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SRINIVAS

DEVADAS:

All right. Good morning, everyone. Welcome back from spring break. Hope you had a nice

time off and couldn't wait to get back to 6.046.

So exciting second half. Going to do flow networks today on Thursday. Next week, it's linear

programming, on to complexity, distributed algorithms, cryptography. Topics going to come

fast and furious. Hopefully, they'll all be interesting.

So there's a lot of setup associated with network flow, max flow. It's an optimization problem.

And so I'm going to spend like the first hour here-- and hopefully, it won't be too boring--

setting up flow networks, describing the max flow problem. As you can see, this outline is fairly

involved, talking about cuts in a network, residual networks.

And we'll, more or less, end the lecture with the statement, though not the proof-- we'll save

that for next time-- of the mas-flow min-cut theorem, which is really an iconic theorem in the

literature, and suddenly, the crucial theorem for flow networks. And we'll take the max-flow

min-cut theorem and use that to get to the first ever max-flow algorithm, which was due to

Ford and Fulkerson. And that should be, pretty much, at the end of today's lecture.

And next time, we'll talk about the proof of max-flow min-cut, talk about some of the issues

with Ford-Fulkerson, and then use max flow as a hammer to solve interesting problems in

bipartite matching, baseball playoff elimination, and things like that. So just like shortest paths,

can be used not just to compute the shortest distance from point A to point B, you can imagine

that other problems, for example, scheduling problems, time problems, could be solved using

Dijkstra-- and you've probably seen examples of that-- max flow is another algorithmic

hammer that's being used to solve a wide variety of problems. We won't really touch on that

aspect today, but we'll spend a bunch of time on Thursday talking about that.

So let's get started. We're going to start with defining what a flow network is. And at some

level, it's really simple. I mean, it's a graph. A graph is going to have vertices and edges. We're

going to only look at directed graphs. And we're going to have a couple of constraints



associated with these directed graphs that are going to make the algorithms, and the proofs,

and the notation a lot simpler. I'll get to that in a few minutes.

And the key thing with the flow networks-- I mean, just like you have a source and a

destination for shortest paths, in a flow network as well, you're going to have a source, and

you're going to have a sink. So we're going to have distinguished vertices, two distinguished

vertices. And we're going to call them the source, s, and a sink, t.

And so the basic idea here-- and just to sort of set things up right up front-- is that there's

going to be some flow coming out of s. And it's going to have to obey some constraints

associated with capacities of the edges, in order to make its way to t. And along the way-- this

is flow. This is water. You can think of it as water, or cars, or what have you. It's a rate. You're

not going to allow accumulation in the intermediate nodes.

So you're going to have law of conservation associated with this commodity that's flowing, be

water, or cars, or people. And that essentially comes down to, for any vertex, other than s or t,

everything entering the vertex has to leave the vertex. So that's like Kirchoff's current law, for

example. So there's a lot of analogies here with respect to real life, or electricity in this case.

And you'll see that, I think, over and over as we go along.

So let's take a look at a flow network. I'm not going to draw it out here. I'm going to keep this

one example all through the lecture. But just to go off and talk about edges and capacities

before we actually draw an example, we're going to have edges, directed edges, u, v. So you

have an edge from u to v. And it's going to belong to E, obviously. That's the reason the edge

is in the network.

And this edge is going to have a non-negative-- each edge is going to have a non-negative

capacity, C(u,v). Right? And if perchance theres' no edge from, let's say, s1 to s2-- these are

different vertices from the source or the sink, just as an example, you can say it's between a

and b-- then, we can assume that the capacity is 0.

So if u, v does not belong to E, then assume that C(u,v) is 0. So there's no way of getting from

u to v. This rate, wall water, cars-- you know, there's no road that gets you from u to v, OK?

So let's draw an example of a flow network. We'll talk a little bit about what the flow is and what

the max flow is in example-driven algorithm design, if you will. So I've got a source, s. And I've

got a sink, t. And then, I've got a bunch of nodes in the middle. Just draw them out.



I'm not going to bother naming those nodes. Well, that might be a mistake. We'll see. So this is

not like it's an acyclic graph. You're allowed cycles in this graph. But we will have a couple of

constraints that are associated with this graph that I'll get to in just a minute.

So first, that's all we've got. You've got g,v,e, directed graph. Can't have cycles in it. And I'm

going to draw a couple of numbers here. The numbers I'm putting up here are the capacities

associated with each of these edges. So those are just the capacities. Those are C(u,v). And I

said that, if u,v does not belong to E, then you're going to assume that C(u,v) is 0.

So there's no edge, for example, between this node and that node. So there's no way that you

can directly get from here to there. You can go like this, like this, and like that, and get from

here to there. And you can obviously go like so, and like this, and like that, to get from the one

on the top left to the one on the bottom right, OK?

So that's essentially the set up, except for the fact that we've just talked about capacities. And

this is sort of the bandwidth, if you will. This is the amount of traffic that can go through this

road. And now, we have to talk about the specific case where we're actually going to shove

things through the network.

So we're going to have another number. So typically, we're going to have two numbers

associated with each edge. One of them is going to be the capacity, and the other one is going

to be the flow that goes through the edge. And as you can imagine, we're going to have this

constraint that says that the flow can never exceed the capacity.

And that's the local constraint associated with each edge, OK? That doesn't mean that there

aren't variations possible with respect to the overall flow of the network. Things can change.

You obey the edge capacities. And there could be different flow coming out of s and going into

t, et cetera. And so there is going to be an optimization here associated with the exact

numbers that all obey these edge constraints, so these edge capacity constraints, OK?

So let's take a real simple example of a flow in this network. And ah, I have some colored

chalk here. So I can put down the flow over here. And so this is flow. Wow. That is an ugly

color.

[LAUGHTER]

But now, we're stuck for the rest of this lecture. So I've got 2, 2, 1, colon, 3. So the first number



is the flow, and the second number is the capacity. Let me just write that out. This is-- and

then, this is 1, colon, 3. This is 1, colon, 2. So that meets the capacity. This is 2, colon, 3. And

then 1, colon, 3, 2, colon, 3, and 1, 2, right?

So that's my first example of a flow. And we want to make sure that this flow makes sense,

OK? And we're going to write this down a little more precisely in just a minute, but I've sort of

given you the intuition already.

I've talked about it's OK to have a flow from the source. It's the mountain spewing water, or

that's the source of the river. And this is the sea, for example. And the river flows into it. But

along the way, you really can't have accumulation, OK? Because when you think about it as a

rate-- and so this is sort of gallons per second-- then maybe you'll have a little bit of

accumulation allowed. But over a huge period of time, you can't have infinite accumulation. So

that's where the conservation law kicks in, which says, anything that goes into a node that is

not marked s or t has to leave the node.

So you look at this, and you go, well, there's two things coming in here. There's 1 and 1, which

adds up to 2. And there's two 2 leaving. So we're good there. OK? And then pick another one.

This one, for example. You've got 2 coming in, and you've got 1 and 1 leaving. We're good

there, right? For t, you've got 3 coming in, 2 plus 1. And another check to do is, well, you've

got 2 coming out of the source, right?

So hopefully, that all will make sense. And ask questions if you're confused.

One other thing to look at, which is interesting, is that you could have flows that are essentially

cyclic. You could have commodities that are flowing in a little cycle. And can you see that? Can

anyone see that over here? Yep? Go ahead.

STUDENT: The bottom-right triangle [INAUDIBLE].

SRINIVAS

DEVADAS:

Bottom-right triangle? This thing over here?

STUDENT: Yeah.

SRINIVAS

DEVADAS:

Like that? Good. Right? So you see this one going over this way, this way, and that way? And

so there's nothing that's stopping us from taking this and-- I had 1 over here, so I'm going to

make that 0. I had 2 over here, and I'm going to make that 1. And I had 2 over here, and I'm



going to make that 1.

STUDENT: [INAUDIBLE].

STUDENT: [INAUDIBLE]

SRINIVAS

DEVADAS:

Oh. What is it?

STUDENT: It was 1.

SRINIVAS

DEVADAS:

It was 1 before? Oh, you're right. It was 1 before. So I should make that 0 then. Good.

I wanted to subtract 1 from what I had before, right? And I screwed that one up, the simple

thing. All right? Wow. No wonder I didn't major in mathematics.

[LAUGHTER]

OK. Computer Science is this forgiving field.

So you can go 0-- well, this is 0. So now, let's take a look at what we have here and check that

nothing went wrong, right? We want to check that nothing went wrong. And so 2 coming in, 1

going out, 1 going out. And nothing coming in here, so we're all good. And so on and so forth,

OK?

So there's interesting things happening here with respect to the conservation laws and having

to obey them. In general, you can imagine that what we're interested in is simply maximizing

the flow from the source, and getting as much flow out of the source as possible, and pushing

it into the sink. OK?

Now, the flow here into t, as you can see, is 2 plus 1, which is 3, OK? Can anyone take this

particular flow network and increase the flow? I mean, it's easy to decrease the flow. You can

make everything 0, and that'd be valid, right? But can you increase the flow? Do you think that

this flow network allows for a larger flow than 3, given that the capacities of those edges are

fixed and I'm not going to change them?

Let's see. I think all of you have Frisbees, right? Yeah. Yeah, back there.

STUDENT: I don't think you can, because you're maximizing two edges, which would have to be



increased. Like, the bottom one coming out of s would have to be increased. Or the one on

the very top would, too, also have to be increased.

SRINIVAS

DEVADAS:

People agree with that? Over there? Yep?

STUDENT: You can have a path going along the top with a flow of 2, so that s is the one on the top of it

has 2. That, from that, to the right, has 2, like it has now. From that node, the t has 2. And

then, along the bottom, we have another path that has 2, from s to the 1 [? plot of it. ?] And

then [INAUDIBLE].

SRINIVAS

DEVADAS:

OK. So--

[LAUGHTER]

That made perfect sense-- to me. [CHUCKLES] It did.

So one of the crucial observations that [? Rajesh ?] made here-- and let me just focus in on

that-- is-- and that's why I think the other gentleman said no-- is that you can actually decrease

the flow in particular edges. And that's going to help you increase the overall flow, right? And

that's why this problem is challenging. That's why we need so much of a setup, all right?

So one thing that I could do is I could essentially say, I'm going to take this and make this 0.

So when I do that, essentially what I have is I get to push more flow out from here, right? So I

get to push more flow. I can turn this into a 2. And I can turn this into a 2, right? Am I done?

STUDENT: No.

SRINIVAS

DEVADAS:

Not quite. I mean, I've got one little bug here, but I can fix that, right? I've got one little bug

here which says, I've got 2 coming out here. I made this 0, so I have to push something more.

But hey, I'm lucky. I've got a s here, which is giving me as much as I want, correct? So I can

just make this a 2. And so now we get a flow of 4, right?

You both get Frisbees. Shall we do blue and purple? Here you go. Could you stand up? Oh,

OK. Over there.

So that actually kind of summarizes, at some level, our task ahead, right? So we have to find

ways of increasing the flow. And sometimes, we have to take a step backwards in the sense



that we decrease the flow on a particular edge, right?

So it's not this monotonic increase that Dijkstra would do or a greedy algorithm, like MST that

Eric talked about. There's going to be something a little more interesting here. We eventually

are going to end up doing things in a monotonic way, in terms of the overall flow.

So the max flow that we're trying to get at is going to start with the current flow. And we're

going to improve the current flow constantly. But that doesn't mean that the edges are going to

look monotonic in terms of the flows on a particular edge in relation to the capacity. You'll

never exceed the capacity.

But as you saw in this little example already, we increase from 3 to 4, by taking that edge that

was vertical up there, which says 0, colon, 3, and that was 1, and we shrank the flow on it. And

so how are we going to discover these paths, especially if we have a 5,000-node network and-

- I don't know-- 10,000 edges? And so that's essentially what we have to do for the rest of this

lecture. Any questions so far?

OK. So we've done flow networks. I kind of defined what the max flow problem is. And let me

just write that out more precisely. Given a flow network, G, find the flow with maximum value

on G. And for that, the max flow is 4, right?

So that's another thing we haven't actually done, which is obviously important for us to do,

which is we have to show that the 4, in this case, is the max flow, right? So now, of course, I've

given that away. And so I'm not going to ask you can you push this over to 5. But you might

think that 5 is a possibility, simply because the capacities of the edges that are coming out of

the source are 3 plus 2, which is 5, right?

So it's certainly possible that you could push at least, if you only look at those two edges, that

you could push 5 units from the source. But in this case, in this example, if you obey the laws

of conservation, you cannot obey those laws and get 5 units from the source to the sink, t. But

we have to prove that. And we have an algorithm that says this is the best that you can

possibly do. And the algorithm terminates when that happens. And that's our Ford-Fulkerson

algorithm, right?

Good. So that's what we have so far. I want to talk about flow network assumptions. And I can

do that over here. This is going to make our life easier.



One of the things that's a little bit confusing sometimes is the circular flow and the fact that

we're going to potentially have flows that correspond to edges coming in and edges going out.

So for example, if I had something like s and u, for example-- and s could be the source in this

case, or it could be another node-- suppose I had a little subnetwork that looks like this. And

I'm just giving you what the capacities are.

This is a bit strange in the sense that you could have a situation where you essentially have

zero flow, really, because you have one unit coming in here and one unit leaving. All right?

And you can think of this-- let's just call this s1, to make it clear that it doesn't have to be the

source, right? And so you could have the circularity that you saw over there. And now you're

talking about, well, I might have 1, colon, 1 here, and 1, colon, 2 here, which is fine for this

subnetwork.

But if I have stuff going out, what happens with that? Well that's got to be a 0. I could have a 1

and a 2. And if I have a 2 here, then-- if I had a 1 and 2 here, then that doesn't work, because

maybe I need something else coming in. So you can see that, pretty quickly, it gets kind of

confusing, if we end up having these cycles that are such simple cycles, especially the ones

where you have Su and Us, OK? And so we're going to disallow cycles of two kinds, right?

The first cycle we're going to disallow is this simple one where we say, if I have a, then no self-

loop edges allowed. So that would involve accumulation at a particular node. And it's going to

make things really confusing. And CLRS disallows that. And most flow network algorithms

assume that you're just going to discard these cycles.

This particular transformation that I'm going to describe here is something that is going to be

forced on you. And this is for your benefit in over 6 lectures and sections. But it's not actually

something that CLRS follows. And it's going to make things simpler, though.

And what we're going to do is we're going to take any pair of vertices that has this

characteristic, where you have s1, u, and u, s1, and they have non-zero capacities. So s1, u

has a capacity of 1. u, s1 has a capacity of 2. Both of these edges exist. And if these edges

exist, that means they have non-zero capacity, positive capacity.

And we're going to transform that, very simply, into-- this is not changing the generality of the

algorithm, but all I'm going to do is transform it-- call this s1-- into something that satisfies this

restriction. So I could have 2 here, 1, and 1, OK? So all I've done is introduce u prime, right?



Then I can always do this-- if this is trivial for any pair of vertices, I can introduce one other

vertex. It all works out. Linear expansion, constant factors, ignore them. Life is wonderful.

So all I've done is taken away the situation where I have-- you can think of it as two-way

streets, right? Two-way streets are annoying. You don't quite know what the rate of traffic is

from one end of the street to another, because cars are going in both directions. And you have

to do subtraction. Subtraction is painful, so we don't want that.

So we're just going to assume that this is u prime. And now, you're all set. We allow this. So

we have to allow for generality reasons. As we saw in that very first example there, we are

going to have cycles here, OK? But we just don't want cycles to be of length 1 or 2, OK? So

that's essentially what we're going to disallow. All right?

The good news is that, if you do this, then we'll only have a single notion of flow. Whereas, if

you go read CLRS, you'll see that there's two notions of flow in CLRS. There's positive flow,

which is different from net flow. And the positive flow is different from net flow in graphs that

have this particular structure, or have nodes with these properties.

But if you disallow them, then you can just talk about flow, and it doesn't matter. Positive flow is

the same as net flow, all right? So for the purposes of [? 6 over 6, ?] for this semester, we're

going to simply think about flow and equate that to positive flow, equate that to net flow. And

it's all going to work out, assuming your graphs satisfy these two properties of the cycle

lengths. All right? Cool. Good.

So let's keep going here. So we're up to finished up on max flow. Let me just give you some

sense of notation. I've talked a lot about constraints. But we've got to write some stuff out,

because we're going to be getting more precise and proving things in just a few minutes.

So what is a flow? Well, to be precise, it is going to be a function that satisfies the following

properties. It satisfies the capacity constraint. This is the obvious capacity constraint, intuitive

capacity constraint. And then we've got flow conservation. And the important thing here is that

I don't have it for all V, but I do have it for vertices, V, that are not the source or the sink. And

I'm going to require f(u,v) equals 0, right?

And the last one, which I haven't talked about, but becomes easy to talk about, given this

constraint, is skew symmetry. So if you take-- this doesn't have to be an edge between u and

v. Now, I'm talking about the flow, f, between u and v. And so the u could be s, which is the



source. v could be t, which is the sink.

So in general, I'm not talking about a flow. And there obviously has to be a path from u to v, in

order for there to be a non-zero flow, f(u,v), right? If there's no path, there's no way of getting

there. But having said that, the definition of a flow here in our network is the straightforward

definition, which simply says, if there's a flow from u to v, regardless of what u and v are, then

the value of that flow is simply the negation of the value of the flow from v to u, which makes

perfect sense, right?

And this all works out under the definition of net flow. And so this is essentially what the

definition of net flow is in the textbook. But for our purposes here, we don't have to add that

adjective. We just are going to be talking about flows. Positive or net, they're the same, all

right? All right. Good.

So one of the things you can do with this notation-- and we're going to use what's called

implicit summation notation on top of this-- is to prove some interesting things, interesting

theorems, that give you some intuition as to how algorithms on flow networks are going to

work. And in particular, we're going to use this notation when we talk about the value of a flow.

So the value of a flow, f, is denoted-- you can think of it as a cardinality of f. And f is v,

belonging to capital V, f(s,v). And that is f(s,V), so what I have written here.

Well, given a flow network, I want one particular quantity that I want to maximize. And that

particular quantity is going to be defined, based on how much I can push from s, how much

can I push outward from s. That's the crucial quantity that I want to maximize. That quantity is-

- you think about everything that is going out of s, and you add it all up together.

So from s, you look at any other vertex, every other vertex, and you say, what is f(s,v)? And

I'm not talking about just the edges that come out of s. A vertex, v, small v, can be any vertex.

If I add up all of the flows that come out of s, then that is the flow that responds to my flow

network. That is everything that's getting pushed out of s, OK?

Now, it may be the case that-- remember, I'm talking about flow here-- so it may be the case

that you have an edge from s coming in from v4. And there may be a flow associated with that.

This is maybe something like 1, colon, 2, all right?

So what this means is that f(s,vr) is-- this is f, remember-- so this is minus f(v4,s). And in this

particular case, this is 1. So this is minus 1, OK? So keep that in mind.



When I talk about the flow of the network, I'm going to be looking at the source. And I'm going

to be looking at all of the flows that are going outward. And I have to keep in mind the skew

symmetry relationship. I obviously have to obey capacity constraints and the conservation

laws, all right?

So given that, let's use this implicit summation notation and show some simple properties of

flow. So let's look at-- one thing I want to emphasize is what I've done here is use this implicit

summation notation, which simply says, if I see a capital letter here, that's a set. And I'm going

to have to enumerate all of the members of that set. And it's implicit summation. So as I

enumerate those members, I'm going to add up all of these quantities, right? So that's really

what this means.

So the sigma here gets embedded into this capital V. So two things going on. The small v

turned into capital V, because I'm looking at the entire set. And the sigma gets in there too.

And that's why it's implicit summation, not just implicit set notation.

So some simple properties. I can say, f(x,x) is 0, where x is an arbitrary set. All that says is,

let's say, x has a single member in it, which is a. Then f(a,a) is always 0, because if you don't

allow self-loop edges, and that's pretty much all you need.

If you have a pair of vertices here, a and b, then what you're saying is f(a,b) plus f(b,a) is 0.

And that's true, because of skew symmetry. Right? We just wrote that out. So f(x,x) is 0. And in

general, you can say, even though X and Y are sets of vertices, I'm going to be able to use

skew symmetry to say that f(X,Y) is minus of f(Y,X), all right? Similar argument.

And then, lastly-- there's any number of these, we just do three of them here-- X of f(XUY, to

Z) is f(X,Z) plus f(Y,Z)-- we've got to use these properties to prove our first theorem here on

flow networks-- if X of X intersection Y is null. So you don't want to double-count. So that's all

this is. Make sure you're not double-counting. You've got f(XUY), and you want to look at that

entire set, the union, and then look at the flow from any member in XUY to any member in Z.

And you can do that by breaking it up, provided you're careful about double-counting. And the

fact that the two sets, X and Y, do not have an intersection, or they have a null intersection,

implies that you're OK with the [? write ?] inside. All right?

So you might be going, why are we doing this? Well, here's a good reason to like implicit set

notation. You can prove some interesting theorems in a very elegant way, using this notation.



So let's do one example of that. You'll probably see others in section.

So one of the things that we'd like to do is prove a pretty important theorem, which I think all of

you probably can assume in your heads, given all of the properties of flow networks that we

have. And it's a very simple theorem that simply says, I have the law of conservation that is

applied on all of these intermediate vertices, and I've got a bunch of commodities, I've got a

flow going out of s, right? So where can this flow go? Where does this flow end up? It ends up

at the sink, at t, right?

So the point is that, if you have all of these properties that we have up here, you're going to be

able to show-- and you want to show this, you want to prove this-- that the value of a flow,

which is defined as what gets pushed out from the source, is exactly what goes into the sink,

right? If that's not the case, there's been a violation of some property, perhaps a capacity

constraint, perhaps, more likely, a conservation constraint, OK?

So the theorem that we'd like to prove is simply that f is f(v,t), right? That's the theorem. And

there's a lot going on here, so it's worth spending 30 seconds looking at what exactly this

means.

What I have here is that, if you just look at this and that, I'm saying that f is what gets pushed

out of the source, OK? And now what I'm saying here is that f, the value, is exactly what gets

pushed into the sink, OK? So this is what I have to prove, right? And I should be able to prove

that, by invoking my laws. That's it. I mean, that's my axiomatic system. I've got those laws.

I've got a definition of a flow that may not necessarily be the max flow. It might be something

much less than the max flow, it might be the max flow.

Regardless, what gets out of the source has to get into the sink, right? So how are we going to

do that? And the implicit summation notation is going to give you, essentially, a three or four-

line proof, which is very intuitive, right? So let's do that. And maybe you can help me.

So we're going to start with what we know. So that's the proof. f equals f(s,V). Right? So that's

what we've got. That's the definition of cardinality of f, or a value of f, OK?

What I'm going to do is I'm going to say this is the same as-- I'll give you the first step, and

then let's see if you can help me with the remaining-- is the same as f of v minus s capital V,

right? So if you're having trouble differentiating between my cap V's and small v's, holler. I'm

trying to write them as big as possible. Yeah?



STUDENT: Could you maybe put little hats on the top of them?

SRINIVAS

DEVADAS:

Put little hats on them. Yes, I will put little hats on them. I'd put little Frisbees on them, if I

could, but-- I like Frisbees much better than hats. All right. That's good. That's good to do. So

yeah. So I think, hopefully, I'll keep doing this, and it won't be confusing.

So what I've done here is invoke, essentially, this, except it's not exactly that, in the sense that

it's written a little bit differently. But if you see what's going on here, what I've done is look at

this s, and I've said, think of this s as being cap V minus s. Right? So that gives you s. And

those are clearly disjoint, right? Those are clearly disjoint sets.

There is this one and this one are disjoint sets. That's what I mean to say. I mean, these two

aren't disjoint, but this and that are disjoint. And that's what you need, in order to invoke the

little property that you have here. And so that all make sense? You see why I did that? OK?

What can I say about either of these two quantities? Can I say something about either of these

two quantities? Yeah?

STUDENT: f(V,V) is 0.

SRINIVAS

DEVADAS:

f(V,V) is 0. That's exactly right. f(V,V) is 0. There you go. Yep. So this is simply I'm going to

invert that. I'm going to write this as f of V hat minus s, OK? I'll just flip this. I had a negative

sign here, but I've flipped that. And skew symmetry tells me I can do that, right?

All right. So I'm up to this point here. Now, what I'm going to do is I'm going to do f(V,t). And

the reason I want to do this is because this is where I want to get at, right? Eventually, I want

to show something that corresponds to f(V,t), right?

And what I have here is V,t. But now, I could do plus f(V,V minus-- cap-- minus s minus t)

right? So what I've done here is taken V minus s and pulled out t from it. Remember, t is part

of cap V. Cap V contains all of the vertices. So I've pulled out t from it, but that implies that I

have to do a V minus s minus t over here. And again, they're disjoint, so it's all good. What can

I say about this? Yeah?

STUDENT: It's 0 because of flow conservation?

SRINIVAS

DEVADAS:

It's 0 because of flow conservation. That's exactly right. We didn't quite write it that way. But if

you look at what the implicit summation notation would mean for that, you look at it and you



say, maybe one more step would be, let me think about this as being, f(V,t). It'll become more

obvious if I write it this way. f(V-- I'm putting a minus in here-- V minus s minus t and cap V

again, right?

So all I've done here is flip these two. Skew symmetry allows me to do that. And now look at

what I have here. I'm talking about a flow that corresponds to some-- for any vertex, I pick--

and it's not an s vertex, it's not a t vertex, so it's an intermediate vertex. And if I look at an

intermediate vertex and look at the flow that goes out to all vertices, conservation says that

has to be 0, right?

So that's exactly what this says. For any u that's neither s nor t but in V, the sum has to be 0.

So this is zero, and we're done. All right.

Oh, you-- a Frisbee? Who is that? Ah. Here.

So that's the power of implicit summation notation. So we could invoke these different

properties. It was fairly straightforward. Your first example of this. You'll probably see a few

more. All right? Any questions so far? OK.

So as you can see, as I promised, or threatened at the beginning, but followed through on my

threat, we have a lot of notation, a lot of baggage here before we get to algorithms. But we're

slowly getting there.

The next major concept is the concept of cuts. So a cut, you think of a cut as being, well, a cut

through paper, a cut through the air, whatever. It turns out that notion of a cut in a network is

more general than that, right? A cut is basically a partition. A cut is a partition of nodes. And a

partition means that you can't have a node in both sides, right? So a cut is going to give you

two disjoint components at the end of it.

But the cut doesn't have to be something contiguous. It doesn't have to be a line through the

network. And everything to the left of the line is in one half of the cut, and everything on the

right of the line is in a different half of the cut. I can just break up these nodes into two disjoint

parts. And the only constraint that I'm going to ask for is that s, which is the source, is on one

side of the cut, and t, which is the sink, is another side of the cut, OK? That's it.

And given that, I'm going to say interesting things, really interesting things, about the flow

through a cut, OK? And so let's do that. Let's define a cut.



So a cut is (S,T) of a flow network, G, is a partition of V, such that small s belongs to cap S,

and small t belongs to cap T. I don't know. Do you want hats on the T too? I'll just write them

large. If a flow on G-- if f is a flow on G, then the flow across the cut is f(S,T). OK?

So again, implicit summation notation here. The flow across the cut is as the sum of the flows

corresponding to each pair of vertices, such that the source vertex is part of capital S. And the

destination vertex is part of capital T. All right? That's it. I'm just going to add them all up.

That's the flow across the cut.

So what I can do now is just talk about-- let's just go up here back to this. And I'm going to look

at exactly what I have here. Is that right? Not exactly. I'm going to change this a little bit,

because I want to make sure I don't have to add up numbers and do that incorrectly. So I

need a 1. Yup. That's all I need to do is change it.

So I'm going to change our example here, not the topology of the example, but the actual

numbers. And you'll need to verify that what I have here satisfies our flow network properties.

And there's one more. OK? So I think I'm good. All right.

So this is going to be an example of a cut. I haven't defined the cut yet. Let's get rid of that.

Holler if you think there's something wrong with this flow. All right? I think I got it right. It

satisfies capacity constraints. It satisfies flow conservation constraints.

The flow that is going into t is 4. This happens to be a max flow. Doesn't really matter. So what

we're going to talk about with respect to cuts, it doesn't require the flow to be maximum. Keep

that in mind.

What do I mean by the flow across a cut via an example? I'm going to simply say that the

shaded nodes, two of them, are part of capital S, OK? So as you can see, I just arbitrarily

picked a couple of nodes. And that not necessarily something that can be easily partitioned

using an actual cut line, a physical cut line. I just picked that one over there and the one over

here with S.

And so, I can now look at this, and I can compute numerically, for this example. And it's worth

doing at least once what the flow across this particular cut is, defined by the particular choice

of cap S and cap T, OK? And that's what we're going to do.

So f(S,T) is-- I'm going to have to look at pairs of nodes, such that I've got a shaded node on

the left-hand side and non-shaded node on the right-hand side. And I'm going to have to go



through all of the combinations, right?

So if I look at this, I can first knock off this one, and that one, and that one. Let me actually put

in-- let's call this a, b, and c here. And we can call that d. So we have s and d as being part of

the cut, in terms of s, capital S. And the other ones are in cap T.

And so what I have is I could do Sa and Sb. So I've got 2 plus 2, all right? And this would

correspond to Sa and Sb. So those are going out, right? So far, so good. And then, I'm going

to write out a bunch of numbers here, minus 2 plus 1 minus 1 plus 2.

And the minus 2, where would the minus 2 come from? Well, an a,d, for example, is a minus

2, right? Because d is part of-- it would be d, a. So a, d has a flow of 2, correct? And so d, a

has a flow of minus 2, right? And d, a is part of what I have here, because d is part of capital

S, and A is part of capital T. You guys see that? So this is not trivial, so pay attention.

So this would be, for example, the minus 2 would correspond to d, a. That's what I need here.

And I could also have-- what do I have here? I have something is going into d. So a c, d is 1.

So d, c is minus 1, right? Make sense? d, c is minus 1.

What about the plus 1? Where do I get a plus 1 from?

STUDENT: d, b.

SRINIVAS

DEVADAS:

d, b is going out. That's exactly right, d, b. And the plus 2, it would be d, T, right?

And so you have to do the enumeration. It's worthwhile doing once. And then it gets kind of

boring. We won't to do it again. But you have to realize that you have to absolutely look at

every pair of vertices. And you have to use skew symmetry and ensure that, even though

there's actually no edge going out, if there's an edge coming in, you've got to count that. And

that's going to get a negative. Whatever is coming in, you've got to subtract, OK? So it's not

that complicated. Yeah, go ahead.

STUDENT: Do we not consider S, c?

SRINIVAS

DEVADAS:

I'm sorry?



STUDENT: Do we not consider S, c?

SRINIVAS

DEVADAS:

So the beauty of this is that, when you don't have a particular edge from S to c, you can use

skew symmetry to argue that S, c and c, S cancel out each other, all right? So that's the good

part, right? And thanks for asking the question. That's a good question. All right. Here you go.

So you can do that by just looking at the edges. And you can add up the numbers, all right?

And so I don't think this is going to be absolutely crucial to understand the rest of the lecture.

Keep this in mind, that there's a process by which you define the value of a cut. And we're

going to get back to this, when we prove the max-flow min-cut theorem next time. But at this

point, I want to say something actually much more straightforward, which is going to be

important when we look at residual networks, which is the last concept that we need to get at

before we get to an algorithm. And that is simply that the capacity of a cut and the relationship

between the capacity of the cut and the flow of a cut.

So the capacity of a cut is c(S,T). Oops. I didn't draw that properly. Open brackets, capital S,

capital T. And we can do it exactly the same way, except this is a lot simpler, because you only

look at edges and you only have positive quantities.

So in this case, you'll simply say it's 3 plus 2, corresponding to-- what did I have here? I had d,

a-- S, a and S, d. And then, the capacity is you only need to look at the edges that go from a

node in S to a node in capital T. And so those are 1 plus 3. And this simply would be the 1

would be d, b. And the 3 is d, t.

So you don't care about the other flows. This is not about flows, this is simply about capacity.

So this adds up to 9, OK?

And so we have, at this point, we have defined the flow through a cut. And we know the

capacity of a cut, OK? It's more or less obvious-- though you could certainly prove a theorem

which is going to take a couple of lines-- to say that the value of any flow is bounded by the

capacity of any cut. And sorry, I lied. It's not a trivial proof. And that is actually something

profound going on here. And so I'll have to explain exactly what this means. And then we'll

take a look at how we could prove something like this.

So what's cool about this is that you're saying that it's the value of any flow is bounded by the

capacity of any cut, OK? And so that's an upper-bound on the maximum flow value, right? So

I'm saying there's all these cuts that are possible in the network. And I'm making a statement



about what the maximum flow can be, based on the values corresponding to the capacities of

any cut, right?

So why is that the case? Well, we're not going to be able to prove that fully today. That's the

max-flow min-cut theorem. But you can certainly get a sense of it, by looking at a different

characterization of the flow value. So I'm going to give you one half of the proof, at least, and

intuition about the other half. And we'll finish it next time.

But here's another characterization of the flow value. So our lemma here, which is going to

lead us to this statement, is that, for any flow, f, and any cut, (S, T), we have a really powerful

dilemma. Maybe you should call it a theorem.

But it essentially says, look, it doesn't matter what cut you choose, you've got a flow on the

network. And when you look at the flow on the network, it's going to equal the flow across the

cut. And the only reason for this is simply because you've got the source on one side of the

cut. And you've got the sink on the other side of the cut. That's it. That's the only thing that you

need, right?

You dump these vertices these into two bins. You know, dump the source on the left, and

dump the sink on the right. And you compute the flow the way we've defined it. That's the flow.

It doesn't matter how you partition these vertices, as long as you've got the source on the left

and the sink on the right, OK?

And so we can prove this using implicit summation notation. We'll do that. And that'll give you a

really good sense of why this statement is true, because we know that, for any given cut, the

flow that cut is bounded by the capacity of that cut, right? You know that.

But to show this, here's how we could show that, f(S, T) is f(S, V) minus f(S, S), OK? So I'm

playing around, just like I did before. I had taken the cap T-- I know that S union T is cap V,

right? This is a partition. So I know that S union T is cap V. So I can put a V here and an S

here, right? And that's a subtraction over there, of course, right?

So put that up here and finish this, a couple more lines. And what can I say about either of

these? I could say something about one of these terms. Yep?

STUDENT: The one on the right is [INAUDIBLE].

SRINIVAS The one on the right is 0. So call this f(S,V). Right? And now, I'm going to break it up again,



DEVADAS: make it small s, big V, plus f(S minus s, cap V). So broken this up into small s, which is just

joined from cap S minus s, clearly.

And what can I say about this? This is a little more subtle than, perhaps, the previous

question. What can I say about that quantity? I mean, the answer is not subtle, but-- yeah, go

ahead.

STUDENT: That that is equal to 0.

SRINIVAS

DEVADAS:

And why?

STUDENT: Because the cap S doesn't contain t.

SRINIVAS

DEVADAS:

Ah. Beautiful. That's right. So that's what I wanted. So this does not contain t. And so, now you

can use flow conservation, right? And that's the important thing.

You can use flow conservation, because this does not contain t. And then, it clearly does not

contain small s, because I just took it out of it, right? So that goes to 0. And voila. That's simply

f(S, V), which we know is f. We proved that. Our first implicit summation proof was showing

that-- well, this is a definition. Excuse me. So we did it for the sink.

But this is simply the definition of the flow value, right? So this is beautiful. I mean, it's like

fantastic, right? Why aren't people excited?

[LAUGHTER]

Because I put people to sleep before, in the hour before. But this is absolutely fantastic,

because this says that I have ways of figuring out what the maximum flow of the network

would be, by making arbitrary cuts through this network and looking for capacities of these

cuts, right? Because I know that the capacity of any cut-- and now you see why min cut is

interesting-- but you know that the capacity of any cut is going to bound the flow of the

network, because the flow through a cut is the flow through the network.

So if I go through and look at the min cut corresponding to the minimum capacity associated

with the flow network, that's going to point me to my max flow, because that going to be an

upper bound on the max flow, right? And so now you see why the min-- not the min flow,

sorry-- the min-cut max-flow theorem is an interesting one. But it relates-- and this is the



beginning of that relationship, we're not quite done to prove it-- but the beginning of the

relationship is that you can look at any cut, and you can look at the flow through the cut as

being the flow through the network. And then you use the second part of it, which is the

capacity bounding-- of course, in a very simple way, because of edge capacities-- the flow

through the cut. And you can put those two things together, all right?

We still don't quite know how to find these cuts, right? So we don't quite know how to find

these cuts. And that's the last thing that we're going to do today, give you a sense of how

we're going to find these min cuts, so we can find the max flow. All right? Cool.

So the one last notion that we have here that is going to allow us to go into the algorithm

domain, as opposed to the analysis domain-- all we've done so far is analysis, analysis,

analysis-- is the notion of a residual network. OK? And a residual network, as its name implies,

is something that has residual capacities. It's the network that points you to places where you

can increase the flow, because there's capacity left.

Your flow is less than the edge capacity. It's a local notion, so it's easy to compute. There's a

capacity of 3 on this edge, there's a flow of 2. The residual capacity is 1, right? 3 minus 2.

And so the residual network Gf (V, Ef), right? So the actual network is G(V, E). And the

vertices are going to be the same. The graph is obviously different, but the edges are going to

be different. There's going to be a different set of edges in the residual network, as opposed to

the flow network, OK?

And you have strictly positive. That means greater than 0, strictly greater than 0, residual

capacities. So Cf ) equals c(u,v) minus f(u,v). And that's strictly greater than 0. I'm going to put

an edge in there, if there is a residual capacity. 0 doesn't mean there's any residual capacity.

Edges in Ef admit more flow, OK?

And one last thing. If (V, u) does not belong to E-- so we are talking about the original network

here, E means the original network-- then we know c(V, u) equals 0. That was our definition. If

you don't have that edge, the capacity is 0.

But we are talking now about f, which is a flow, which doesn't necessarily require that there be

an edge. And we are simply going to use our skew symmetry relationship. And you'll see that

this may not be completely clear as to why I wrote this at this moment. But as I draw the

residual network, you'll see why that is important. It's going to be the case that we're going to



have extra edges in the residual network that don't exist in the original network, because of

that last line there, right? So let me clear that up.

So we're going to draw a residual network for-- I'm going to change that yet again-- but we're

going to draw the residual network for our example up there. Topology is going to stay the

same. Numbers are going to change, because I want something slightly more interesting than

what we have there.

So I'm going to take this out-- 2, 1. 1, 2-- go back to what it was before, I think. 1-- all right.

Good. So I want a 1 over here. I want a 1 over here, a 2 over here. And keep checking to

make sure I'm not messing up here, in terms of flow constraints. But that's pretty much all I

got. OK?

So the flow here and the s and t don't particularly matter. The max flow is 4. The flow that you

see up there is 3. This is what we had right at the beginning, all right?

So what I want to do now is give you what the residual network is for this particular flow.

Remember, the residual network is defined, based on a flow. That's why you have Gf, G

subscript f. f is a flow. So you're going to have a different residual network, if the flow is

different. So that original example that I had would have a different residual network. This one

is going to have the one I'm going to draw, all right?

So the residual network has the same set of vertices. So I can go ahead and draw these

vertices. I'll just mark T and S over here. Those are exactly the same as before. And this is Gf,

OK? That's a residual network.

And the edges are going to be different. All I have to do is look up there and say, look, I'm

going to have a residual capacity of 2-- let me use a different color, since I have them--

corresponding to that edge from S to a, because I clearly have a capacity of 3, and I only have

a flow of 1, right? So that's all there is to it.

Now, the interesting thing is that, because of this line over here, I'm actually going to define an

edge in Ef, in Gf or Ef, that corresponds to this edge that didn't exist in E, because I can shrink

the flow from 1 to 0. And that essentially says that that shrinkage is represented in the residual

network by an edge that goes from this node, a, up there, to s, right? And that is going to have

a residual capacity of 1, right?

So that's it. That's the only extra thing that you have to remember when you draw the residual



network. You not only can increase the flow, you can also shrink it. You have to represent the

shrinkage of the flow by an edge in the residual network. And you obviously represent the

increase of the flow by an edge in the residual network. And now you see why this is all going

to make sense.

Remember, way back, eons ago, only an hour ago, but we had this example where we had to

shrink the flow in a particular edge, in order to get the overall flow to increase, right? The

residual network is going to point us in the direction of, potentially, those edges whose flow

has to shrink. But they're going to be represented, in effect, as these reverse edges with

positive numbers associated with them.

So there's a 1 here. It's positive, because it goes from this node, call it a, back to s. And if I

shrink this from 1 to 0, that is, in effect, taking what I have up here and making this 1 as 0,

OK? That's the way you want to think about this. So that's pretty much it.

I could draw out the rest of this, and it should all make sense. I have an edge like that. So the

edges that are at capacity up there aren't going to show up here. The edges that are not at

capacity end up with two edges down below, if they have a flow that is non-zero, right? If you

have a 0 flow up there, you're only going to get one edge. Obviously, you'll get one edge,

because the capacity is non-zero. But the ones that are not quite at capacity end up to two

edges, right? Think of that as being the simple rule.

And make sure that I'm following this rule. Good exercise is to check for bugs, lecture bugs.

Best way of understanding the material.

OK? So that's my residual network. And let me just point-- I'll put in some numbers. Or maybe

you can tell me what some of these numbers are. What is this number?

STUDENT: 2.

SRINIVAS

DEVADAS:

2. Right? Now, this is a little more tricky. Take a look at the number that goes up, versus the

number that comes down. What is this number? Goes up.

STUDENTS: 2.

SRINIVAS

DEVADAS:

That's 2, because I can go from 1 to 3. And this number would be?



STUDENTS: 1.

SRINIVAS

DEVADAS:

Beautiful. All right, you guys got it. Did my job.

All right, so that's our residual network for this particular flow. So a mechanical way of

computing it. And you should be able to do that.

Now what exactly can we do with this residual network? It turns out that the algorithm now can

be described in a couple of sentences, right? Essentially our Ford-Fulkerson algorithm-- I'm

not going to bother writing this out, because I'm going to have to prove the max-flow min-cut

theorem next time. And we're going to talk about the Ford-Fulkerson algorithm and issues with

it next time.

But I'm going to show you how the Ford-Fulkerson algorithm works on this particular example.

And it's only going to have one step, all right? So it's going to converge in one step. So it's

going to be relatively easy. But the bottom line is the the Ford-Fulkerson algorithm is going to

look for augmenting paths in Gf. Augmenting paths are defined in the residual network.

What is an augmenting path, you ask? Well, an augmenting path is simply a path from s in Gf

to t in Gf, OK? That's it. That's all there is to it. If you can find a path, you could use depth-first

search, you could use breadth-first search, you could use whatever you wanted. You find a

path from s to t, OK?

If you find such a path, if this path exists, it means that the flow is not maximum, OK? If no

path exists, the flow is maximum, and you're done. If such a path exists, you will be able to

increase the flow, in this case, because we have integral quantities, by at least one, OK? And

you will be able to increase the flow by one.

And not only that, the augmenting path is going to tell you exactly what to do with respect to

what edges to change, sometimes subtract the flow from, sometimes increase, right? So the

augmenting path is going to take care of it. But you've flipped it, so everything is positive. You

know, life is great. Positive numbers.

Just look at s to t and give me any path from s to t here in the residual network. So let me just

call them a, b, d, and c. And we don't care about partitions or cuts at this point. That's required

for proofs. But give me a path from s to t Yeah, go ahead.



STUDENT: S to a, a to b--

All right a little bit more slowly. s a, OK. And then?

STUDENT: a to b.

SRINIVAS

DEVADAS:

a to b. Beautiful.

STUDENT: b to c.

SRINIVAS DEVADAS: b to c.

STUDENT: c to t.

SRINIVAS

DEVADAS:

And c to t. Wonderful. And I have a capacity, a residual capacity, of 2 here. I have a residual

capacity of 1 here, 1 here, and 1 here. And so the value of this augmenting path is 1, right? It's

not 2, because the minimum value is what I can push through the network. And I just need to

take the min of all of the residual capacities corresponding to the edges that I traversed, that

correspond to this particular path. And that min value of 2, 1, 1, 1, is 1, right?

So what this means is I've discovered an augmenting path of residual capacity, 1. Now I can

go back to this thing over here. And these edges are going to point me, in some cases, to

complimentary edges, in some cases to the direct edges that are going to have to have their

flows changed, either increased or decreased, to increase the flow in the original network. So

you're guaranteed now that f, which caused this residual network to have an augmenting path

in it was not maximum. You're guaranteed that, because you found this path, OK?

So what happens here? Well, you go back up and you say, remember, I'm going to increment

by plus 1, because that's the residual capacity. So I'm going to go up here, and I have s to a.

You'll need to help me out again. So I'm going to make this 2, because I needed to add a one

to it.

What happens here? This is the key step.

STUDENT: Subtract.

SRINIVAS

DEVADAS:

Subtract and make this a 0, right? We're not quite done. What's next? I have b to c, right?

Right? You're still on the hook.



STUDENT: [LAUGHS].

SRINIVAS

DEVADAS:

b to c becomes?

STUDENT: 3.

SRINIVAS

DEVADAS:

3. Right. And then, lastly, this becomes 2. OK? And at this point, if you create a residual

network for this new flow, you will not be able to find a path in that residual network from s to t.

And you know you're done, right?

So all of this works. We haven't quite shown that it works, because we haven't done enough of

the proofs. But you have a sense as to why this works. You could probably code this up. It

would all work. A couple of issues in applications. See you next time.


