MITOCW | watch?v=cNB2IADK3_s

SRINIVAS
DEVADAS:

The following content is provided under a Creative Commons license. Your support will help

MIT OpenCourseWare continue to offer high quality educational resources for free.

To make a donation or view additional materials from hundreds of MIT courses, visit MIT

OpenCourseWare at ocw.mit.edu.

All right. Good morning, everyone. Let's get started. A new module today-- we're going to

spend a few lectures on randomized algorithms.

And so not only will we look at slightly different ways of solving old problems like sorting, we'll
also look at how we can analyze this new kind of algorithm that generates random numbers in
order to actually make decisions as it's executing and that we'll end up obviously with the
analysis that gives us the expected run time of the algorithm-- for example, whether the
algorithm is going to produce a correct result or not, with what probability will this algorithm

produce a correct result.

So I'll talk a little bit about why we're interested in randomized algorithms in a couple of
minutes, but let me define what a randomized algorithm, or a probabilistic algorithm, is to start

things off.

And so randomized algorithm is something that generates a random number.

Now, this would be a coinage flip, but more often than not, you're generating a real number
that comes from a sudden range. Sometimes you're generating a vector. You'll see a couple
of different examples here in today's lecture and in section. And it's going to make decisions

based on this value, based on r's actual value.

Now, you can imagine that an algorithm would be recursive, and at every level of recursion, it's
going to generate a random r. So when you're executing at a particular level of recursion, you
may be doing different things based on r. And not only that, if you re-run the algorithm again
on the same input, the execution will be different because you're resuming a true random
number generator as opposed to a pseudo random one. And the r's that you're going to get at
different levels of recursion or through the execution of the algorithm are going to be different

from the first time to the second time.

So on the same input on different executions, two things might happen. The algorithm may run

for a different number of steps.

So you might get lucky on the first execution, and the algorithm finishes, let's say at 100 time

units. The second time around, it takes a long time. It takes 700 time units.

Our goal here is to try and analyze what this probabilistic runtime would be to ask for an
expectation, to be able to compute an expectation for the runtime, or-- if you're talking about a

different scenario where different executions-- | could actually produce different outputs.

And in this case, it's possible that one or more of these outputs are incorrect. You actually get
the wrong answer. And obviously, that's going to happen with a certain probability. You're

going to have to decide or analyze what that probability is.

And generally speaking, we won't be happy with a high probability of error, as you can
imagine. And we'd like to set up an algorithm such that you can reduce that probability of
incorrect output to be something really, really small. And it might take you longer to get to that

low level of incorrect output in one case for a certain set of inputs versus another case.

So that's this set up here in terms of randomized. You're going to have algorithms that-- you
can think of them as probably correct. So these are algorithms-- you want to think of them as

probably correct, and they do have a name. They're called Monte Carlo algorithms.

And then you have algorithms that are probably fast.

So-- indicates a probably correct-- you could have a constant probability that they're going to
give you the correct answer, 99%. And you could obviously try and parametrize that. In the
case of probably fast, you say things like, it runs an expected polynomial time. And really what
that means is that you may have to run it for more information. So rather than taking 100

iterations or 100 steps to sort something, it might take you 110.

But in the case of probably fast, you do get the sorted result at the end. And when the
algorithm has finished execution, you do get that sorted result at the end. So it's correct and
probably fast or probably correct and deterministically fast. OK. And this is Las Vegas. So you

have Monte Carlo versus Las Vegas here.

AUDIENCE:

SRINIVAS
DEVADAS:

AUDIENCE:

SRINIVAS
DEVADAS:

So yesterday, it occurred to me-- and I've taught this class a bunch of times-- but it occurred to
me for the first time last night that there should be algorithms that are probably correct and
probably fast, which means that they're incorrect and slow some of the time. Right? So what

do you think those algorithms are called? Sorry. What?

T?

The T? Oh. Oh! That deserves a Frisbee. Oh my goodness! [LAUGHS] All right. There you go.

There you go.

All right.

Now, they're not called the T. So we should write that down so everyone knows. Probably
correct and probably fast, which is | guess they don't get you anywhere. | don't know what that

means-- incorrect and so in the case of the T.

So the MB/TA.

Any guesses? | mean, think about what we have for Monte Carlo, Las Vegas. Extrapolate.

These are the kinds of questions you're going to get on your quiz.

| guess you guys don't gamble you. Go ahead.

Atlantic City.

Atlantic City. That deserves a Frisbee. Yeah. Absolutely right. That It turns out Atlantic City

isn't a name that's really caught on, but it was in terms of being used in this context.

Most of the time, if you do have a probably correct probably fast algorithm, you can convert it
into a Monte Carlo algorithm or a Las Vegas algorithm. There are some prime testing
algorithms to test whether a particular number is a prime or not that run in probabilistic
polynomial time, and they may incorrectly tell you that the number is a prime. So that's an

example of an Atlantic City algorithm.

We won't actually do Atlantic City. What we'll do is we'll take a look at a couple of different

algorithms, and both of these will motivate why randomized algorithms are interesting.

The Monte Carlo example is checking matrix multiply. So you've gotten a couple of square

matrices. Both of them are n by n matrices, and you multiply them out-- A times B, and you

produce C. And so you got the C matrix. And rather than re-multiplying and checking the
result, you'd like to do something better. You'd like to verify with some probability that you can

parametrize that the output matrix is in fact the product of the two input matrices.

And so that's a randomized algorithm that's a Monte Carlo because you're not guaranteeing
that that output matrix is in fact the product of the first two matrices or the operand matrices,
but you're getting a good sense of how likely that is. And you can kind of squish that probability
of error down to however low you want it to be except you have to run the algorithm for longer.

So that's an example of Monte Carlo.

Now, quicksort. It doesn't make sense to say-- | guess you could-- but it doesn't make too
much sense to say that you have an almost sorted array. What does that mean exactly? You
have to categorize that. So quicksort is an example where you're guaranteed to get a sorted
array at the end of it. So it's correct. You will get a sorted ray. That's what you wanted--
descending order, ascending order. But it might not run in order n log n time. That's expected

time. Order n log n is expected time. And so that's what probably fast would correspond to.

All right? So that's the set up. You can kind of see why these are interesting because you
could imagine that in practical scenarios, you might want to do some checking in a probabilistic

way. And you want to do that without having to redo all the work.

Obviously you don't want your checker for matrix multiply to be as slow as multiplying two
matrices. Otherwise it makes no sense. So let's dive into matrix product and our first example

of a probably correct algorithm, or Monte Carlo algorithm.

So what | want to do here is C equals A times B. And the simple algorithm-- | guess, those of
us who went to high school, myself included, did my four years-- know of an n cube algorithm--

or learned it back then.

It simply corresponds to taking rows and columns, and you get an entry. You have n square
entries that you need to compute corresponding to the output matrix C. And you're going to do
order n multiplications and additions, but we're really going to consider multiplications here.
When | talk about n here, it's not the total number of operations. It's the number of
multiplications. And the reason for that is-- this may have gone away a little bit, but it's still
probably true-- that multiplication, in computers, it takes longer to multiply two numbers,

integers are floating point numbers, than adding numbers.

It used to be much more dramatic, the differences between multiplying and add in computers.
But thanks to pipelining and lots of optimizations, multiplies are actually very fast. But they are,

obviously, a more sophisticated operation than addition. So we'll be counting multiplies.

So when you've seen Karatsuba divide and conquer for multiply, back end in 006. Remember
that we were counting multiplications, and we were actually trading off multiplications for
additions. We were trying to shrink that number associated with the complexity of the algorithm
when counting the number of multiplies. And we actually counted the number of additions that
were going up-- at least from a constant factor standpoint, not necessarily from an asymptotic

complexity standpoint.

And so that's simple algorithm. You probably heard of Strassen. Some of you might have seen
it. Essentially what happens with Strassen is you multiply two two by two matrices using seven

multiplications as opposed to eight.

Now, if you do that-- and this is similar to the Karatsuba analysis-- you can do this in n raised

to log 2 7 time, which is essentially n raised to 2.81 time.

And so rather than n cubed, you can go down to n raised 2.81.

Now it turns out people have obviously not stopped with this. You can go to n raised to 2.70 by
doing something of the order of 143,000 multiplications for 70 by 70 matrices. So you can play
around. Just like you had Toom-Cook. | don't know if you remember that or it got covered--
but Karatsuba could get generalized into this thing called Toom-Cook. And the same thing,
Strassen-- you could go off and divide and conquer whose base case is not two by two, but 70

by 70, and that improves things.

But it turns out there's other arithmetic series summation ways. And so a famous algorithm
that's up until 2010 was the best complexity algorithm known. It's Coppersmith-Winograd,

which is 2.376.

And then at some point, we had a faculty candidate here who either shrunk this from 2.376 to
2.373. And it turns out that there were two different researchers who came up with a 2.373,
but this particular candidate in the sixth decimal place won. So she had an eight. Person had a

nine or something.

But anyway, all of these are impractical. OK. You don't want to use them. The constant factors

associated with these things are much larger than what you have here. The constant factors

here, | guess it's one, right? Makes sense that it would be one, forgetting the additions of

course.

So if you have large constant factors, then you need a billion by billion matrix in order to win.
And if you have billion by billion matrices that you want to multiply, do something else. OK. You

don't want to go there. Even in the day of the internet, it's not going to work.

So what we'd like to do now is do something better. So we will try-- given that theoretical
computer science class, it makes sense to say that our verification algorithm should be better

than n raised to 2.376 or 2.3-whatever. Right? Otherwise, it doesn't feel good.

So what we'd like to do-- and we can do this-- is try and get an order n square algorithm--
that's this. So it's probably correct Monte Carlo algorithm where if you have A times B equals
C, then the probability of the output equals yes is 1. So in fact, if you got it right, then the
verifier is going to not give you a false negative. It's not going to say-- no, you got it wrong--

when you got it right.

But it could give you up a false positive with some probability where you have the probability of
output equals yes, and that's a false positive. But you can bound that to be less than half. OK.

So it's going to say, yes.

So obviously, if the verifier kept saying yes all the time, you wouldn't have this. It wouldn't be
very interesting. | would be constant time, but it wouldn't be very interesting. What is
interesting here is that when they're not equal, you're going to get an incorrect result with

some operand on the probability.

So you say, about one half seems kind of high-- 50% flipping a coin.

The good news is that these algorithms, you can run them over and over. You can run this
checker over and over. And as long as executions are independent, and you can certainly
ensure that they're independent by ensuring that the randomness from one execution to
another-- the flipping of the coins-- are independent. OK. And so that's relatively easy to do, in

certainly all of the scenarios we'll be looking at. In 046, it's relatively easy to do.

You can now drive this probability down to one quarter with two executions because you'll just
check different things. And then one eighth with three and so on and so forth. So that's what's

cool about it.

And now, if you can look at the runtime, you say, well, runtime still order n square.

That's the beauty of this because I'm just putting an extra constant factor here where | have k

n square, where Kk is a constant.

And effectively, | have this nice relationship in terms of the probability of error going down to 1

divided by 2 raised to k. And what | have here is a k n square.

So that's what's cool about it. And obviously, k n square is 2 order n square in a polynomial

time, and but the probably correct aspect of it gets better and better. OK.

Any questions so far?

All right. Good.

So what we're going to do is this algorithm actually works for arbitrary matrices-- the structure
at least. We're going to assume that the matrix entries are Boolean. They're going to work in
the finite field mod 2. And it's just is an easier proof. It's easier to see. So the complexities are
all the same. You're still multiplying numbers. They happen to be small. And multiplication cost
you one operation. And you need to do n cubed multiplies to actually get the C matrix, and you

have to verify it order n square time.

And so the number of multiplies, again, that you want to use in your verification algorithm has

to be order n square. We're ignoring the additions.

So that's what we'd like out of our matrix product checker, and the algorithm we're going to

look at is called Freivald's algorithm, cute little algorithm, that does the following.

So the algorithm itself is very straightforward, in couple of lines, a minute or so to describe,
and the interesting aspect of it is the analysis-- the fact that you can show this. That's the cool

part. If you couldn't show that, there's nothing cool about this algorithm.

So we're going to choose a random binary vector. So there you go. Here's your randomness.
And this binary vector, every time you run it, as the k increases here, the random binary vector
is different from one to another. That's important. You can't run the same thing again and then

expect a different result. That's called insanity.

But you are going to assume that given that we are working in the binary space and this is a
binary vector, you're going to assume that r i equals 1 is half independently for i equals 1

through n.

And the algorithm essentially is this-- we're going to do a bunch of matrix vector multiplies. An
n by n matrix multiplied by an n by n matrix gives you an n by n matrix, and that's your n

cubed.

So these are all-- | think | said this, but | should've written this down-- these are all square

matrices that are n by n. And that's where you get your n cube.

A matrix vector would be something where you have-- typically we'd have a column vector

here. You're going to get something like that, and you have n square multiplications here.

You're going to grab one of these and then multiply it by that and get an entry here. And that
obviously is n multiplications, but you only have n elements to produce here in this vector. So

you only got n square. That make sense?

And so what we're going to do is, we're going to take this r, and we're going to compute A
times B r. And so the brackets are important because it says that you're going to compute
what's inside the brackets first. Otherwise, it would be a problem because you'd be multiplying

A times B. And obviously, that's order n cube. Right? You don't want that.

So A times Br equals Cr. OK.

So r, remember, is a column vector. And C is an n by n matrix as our A and B. We're going to

output yes.

Else-- if these two are not equal, you're going to output no. OK?

And so that's it. That's one run of the algorithm, generator random r and do the multiplication

as you see here.

So let's be clear about complexity, and let's make sure we understand the simpler aspects of
the algorithm before we get into the analysis associated with bounding the false positive

probability. The hard part is going to be bounding the false positive probability.

But the easy part is first, the complexity. So how many matrix vector products am | doing

AUDIENCE:

SRINIVAS
DEVADAS:

AUDIENCE:

SRINIVAS
DEVADAS:

here? How many matrix vector products am | doing here in this check on one iteration of

algorithm? Yeah.

Three.

Three. All right. All right. You need to stand up. This is fun. This is the hardest throw I've had
to make in 6046. | got to put this down. Warm up a little bit. It's kind of cold.

Whoa. Terrible!

All right. The person who gets up and gets that owns it, and we're going to do this again. All

right. Let's see how long this takes.

Is this part of my trial?

Yes. Well, the first one failed. False whatever, right?

[LAUGHTER]

| got a few more.

[LAUGHS]

All right. Let me see. | think | need to go here. This is good. And | need to be-- all right.
Number three. Thank you. Thank you.

[CLAPPING]

So it was three. Three. Perfect. Three matrix vector products because | got to do this. That's
the matrix vector product. Remember I'm getting a column vector out of this, which is
important, and then I'm going to multiply this matrix with a column vector, matrix vector
product number two. And then there's a matrix vector product over here. So then at that point-
- do you remember | have a vector and a vector. And checking the equivalence of two vectors

is simply checking the equivalence of each element in the vector 1 by one.

So first one, same as the first one. Second one, same as the second one. Et cetera.

And so this is order n square, but three is something that is worth thinking about simply
because every once in a while, we're interested in constant factors. And the other thing that's
interesting about this-- make sure | write this-- let me write this over here-- that you are going
to-- if A B equals C, then there's no issue associated with error here. So there's no notion of a
false negative because if AB equals C, then you know, thanks to the associativity of matrix
multiplication-- be it whether they're n by n matrices or columns-- you have this relationship

here.

And | hope you can read it at the back. Essentially what | have here is if AB equals C. So if in
fact, the matrix multiply happened correctly, I'm in a situation where it is clear that A Br equals
this, thanks to this associativity of matrix multiply. And that of course, is exactly the same as

Cr.

So that should convince you, thanks to associativity of matrix multiply that you don't have any

false negatives in this algorithm. Make sense?

So we're all good. All we have to do, given what we have with respect to Frievald is to do this
part here, which is going to take a little bit of doing. And the challenge always with simple
algorithm is you don't quite know why they work. And then of course, you have sophisticated

algorithms, and you don't quite know why they work.

So this will take a few minutes. It's not super complicated, and there's a little insight, as always,

with these things that are not immediately obvious.

But we'll have to look at the number of r's. So you have an r vector that you've generated
randomly, and it may be a bad vector. It may be a vector that doesn't show you that the
product matrix has an incorrect entry. Remember there's n square entries in this matrix.

Exactly one of them may be wrong, and you need to find it. Right?

So there may be a lot of entries which are all correct, but you've got to find that one entry
that's incorrect. And so you could miss it. A given r vector might miss it, and of course, if you
keep generating the r's, you'd like to find it and declare that the matrices weren't multiplied

correctly and that probability is what we have to compute.

So we want to get this result where we are analyzing the correctness in the case. You've
already analyzed the correctness in the case where AB equals C, but now we have to analyze

the correctness in the case where AB is not equal to C. Right?

And so the claim is that if AB is not equal to C, then the probability of ABr not equal to Cr is

greater than or equal to half.

So this is greater than or equal to. Over there, I'm just talking about the false negative
probability where I'm actually getting an incorrect yes when you have the matrices being
multiplied wrongly, incorrectly. And so that's why | get-- this is what | want. | want there to be a
greater than one half probability for r to have discovered that, for r to have discovered that.

OK?

I'll stop for questions in a second, but let me do a little bit more.

I'm going to compute the difference matrix, and I'm not computing this because obviously this

would take a while to compute. It's just for the purpose of analysis.

I'm going to look at the difference matrix D equals AB minus C because you want D to be 0.
And that we're going to do some analysis that says-- we are going to try and find these non-
zero entries in D because, clearly, the non-zero entries in D tell you if there's non-zero entry in
D, you got a problem here. The matrices weren't multiplied properly. So that's why we have D

here. Don't think of it as we're actually computing that.

So what we'd like is to, as | said, discover these entries where our hypothesis now is that D is
not equal to 0 because that's the case we're considering. We know that D is not equal to O if
the matrices were multiplied incorrectly. And when | say D is not equal to 0, it means that there
are n square entries in D, and one of them is not 0. They all have to be identically 0. That's all

it means. D not equal to 0 means one entry at least is not 0.

So now what we need to do is we need to show that there are many r-- it's a binary vector of
length n, and you can obviously think about two ways to n possibilities with respect to r. And
what we really want to show is that there's a large fraction-- more than half of the r's are going

to actually discover that the matrices were multiplied incorrectly. OK.

So we want to show that there are many r's such that Dr is not equal to 0.

And because if Dr is not equal to 0, then you're obviously going to discover that ABr is not

equal to Cr. So if ABr is not equal to Cr, that's identical to saying the Dr is not equal to 0. That

make sense?

So specifically, if you look at the claim and writing it in terms of Dr, you want to say that the

probability of Dr not equal to 0 is greater than or equal to half for a randomly chosenr.

And so that's it. That's the setup that we have to show. We have to do a counting argument

corresponding to these r vectors that are being generated randomly. So let's do that.

So the general argument we're going to make here is simply that we're going to-- roughly
speaking-- if you're going to look at a bad r-- what's a bad r? And bad r is something that

doesn't discover the incorrect multiplication. That's what a bad r is.

So you're D is not equal to 0, but Dr equals 0. OK. That's a bad r, right? It's quite possible that
that would be the case. And so you want to try and figure out how many of these bad r are
there because those are the ones that are causing the false negatives. Right? So that

counting argument is the crux of the proof of the claim.

So let's look at that. And what we're going to do is, we're going to pick a bad r, and we're going
to say | there are these good r's that are associated with this bad r. And for every bad r,

there's a good r. And a good r is something that actually discovers the incorrect multiply.

And given that for every bad r there's a good r, half of the arts are good r. That's it. So I'll write
it down. That's the essence of the argument. And I'm go a little more slowly so hopefully you'll

get that.

So let's look at the case where Dr equals 0 case because that's the interesting case. That's
the case where the r is bad even though we had an incorrect multiply, and you get this-- |
should have said you get a false positive. So I'm sorry. | think just before, | said false negative,

but | meant false positive.

So you have a false positive in this case, and D equals AB minus C not equal to 0 implies there
exists an i and j such that Dij is not equal to 0. OK? And there's just one entry at least-- if you

say the matrix is not equal to 0, there's got to be an entry that's not equal to 0.

So let's take a look at that entry, and let's just draw it out. That's my D matrix. And there's
going to be ani and a j. So that's my ith row and my jth column. And there you go. | have an

entry here which is Dij, and I'm just picking that. | don't care what i and j are, but there's got to

AUDIENCE:

SRINIVAS
DEVADAS:

be an entry that's not equal to 0.

Now I'm going to create a vector, v. So this vector is not r. It's a vector v that is chosen

deterministically given the Dij where it's got 0's everywhere except it at v;j.

So if this the jth entry column-wise, everywhere else you got 0. And you just got the one
associated with the-- going downward-- the jth entry. OK? So it's a one one-hot vector, if you

will. It's got one, one.

So now, if you multiply these two things out, you know that you're going to get something, and
we're going to can call this Dv. So you take D and you multiply it by v-- matrix multiplied by a

vector.

You're guaranteed, given that all of these are 0, when | do my this times that plus this times
this plus this times this, all of these are going to produce 0. This times 1 is going to produce
something that's non-zero, and then all of the other ones are going to produce 0. So I'm just
adding a bunch of 0's to this non-zero multiplied by one. So I'm going to get something that's

non-zero. Right? All make sense?

So I'm going to see something here, which is the jth entry that's not equal 0. And so that
implies that Dv is not equal to 0. And in particular, what I'm saying is Dv of j-- so if | just look at
that entry that is identically Dij, which is not equal to 0. Because I'm multiplying it by 1 and I'm

adding a bunch of 0's to it. That's it. OK.

Yeah. A question.

Is it Dv of j or of i?

So | picked the j here. So | think I'm going j, j, right? That make sense?

If j was 7 and this is 7 down, then it would be the seventh [INAUDIBLE] because this is going to
turn into that. OK?

Now, either way, if | picked it in the middle, it doesn't really matter. The point is there's going to
be one entry. So hang in there. There's going to be one entry that's nonzero if you didn't quite

get that.

AUDIENCE:

SRINIVAS
DEVADAS:

AUDIENCE:

SRINIVAS
DEVADAS:

So Dijis not 0. And this is one more observation we're going to make in order to do the
counting of these bad r's because this is a bad r that we're looking at if you say that Dr equals
0. You've created a v that has nothing to do with r, but we're going to use the v to go from a
bad r, which is our example here, to a good one. That's pretty much it. That's the last step

here.

So what we're going to do, is we're going to take any r that can be chosen by our algorithm
such that Dr equals 0 because that's the case that we're looking at. And we're going to

compute r prime, which is r plus v.

And just remember this is mod 2 arithmetic. You're only going to get 0's and 1's. So if you

have 1 plus 1, it gives you 0. Obviously 0 plus 0 gives you 0. And the other cases are clear.

And this plus here, remember, is also-- the other thing that's important is this is not only mod
2. These are all vectors. So r is a vector, and you can think of it as a column vector. That's
how | drew it. You're adding up a column vector with a v. That's the column vector the way |

drew that.

You could do it with rows if you like, but it's just notation. And you're going to compute an r

prime here.

What can you say about Dr prime? Someone?

Yeah. Go ahead.

It's not 0.

It's not 0. And I'll give you a Frisbee, but then you can explain-- can you stand up a little? |

don't want to take this lady's head off.

So can you explain why?

Because r prime is r plus v and Dr gives you Dr plus DB is not 0.

Absolutely right. So essentially what we have is this is simply Dr plus v. 0 plus Dv, not equal to

0. Do we like yellow or do we like white? Yellow's fine.

So that's pretty much it.

So what's cool about this- is this final step, which | think you've gotten, but I'm just going to say
it out loud now, which is that r to r prime is 1 to 1 for any given r such that Dr equals 0, given
the situation where capital D is not equal to 0, and there's some Dij-- and there could be many
Dij's. | just need one. I've constructed, based on that Dij, this v vector which has the jth entry
corresponding to the v vector being a 1 with all of the other entries being a 0. But | can now
create an rto r that is 1 to 1 in the sense that if r prime equals r plus v and that equals r
double prime plus v-- so if | ever have a situation where in order to show there's one-to-one, |

want to say that it's not too many-to-one or even two-to-one.

So if I have an r prime that equals r plus v and you tell me that r prime also equals r double

prime plus v, | can make the argument that r and r double prime are exactly the same.

So then r equals r double prime.

So what am | saying there? I'm just saying that for any given r that has Dr equals 0, | can

twiddle the jth element of that r and go from 0 to 1 or 1 to O.

If you tell me that there's a Dij somewhere in that matrix that is nonzero and | do that little
twiddle-- remembers it's all 0's and 1's Boolean matrices-- so if | do one twiddle, it's one-to-
one. If | do two twiddles and | go 1 to 0, I'm back to 1 again. And that's all this says. Because

you have mod 2. That's all that says.

So one little tweak-- and I'm going to be able to take a bad r and turn it into a good r because

the good r, the r prime in this case, had Dr prime not equal to 0.

And that's it. That's my counting argument, and all that remains is to essentially close this by
sayiny-- just to write this out to get to the final claim and get the one half-- the one-to-one

essentially gives you the one half. At least half of these things are going to be good r's.

If you had | Dr that's not equal to 0-- and that's the case that you have here-- then we're going

to discover an r prime such that the Dr prime is not equal to 0 and r to r prime is a one-to-one

mapping.

So the number of r prime for which Dr prime is not equal to 0 is greater than or equal to the

number of r for which Dr equals zero.

AUDIENCE:

SRINIVAS
DEVADAS:

AUDIENCE:

SRINIVAS
DEVADAS:

AUDIENCE:

SRINIVAS
DEVADAS:

AUDIENCE:

SRINIVAS
DEVADAS:

And so that implies that the probability of Dr not equal to zero-- so if you just choose an r, this
is now a randomly chosen r. Not that others weren't, but I'm treating it a little bit differently

here.

This was a specific r for which Dr was equal to 0. | made an argument that you can always get
this r prime one-to-one such that Dr prime is not equal to 0. And now going back to what | had
initially with respect to the claim here where the r here was a randomly chosen r, I'm saying,
thanks to this little argument-- this line up top-- I'm going to be able to say this is greater than

or equal to one half. OK?

Cool. Any questions? Yeah.

| think the Dr squared times column equal column on the board.

Yeah.

On the last column, it should be i, not j.

This should be i?

Yes.

People agree with that? Majority vote. All right. I'm good. Let's make that an i.

The iteration of that as well, Dv sub j.

Oh, yeah. Of course. Yeah. Once you do that, you have to have an i there. Good.

So you're looking at a particular entry-- it makes a difference whether you used a column or a
row. If I'd done-- now that | remember-- if you turn this into a row matrix and this becomes a
row matrix, you'll essentially get the Dvj. So it depends on which way you look at it, but thanks

for pointing that out.

The specifics of i and j weren't particularly important to the proof itself. The key thing is you

zoom in on a particular entry that is not equal to 0, and then you tweak that entry
corresponding to the r. So once you tweak that-- you make that 0 or 1 or 1 to 0-- you can get

this result.

I'm sorry. I'm pointing to the wrong spot.

This result-- and then get your claim. OK?

So summarize-- we have a bound. We run it over and over, and we get it to the point where
we can have a 0.0001 probability that, if the matrices were multiplied incorrectly, that you
wouldn't discover that because you ran it for enough hours independently chosen that that

probability becomes as low as possible. OK?

So that was Monte Carlo. Let's do a Las Vegas algorithm. And you guys are probably thinking,

my goodness. Another sorting algorithm after, | don't know, 17 different sorting algorithms.

This all sorting algorithms that you've ever learned so far. Right? So merge sort doesn't work,
and the reason it doesn't work in practice-- if you're really into performance-- is because of the

auxiliary space that merge sort requires.

So if you recall there's the notion of in-place sorting. So let's move onto the next thing here,
which is quicksort, which is a new sorting algorithm. And | want to motivate it for just a couple

of minutes.

And the primary motivation really is practical performance, not asymptotic complexity. So I'll be
upfront about that. It's all about practical performance corresponding to quicksort. And

quicksort is a divide and conquer randomized algorithm invented in '62.

Unlike merge sort, it's got two interesting properties. The first is that it's in place, like I just said.
So no auxiliary space. In Mozart, you can try and get around this. | should say order n auxiliary

space. You need a little temporary variable in order to do a swapping.

But you don't have the order n auxiliary space. So you don't have to constantly allocate. And
remember, n could be large. It could be in the billions or trillions. So, from that standpoint,
quicksort ends up winning simply because of relatively mundane things like memory allocation

in your computer.

And the other interesting thing about quicksort in relation to merge sort is that all the work is in

the divide step.

So in merge sort, remember we just split, and we recurse. And what happens when you come
back is you have to do the finger emerging algorithm by looking at the two sorted arrays and
looking at what the new merger is going to look like. So the work is in the merge. But in
quicksort, the work is going to be in the divide because we're going to have to do a bunch of
work associated with figuring out how to keep the partitions balanced-- a little bit like we had to

do when we did median finding back a couple of weeks ago.

I'm going to talk about three different variants of quicksort. The. variant that we're going to
spend the most time on is the Las Vegas quicksort where we'd like to show that it's probably
fast and make a statement about the expected runtime. But we'll get to that by talking about a
couple of other interesting variants, and this'll be elaborated on to some extent in section

tomorrow.

So before we get to variants of course, let's try and set up the structure corresponding to
quicksort. And as always, we have an n element array A. You have divide that corresponds to

picking a pivot element, x in A. And then we're going to partition the array into sub-arrays.

And what we have here-- this little picture should make things clearer. And you kind of saw this
in the median finding, but here we go again. Let's assume all the array elements are unique.

We have L, E, and G. L is less than. G is greater than.

And so your pivot element is going to break this array up into L and G, where you got all the

elements that are less on the left and all the elements that are greater on the right. And you're
going to recurs on the L and G. So recursively sort sub-arrays L and G. Combine is trivial-- or
merge is trivial-- because you've already broken things up thanks to the pivoting. And you just

concatenate those arrays.

And that's why you can do this in place. There's no issues. You're really recursively sorting
sub-arrays. You are moving things around a little bit when you do the partition. Obviously, the
initial array may have all the elements. You may pick the pivot such that the pivot is all the way
on the right-hand side in the sense that it's a very large element. That is not necessarily a
good thing. | will talk about that. But if you pick an interesting pivot or a good pivot, you're
going to have to move the elements in the array to the left of the pivot if they're less than the

pivot, and you got to move the elements to the right if they're to the right of the pivot.

Nontrivial piece of code, not super complicated, but you can look at the CLRS page 171 to
look at in-place partitioning where you don't have to use another order n space to move these
elements around such that they look like that picture that | have up there, starting from some

random starting point.

So you want to have the picture that you have here, and you need to go from-- the very same
array, it needs to-- and x is somewhere here, and you got x plus 1 here and x minus 1 here,
for example. And you need to move those things around so they look like L, E, and G, and
that's something that you can do in place. And you can look at the code for that in the CLRS. |

won't cover that here.

So let's look at a bunch of different variants responding to quicksort. And there's some real
simple ones. Each of these, we can knock off with respect to complexity and runtime fairly

easily with the one exception that we'll spend some time on, which is the Las Vegas quicksort.

But we'll call these different names. Let's talk about the basic quicksort, which is also a useful
algorithm that people use in practice. And amazingly, this algorithm is simply something that
says, I'm just going to constantly pivot on either the first entry or the last entry. So I'm going to
pick my pivot to be A1. And when | pick my pivot to be A1, it's a value that I'm talking about
here. X is a value. It's not an index. The A1 value-- maybe that's 75. Then I'm going to create
my L matrix corresponding to this pivot where all the entries are strictly less than 75, and G

would be strictly greater than 75.

And | could do that for A1. | could do that for An. So remember that the pivot is a value.

Now, if | look at this, I'm going to do the partition, given x, just like you saw there. And this is
going to be done in order n time. It makes sense that you're going to look at every element,
and you're going to move it to an appropriate location to the left of x, which is the e array, or to
the right. And you'll do that. That takes order n time. And, as | mentioned, you can look at this

to see how this is done in place.

So let's take a look at the analysis of basic quicksort, and what I'm interested in, of course, is
the worst case analysis. And | asked this question, | think, before when we were doing median
finding, but what is the worst case complexity of the basic quicksort algorithm that chooses the

pivot as A1? What is the complexity?

[INTERPOSING VOICES]

Order n square. It's order n square. And the reason for that is that you may have an array that
is sorted or reverse sorted-- depending on whether you're picking A1 or An. You can have a
worst case situation where one side, L or G, has n minus 1 elements, and the other has 0

elements.

And so if you look at our recurrence associated with this, you could have Tn, which is TO, plus
T n minus 1 plus theta n. And why do | have a theta n here? Well, remember that | still have to
do this divide step or this partition step in order to compute this up unbalanced array. So | do
have to look at each of these elements and do the comparison. And maybe | don't actually

have to move them, but | have to do the comparison with the A1, which is the x pivot.

And in some cases, if I'm doing the wrong thing reverse sorted, | also have to do the move.

Either way, | have a theta n complexity associated with the divide step.

And so if you go off and you look at what happens with this, well, you've got Tn equals Tn

minus 1 plus theta n, which ends up with theta n square complexity.

So a hand waved a little bit two weeks ago for a similar analysis, but you can kind of look at it a
little more precisely here by writing the actual recurrence out. And you see that you get the
recurrence Tn equals Tn minus 1 plus theta n, which is an n square result, or the solutions is n

square. OK?

So basic quicksort look bad. It's got a worst case complexity of theta n square. It works well on
random inputs and practice. And it turns out that it's a fashion of algorithm, partly because it's
in place and it's easy to code, that what people do is they take their inputs, and they shuffle

them.

You might get a bad input, and it might take you a long time to run. But if you take an input
and you shuffle it and you do that in theta n time, you just move things around and randomize
the input. Then effectively, you have a random input, and this thing works pretty well in

practice.

Now, what is pretty well? Well, we're going to do an analysis that is going to not be exactly the
analysis that you'd have to do on basic quicksort on random inputs, but essentially, you can

say that basic quicksort on random inputs is going to run in expected theta m log n time. OK?

It's something that you'll see a little bit of how to do that today and in section, perhaps for

AUDIENCE:

SRINIVAS
DEVADAS:

median finding in section tomorrow. But that's all | wanted to say about basic quicksort.

It's a practical algorithm. It does require a little bit of shuffling up at the beginning, and then
you can simply use the pivot A1. And because you've done the shuffle, generally you get
balance partitions. The L and G's look balanced, and you don't end up with theta n square. If
you have any sort of balance associated with the two partitions L and G, you're going to get a
nice divide and conquer, which is going to give you your theta n log n. OK? So that's basic

quicksort.

There's another way to do this, and so this is a question for you guys. Suppose | wanted to
use the quicksort strategy and get a worst case theta n log n through an intelligent pivot

selection. So | want to do a pivot selection intelligently.

So how would | get under the structure of quicksort that you see up there on the left there?

How would | select a pivot such that | get worse case theta n log n complexity?

Go ahead.

Linear median finding.

Linear medium finding. Perfect. That's exactly right. There's a gentleman at the back who'd

raised his hand, and | decided I'd chicken out.

I think one time to the back of the room is enough for a day. I'll have a Frisbee left. Hopefully

you can get one.

So the intelligence pivots selection algorithm is the median finding algorithm because that's

going to guarantee me that I'm going to get balanced partitions.

If you tell me that A1-- and remember, we're talking medians of values-- so don't get confused
with indices. When | say something is a median, I'm talking about the value, that given its
value, there are all these other n over 2 values that are less than it, roughly speaking and n

over 2 values that are greater than it.

And so A1, | have no idea whether it's large or small. So | couldn't say much about it. But if |
want to be worst case and | want to guarantee that | have balanced partitions, | can choose

the median. And if | choose the median every time, I'm going to get perfectly balanced

partitions. They're going to half on the left and half on the right.

And we do know a way of getting balanced partitions. We can guarantee that balanced L and
G using median selection that runs in theta n time. And we showed that a couple of weeks

ago.

Now, that median selection algorithm was nontrivial. OK? It had this weird thing where you
broke things up into five sub-arrays of size 5, and you found a median of medians et cetera, et

cetera. But we argued that the whole thing ran in theta n time, which is important.

And so now, if you look at what happens with quicksort and if | write the recurrence for
quicksort, thanks to selecting a median, | effectively have balanced partitions. So | have 2T n

over 2.

This is thanks to the median based pivoting. That's important. Otherwise it won't work.

And then, just to be very clear here, | got two theta n terms. OK?

The first theta n term is the recursive median selection.

And then the second theta n term is of course the divide, or partition.

But it's important to realize that now | have a lot of work in the divide. A lot of work. | have to
do an intelligent selection using this recursive median finding algorithm. And | also have to do

the moves comparing and then generate and the G arrays. OK?

So those are the two theta n's. They're obviously theta n, but | wanted to make it clear that
there's two things going on here. And we all know that that is theta n log n worst case. All

right?

So there is a way of using the quicksort structure template and getting a theta n log n worst
case algorithm, which doesn't work in practice because it's just too complicated. What's going
on here is at every level of recursion, you're calling another recursive algorithm to find the
median. So if you go code this up, it loses to merge sort in practice. You can do all of this in
place, but because of all these recursive calls, it doesn't work well in practice. But it's good to

know.

And so this is a good example | think, which we don't do a lot of in 046, but you get a sense of

the difference between asymptotic complexity and performance.

So while the median finding algorithm has better asymptotic complexity worst case, it really
loses in practice to the basic quicksort, which essentially is a bit of a hack, where you take an

input and you randomize the input and you run it with A1 as the pivot or An at the pivot.

Is there a different way that you can actually get to a Las Vegas algorithm? And it turns out
randomized quicksort is something that you can build and use, which is a bit different from
basic quicksort and certainly different from median finding. But it kind of has a little bit in

common with them, and it's our example of a Vegas algorithm.

So what happens at randomized quicksort? An x is chosen at random from the array, A.

So you're not choosing A1 or An. You might just flip-- well, effectively an n-sided die-- and pick
a particular index, and then go grab the pivot corresponding to the value at that index. You're
not going to randomize over values. You don't know what these values are, but you can pick a

random index and then grab the pivot based on the value at that index.

And so at each recursion, a random choice is made. And the expected time-- so now we're
saying something different. We're making a stronger theoretical statement that the expected

time, when you do this, for all inputs arrays A is order n log n.

And so now, this is not worst case time. It's expected time. So this is going to be our analysis
in the last few minutes here to analyze not randomized quicksort, but a slight variant of
randomized quicksort that is going to show you that you can run randomize quicksort and this

variant in order n log n time.

So not quite sure what's going to happen in section tomorrow, but the full analysis is in the
book. You should read it. As you can see, it's a couple of pages that includes the description of
a quicksort that | have already. But what we're going to do here is analyze a variant quicksort,
which is a little bit easier to analyze, and it gives you the sense of why in fact the randomized
quicksort is going to run in expected time. And this analysis is easy to do it in a few minutes.

So we'll do that.

And tomorrow, you'll see either a median finding analysis that's similar to that analysis in CLRS

or precisely that analysis, depending on what your TAs want to do.

So this particular variant, we're going to call paranoid quicksort. And so this quicksort is
paranoid in the sense that it's going to be afraid of getting unbalanced partitions, and it's going
to keep trying to get balanced partitions. So it's going to try to get a balanced partition. It's
going to check, and then if it fails, it's going to try again. And so at the end of it, there's
obviously an expectation associated with the number of tries that you need in order to get a

balanced partition.

But it just sort of flips the problem on its head and says, you know what? I'm just going to
guarantee a balanced partition from a probabilistic standpoint and it might take me a little bit
longer to get there. But that's what Las Vegas algorithms are all about. They're probably fast.
And once | get a balanced partition, I'm in good shape because | can go do my recursion, and

| get my divide and conquer working properly.

So what is paranoid quicksort? Absolutely straightforward. You could probably guess given my
description. Let's just choose a pivot to be a random element of A. Perform the partition, and

then values will repeat.

So we're going to go off, and we say until the resulting partition is such that the cardinality of L
less than or equal to 3/4 of cardinality of A. And the cardinality of G is less than or equal to 3/4

the cardinality of A.

So I'm allowing you a certain amount of imbalance, but not a lot. Right? And that's it. That's
paranoid quicksort. You obviously are doing that in each level of the recursion. And at each

level of the recursion, your L and G are going to be, at most, a factor of three apart.

So you might get 1/4 and 3/4. If you're lucky, you'll get 1/2 and 1/2. But the worst case, given
that you're going to be exiting out of this loop, is 1/4 and 3/4. OK?

So, as always, you have a simple algorithm, and it's not completely clear how you're going to

get to expected n log n time. But it's not difficult.

Basically, what we had to do is we have to try and figure out what the probability of a good call
is, over here, a good pivot choice, and what the probability of a bad pivot choice is. And we
have to obviously-- given the potential imbalance, we have to write the recurrence associated

with that, but let's take a look at the pivots here.

And what can we say about the size as of L and G if you just did a random pivot? Well, a bad

call is when you get something in L or G that is less than 1/4. And a good call is when you get
somewhere between 1/2-- well, roughly, if you look at the choice of the pivot. So what | have

up here, is the choice of the pivot.

If my pivot is out here, | have a very small L, and all of the thing on the right is G. If the pivot is
here, | have a relatively small L and a large G. The pivot is over here, I'm good. | got 1/4 and

3/4. If the pivot is over here, | got 1/2 and 1/2 and so on and so forth.

And so this part is bad, this part is bad, and the middle part is good. So that's all that this

picture shows.

So a call is good with what probability? Given that picture, a call is good with what probability?

It's greater than or equal to 1/2.

And so what you can now write simply is if Tn is the time required to sort the array, essentially
you can say Tnis T of n divided by 4 plus T of 3n divided by 4 plus expected number of

iterations in terms of getting a good partition times C times n.

And there is a reason why I'm putting C in here as opposed to theta. That will become clear in
just a second. Because | can't really apply the master theorem to this given what | have with

respect to Tn over 4 and 3n over 4.

So what I have here is, I'm looking at the case where | could get an imbalanced partition, but
the imbalance is bounded. So I'd have n over 4 on one side and 3n over 4 on the other side.

But I'm not going to have n over 5 and 4n over 5 or what have you.

And so that's the two recursive calls. So that's hopefully easy to see. The part that is new here
is simply the complexity of this code that you see here, which is obviously the randomized
algorithm. That's exactly where the randomness comes in because you're picking a random
pivot, and you're checking it. And so this is going to run a certain number of times. And we can

figure out what the expectation is in just a minute.

But | have C times n because this is constant time to choose a random number. We'll assume
that performing the partition is C times n or theta n, and that's why | have this up there. So

this, we're going to call this Cn.

And so expected number of iterations given what | have-- what can | say about the expected

number of iterations using simple probability rules? What is that?

2, right? 1 over p. All of them are independent. So this is 2.

So what | have here is something that | think you might have seen this before, but it's worth
drawing the tree out and seeing it one more time in case it didn't fully registered the first time

or you didn't actually see it in 006 or recitation.

But what | now have is T of n. | want to solve T of n equals T of n over 4 plus T of 3 n over 4

plus 2 times Cn.

And, again, like | said, | didn't put theta n in here because, as you'll see, when | draw this tree
out-- because it's not a massive theorem invocation-- it's worth looking at it from a constant

factor standpoint to really get the sense of how all of this works out.

And so if | draw that tree of execution and | start counting, basically what | have is 2Cn up at
the top. | have 1 over 4 times 2Cn over here. | have 3 over 4 times 2Cn over here. And then
this 1 over 4 might go 1 over 16 times 2Cn over here. And this might go 3 over 16 times 2Cn
over here. And this would go, | guess it would be 3 over 16 times 2Cn. And then 9 over 16

times 2Cn et cetera.

So this is an unbalanced tree because you have an unbalanced partition up on top, and now
you want to count up all the work that this tree does. If you collect up all of the operations, then
that's going to tell you what T of n is because that's all the work that you have to do in order to

finish up the top level of recursion.

And what you can say is, if you look at this side here are all the way to the right-hand side,

you're going to have log to the base 4 over 3 times 2Cn levels.

So that's just simply every time you're multiplying by 3 over 4, when you get down to the
number 1, and that's log of 4 over 3. And then over here, it's a little bit easier to think about

because it's a power of 2. You're going to have log of 4 to the base 4 times 2Cn levels.

And really, it doesn't really matter honestly when we go to asymptotics. But is worth seeing, |
think, just to get a sense of why it all works out, regardless of whether it's n over 4 or a
different constant here or whether it's balanced or unbalanced. The tree looks a little bit
different. It's sort of weird. It's got fewer levels here and more levels there. So it's sort of tilted

this way.

But eventually, you get down to theta 1 constants down below. And basically what you can
see-- if you just add it up-- is 1 over 4 plus 3 over 4 is 1. 1 over 16. 3 over 16. Obviously, those

all end up being 1.

So you have 2Cn work at each level. And if you just go ahead and be pessimistic about it,

there's a maximum of log 4 over 3 times 2Cn levels. And that's pretty much it.

Obviously, now you can start ignoring the constants. You just keep the log here. You don't
care what the base is. You got an n here. So drop the 2C. Drop the 4 over 3. Drop the 2C. And
you get your n log n. OK?

So that's pretty much it. I'll stick around here for questions. But you got an example of a Monte

Carlo algorithm. You got an example of a Las Vegas algorithm.

And tomorrow in section, you'll see a slightly more involved analysis for something that looks a

lot closer to the randomized quicksort. So see you next time.

