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Massachusetts Institute of Technology 
Profs. Erik Demaine, Srini Devadas, and Nancy Lynch Problem Set 9 

Problem Set 9 

This problem set is due at 11:59pm on Thursday, April 30, 2015. 

Each submitted solution should start with your name, the course number, the problem number, 
your recitation section, the date, and the names of any students with whom you collaborated. 

Exercise 9-1. Read CLRS, Chapter 35. 

Exercise 9-2. Exercise 35.2-3. 

Exercise 9-3. Exercise 35.4-2. 

Exercise 9-4. Read Prof. Demaine’s notes on fixed-parameter algorithms. 

Problem 9-1. Knapsack [25 points] 

In the Knapsack problem, we are given a set A = {a1, . . . , an} of items, where each ai has a 
specified positive integer size si and a specified positive integer value vi. We are also given a 
positive integer knapsack capacity B. Assume that si ≤ B for every i. The problem is to find a 
subset of A whose total size is at most B and for which the total value is maximized. 

In this problem, we will consider approximation algorithms to solve the Knapsack problem. 

Notation: For any subset S of A, we write sS for the total of all the sizes in S and vS for the total 
of all the values in S. Let Opt denote an optimal solution to the problem. 

(a)	 [5 points] Consider the following greedy algorithm Alg1 to solve the Knapsack prob
lem:
 
Order all the items ai in non-increasing order of their density, which is the ratio of
 
value to size, v

si
i . Make a single pass through the list, from highest to lowest density.
 

For each item encountered, if it still fits, include it, otherwise exclude it.
 
Prove that algorithm Alg1 does not guarantee any constant approximation ratio. That 
is, for any positive integer k, there is an input to the algorithm for which the total value 
of the set of items returned by the algorithm is at most vOpt .

k 

(b)	 [7 points] Consider the following algorithm Alg2 .
 
If the total size of all the items is ≤ B, then include all the items. If not, then order all
 
the items in non-increasing order of their densities. Without loss of generality, assume
 
that this ordering is the same as the ordering of the item indices. Find the smallest
 
index i in the ordered list such that the total size of the first i items exceeds B (i.e.,
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 i  i−1	  i−1 
j=1 sj > B, but sj ≤ B). If vi > vj , then return {ai}. Otherwise,j=1	 j=1 

return {a1, . . . , ai−1}.
 
Prove that Alg2 always yields a 2-approximation to the optimal solution.
 

(c)	 [5 points] Let A = {a1, . . . , an} be the input ordered arbitrarily, and V be the largest
 
value for any item; then nV is an upper bound on the total value that could be achieved
 
by any solution. For every i ∈ {1, . . . , n} and v ∈ {1, . . . , nV }, define Si,v to be the
 
smallest total size of a subset of {a1, . . . , ai} whose total value is exactly v; Si,v = ∞
 
if no such subset exists.
 
Give a dynamic programming algorithm Alg3 to solve Knapsack exactly. Specifically, 
give a recurrence to compute all values of Si,v, and explain how to use this to solve 
the Knapsack problem. Analyze its time complexity. 

(d)	 [8 points] Finally, we develop Alg4 , which is a Fully Polynomial Time Approximation
 
Scheme (FPTAS) for Knapsack. The idea is to use an exact dynamic programming
 
algorithm like the one in Part (c), but instead of using the given (possibly large) values
 
for the items, we use versions of the given values that are suitably scaled and rounded
 
down. As in Part (c), order A = {a1, . . . , an} arbitrarily, and let V be the largest value
 
for any item.
 
For any ε, 0 < ε < 1, Alg4 behaves as follows: 

� = l(viFor each item ai with value vi, define a scaled value vi V )(
n
ε )J.
 

Using these scaled values (and the given sizes), run Alg3 and output the set C of items
 
that it returns.
 
Prove that Alg4 is a FPTAS for Knapsack. 

Problem 9-2. Fixed-Parameter Algorithms [25 points]
 

We consider the Tournament Edge Reversal problem. Define a tournament to be a directed graph
 
T = (V, E) such that, for every pair of vertices u, v ∈ V , exactly one of (u, v) and (v, u) is in E.
 
Furthermore, define a cycle cover to be a set A ⊂ E of directed edges of a tournament T such that,
 
every directed cycle of T contains at least one edge from A.
 

(a)	 [5 points] Let a minimal cycle cover of T be a cycle cover with the least number of
 
edges. Prove that reversing all the edges of a minimal cycle cover A turns T into an
 
acyclic tournament. (Hint: Any edge e ∈ A must be the only edge in A on some
 
directed cycle of T .)
 

In the Tournament Edge Reversal problem, we are given a tournament T and a positive integer k, 
and the objective is to decide whether T has a cycle cover of size at most k. 

(b)	 [15 points] Show that this problem has a kernel with at most k2 + 2k vertices. (Hint:
 
Define a triangle to be a directed cycle of length 3. Consider the number of times that
 
a node or an edge appears in different triangles.)
 

(c)	 [5 points] Obtain a FPT algorithm for the Tournament Edge Reversal problem. 



MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



