
Design and Analysis of Algorithms March 6, 2015 
Massachusetts Institute of Technology 
Profs. Erik Demaine, Srini Devadas and Nancy Lynch Recitation 5 

Dynamic Programming
 

Rectangular blocks
 
Given a set of n rectangular three-dimensional blocks, where block Bi has length li, width wi, and 
height hi, all real numbers, find the maximum height of a tower of blocks that is as tall as possible, 
using any subset of the blocks, such that the tower respects the following constraints: 

1. Blocks cannot be rotated: the length always refers to the east-west direction, the width is 
always north-south, and the height is always up-down. 

2. Block Bi can be stacked on top of block Bj only if li ≤ lj and wi ≤ wj , that is, the two 
dimensions of the base of block Bi are no greater than those of block Bj . 

Sub-problem definition 
First we assume that our blocks {1, 2, . . . , n} are arranged in non-increasing order of length and 
then breadth – note that this is easy to do as a pre-processing step that takes O(n log n) time. 

Given this ordering of blocks, we define H[i] to be the height of the tallest tower that has block 
Bi at the top. 

Recursive formulation 
We see that H[i] can be expressed as, 

H[i] = hi + max H[j] 
j<i;lj ≥li;wj ≥wi 

If there exists no compatible box in the above maximization, the max term equals 0. 
Our base case here is H[1] = h1. 
In this problem, we’re guessing over all possible legal blocks under the top block (block Bi in 

this case). 
The final answer is then maxi H[i]. 

Runtime analysis 
Total number of sub-problems here is O(n), and the total time required to solve each sub-problem 
is O(n), which means that the total running time of the Dynamic Programming part of this algo
rithm is O(n2). 

Note that sorting the boxes in non-increasing order of lengths and then breadths takes O(n log n) 
time, which means the total running time of this algorithm is O(n log n + n2) = O(n2). 

6.046J/18.410J 



2 Recitation 5: Dynamic Programming 

Counting Boolean Parenthesizations 
Given a boolean expression consisting of a string of the symbols True, False, AND, OR, and 
XOR, count the number of ways to parenthesize the expression such that it will evaluate to True. 
For example, there are 2 ways to parenthesize True AND False XOR True such that it eval
uates to True. 

Sub-problem definition 
Let T [i, j] be the number of ways of parenthesizing the string S[i : j] such that the expression 
between indices i and j evaluates to True, and F [i, j] be the number of ways of parenthesizing 
the string S[i : j] such that the expression between indices i and j evaluates to False. Here 
indices i and j are inclusive. 

Recursive formulation 
Then, given that T ot[i, j] = T [i, j] + F [i, j], we see that T [i, j] and F [i, j] can be expressed by the 
following recursive formulations, 

⎧⎨
T [i, k] · T [k + 1, j] if S[k] = AND 
T ot[i, k] · T ot[k + 1, j] − F [i, k] · F [k + 1, j] if S[k] = OR 
T [i, k] · F [k + 1, j] + F [i, k] · T [k + 1, j] if S[k] = XOR 

F [i, k] · F [k + 1, j] if S[k] = OR 
T ot[i, k] · T ot[k + 1, j] − T [i, k] · T [k + 1, j] if S[k] = AND 
T [i, k] · T [k + 1, j] + F [i, k] · F [k + 1, j] if S[k] = XOR 

j−1

k=i 

j 
T [i, j] =
 ⎩ 

⎧⎨
jj−1

k=i 

F [i, j] =
 ⎩
 

We have the following base cases, for all i between 1 and n, 

T [i, i] = 1 if S[i] = True 
T [i, i] = 0 if S[i] = False 
F [i, i] = 0 if S[i] = True 
F [i, i] = 1 if S[i] = False 

The final answer is T [1, n] (the total number of ways of obtaining a final value of True given that 
the entire string S[1 : n] is used. 

Here, we are making a guess over the positions of the outermost parentheses in the expression 
sub-stringed between i and j. 

Runtime analysis 
Total number of sub-problems here is O(n2), and the amount of time required to solve each sub
problem is O(n), so the total runtime complexity of the algorithm is O(n3). 



3 Recitation 5: Dynamic Programming 

Make change 
Given a value N , if we want to make change for N cents, and we have infinite supply of each of 
S = {S1, S2, .., Sm} valued coins, what’s the minimum number of coins needed to get to a total of 
N? For simplicity, assume that S1 > S2 > . . . > Sm. 

Sub-problem definition 
Let C[p] be the minimum number of coins need to make change for p cents using coins of denom
inations S1, S2, . . . , Sm. 

Recursive formulation 
If p > 0, 

C[p] = min C[p − Si] + 1 
i:Si≤p 

Our base case is C[0] = 0. 
The final answer is C[N ]. 
In this formulation, we make a guess on which coin denomination Si belongs to the optimal 

configuration. 

Runtime analysis 
The total number of sub-problems here is O(N), and the total time required to solve each sub
problem is O(m), so the total runtime complexity of this algorithm is O(mN). 

Note that this runtime is pseudo-polynomial (similar to Knapsack). 

Other problems 
•	 (Warmup) A robot starts from the top left corner (1, 1) of a M × N grid. The goal of the 

robot is to reach right bottom (M, N). At each step the robot can make one of the two 
choices - move one cell right, move one cell bottom. Write a function which takes M and N 
as arguments and returns the total number of paths the robot can take to reach its destination. 

•	 Consider an input text consisting of n words, each of lengths l1, l2, . . . , ln characters. We 
want to print this text as neatly as possible, with the restriction that each line can hold only 
a maximum of M characters. The goal here is to minimize the sum over all lines except the 
last, of the cubes of the numbers of extra space characters at the end of each line. The number njof extra characters at the end of a line that consists of words i through j is M −j+i+ k=i lk. 



MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



