewritten constraints, and has the objective value of 0. 
The second basic solution (9, 0, 0, 21, 6, 0) has the objective value of 27. 

At this point, pivoting on x6 will actually cause the objective value to decrease 
(though the computation is not shown here). Thus let us pick x3 as the next pivot 
to get 

111 x2 x5 11x6 
z = + − − 

4 16 8 16 
33 x2 x5 5x6 

x1 = − + − 
4 16 8 16 
3 3x2 x5 x6 

x2 = − − + − 
2 8 4 8 
69 3x2 5x5 x6 

x4 = + + − 
4 16 8 16 

which results in basic solution (33 , 0, 3 , 69 , 0, 0) with objective value of 111 .
4 2 4	 4 
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Finally, pivoting on x2 yields 

x3 x5 2x6 
z = 28  − − − 

6 6 3 
x3 x5 x6 

x1 = 8 +  + − 
6 6 3 
8x3 2x5 x6 

x2 = 4  − − + 
3 3 3 
x3 x5 

x4 = 18  − + 
2 2 

Though we will not prove the correctness of this algorithm in this lecture, when all 
coefficients of all nonbasic variables are negative, the simplex algorithm has found the (

n+m
)

optimal solution. In general, simplex algorithm is guaranteed to converge in 
n 

iterations where n is the number of variables, and n + m is the number of constraints. 
This for general n and m can be exponential. 

6 More Topics of LP 

There are several important questions regarding LP that were not discussed in this 
lecture: 

• How do we determine if LP is feasible? 

• What if LP is feasible, but the initial basic solution is infeasible? 

• How do we determine if the LP is unbounded? 

• How do we choose the pivot? 

These questions are answered in the textbook and other LP literature. 
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