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Problem Set 2 Solutions 

This problem set is due at 11:59pm on Thursday, February 19, 2015. 

Exercise 2-1. Read CLRS, Sections 30.1 and 30.2. 

Exercise 2-2. Exercise 30-2.3. 

Exercise 2-3. Exercise 30-2.4. 

Exercise 2-4. Read CLRS, Chapter 18. 

Exercise 2-5. Exercise 18.2-5 

Exercise 2-6. Exercise 18.3-2 

Problem 2-1. Pattern Matching [25 points]
 

Suppose you are given a source string S[0 . . n − 1] of length n, consisting of symbols a and b.
 
Suppose further that you are given a pattern string P [0 . .m − 1] of length m « n, consisting of
 
symbols a, b, and ∗, representing a pattern to be found in string S. The symbol ∗ is a “wild card”
 
symbol, which matches a single symbol, either a or b. The other symbols must match exactly.
 

The problem is to output a sorted list M of valid “match positions”, which are positions j in S
 
such that pattern P matches the substring S[j . . j + |P | − 1]. For example, if S = a b a b b a b and
 
P = a b ∗, then the output M should be [0, 2].
 

(a)	 [4 points] Describe a straightforward, naı̈ve algorithm to solve the problem. Your
 
algorithm should run in time O(nm).
 

Solution: One can explicitly check every possible starting position s ∈ {0, 1, . . . , n− 
m} by checking whether each entry in P matches from s to s + m − 1. 

NAIVE-ALGORITHM(S, P )
 

1 M = [ ]
 
2 for s = 0 to n − m
 
3 valid = TRUE
 

4 for j = 0 to m − 1
 
5 if P [j]  = ∗ and P [j]  
= S[s + j]
 
6 valid = FALSE
 

7 if valid
 
8 M.APPEND(s)
 
9 return M
 

6.046J/18.410J



2 Problem Set 2 Solutions 

(b)	 [12 points] Give an algorithm to solve the problem by reducing it to the problem 
of polynomial multiplication. Specifically, describe how to convert strings S and P 
into polynomials such that the product of the polynomials allows you to determine the 
answer M . Give examples to illustrate your polynomial representation of the inputs 
and your way of determining outputs from the product, based on the example S and 
P strings given above. 

Solution: Let’s represent a by 1, b by −1, and ∗ by 0. We will use these representa
tions instead of the original symbols in this solution. 
Notice that P matches S starting from position j, 0 ≤ j ≤ n − m, if and only if for 
every i, 0 ≤ i ≤ m − 1, either P [i] = 0 or S[j + i]P [i] = 1. This is true if and only if 

m−1m 
S[j + i]P [i] = k, 

i=0 

where k is the number of non-∗ symbols in P . 
We would like to express these summations as coefficients of a product of polynomi
als. Let x be a variable. Represent S as 

fS (x) = S[0] + S[1]x + · · · + S[n − 1]x n−1 . 

Represent P as 

fP (x) = Q[0] + Q[1]x + · · · + Q[m − 1]x m−1 , 

where each Q[i] = P [m − 1 − i]. Thus, we have reversed the order of the coefficients 
in this last representation. 
Suppose C is the product of the S polynomial and the P polynomial. Then the coeffi
cient of xm−1+j in C is 

mm−1 

S[m − 1 + j − i]Q[i], 
i=0 

which is equal to 
mm−1 

S[i + j]P [i]. 
i=0 

This is the same as the sum above. To obtain the output M , we simply examine all 
the coefficients of C, outputting position number j, 0 ≤ j ≤ n − m, exactly if the 
coefficient of xm−1+j is equal to k, the total number of non-∗ symbols in P . We output 
these in order of increasing j, as required. 
In the example above, S is represented by 

fS (x) = 1 − x + x 2 − x 3 − x 4 + x 5 − x 6 
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and P by
 
fP (x) = −x + x 2 .
 

The product C is 

−x + 2x 2 − 2x 3 + 2x 4 − 2x 6 + 2x 7 − x 8 . 

The number k is equal to 2, so the terms of interest are 2x2 , 2x4, and 2x7. These would 
yield j = 0, 2, 5, but 5 is ruled out because we are only considering j ≤ n − m = 
7 − 3 = 4. 

(c)	 [3 points] Suppose you combine your solution to Part (b) with an FFT algorithm for 
polynomial multiplication, as presented in Lecture 3. What is the time complexity of 
the resulting solution to the string matching problem? 

Solution: It’s O(n lg n). It takes time O(n lg n) to perform the needed DFT and 
inverse DFT algorithms, and O(n) for producing inputs for the DFT algorithm and 
extracting M from the outputs. 

(d)	 [6 points] Now consider the same problem but with a larger symbol alphabet. Specif
ically, suppose you are given a representation of a DNA strand as a string D[0 . . n−1] 
of length n, consisting of symbols A, C, G, and T ; and you are given a pattern string 
P [0 . .m − 1] of length m « n, consisting of symbols A, C, G, T , and ∗. 
The problem is, again, to output a sorted list M of valid “match positions”, which are 
positions j in D such that pattern P matches the substring D[j . . j + |P | − 1]. For 
example, if D = AC GAC C AT and P = AC ∗ A, then the output M should be 
[0, 3]. 
Based on your solutions to Parts (b) and (c), give an efficient algorithm for this setting. 
Illustrate your algorithm on the example above. 

Solution: Use a reduction. Encode A as a a, C as a b, G as b a, T as b b, and ∗ as ∗ ∗. 
Use our previous solution to solve the problem on the resulting string, obtaining a list 
M ' of positions. 
The final output list M will consist of just the even numbers from the list M ', all 
divided by 2.
 
This will take the time it takes to convert and then solve the original problem on arrays
 
of length 2n and 2m respectively:
 

O(2n + 2n lg(2n)) = O(n lg n). 
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Problem 2-2. Combining B-trees [25 points] 

Consider a new B-tree operation COMBINE(T1, T2, k). This operation takes as input two B-trees T1 

and T2 with the same minimum degree parameter t, plus a new key k that does not appear in either 
T1 or T2. We assume that all the keys in T1 are strictly smaller than k and all the keys in T2 are 
strictly larger than k. The COMBINE operation produces a new B-tree T , with the same minimum 
degree t, whose keys are those in T1, those in T2, plus k. In the process, it destroys the original 
trees T1 and T2. 

In this problem, you will design an algorithm to implement the COMBINE operation. Your algo
rithm should run in time O(|h1 − h2| + 1), where h1 and h2 are the heights of trees T1 and T2 

respectively. In analyzing the costs, you should regard t as a constant. 

(a)	 [5 points] First consider the special case of the problem in which h1 is assumed to be
 
equal to h2. Give an algorithm to combine the trees that runs in constant time.
 

Solution: Construct a new root node for T consisting of the root nodes for T1 and T2, 
with the root of T1 at the left, and with k inserted between the keys of the two original 
roots. Then, if the number of keys in the resulting root node is at least 2t − 1 then split 
the root node around its median, forming a new root node containing one key and two 
child nodes containing at least t − 1 keys apiece. 
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COMBINE(T1, T2, k) 

1 T = T1 

2 R = T.root 
3 R2 = T2.root 
4 i = R.n + 1 

[ Merging the two roots into one 
6 T.ki = k 
7 for j = 1 to R2.n 
8 i = i + 1 
9 T.ki = R2.kj 

T.ci = R2.cj 
11 T.ci+1 = R2.cR2 .n+1 

12 R.n = i + 1 
13 if R.n ≥ 2t − 1 
14 [ Splitting node   

R.n mid =
2

16 dummy = ALLOCATE-NODE() 
17 dummy .n = 1 
18 dummy .k1 = R.kmid 

19 [ Allocating Children 
C1 = ALLOCATE-NODE() 

21 C1.n = mid − 1 
22 C2 = ALLOCATE-NODE() 
23 C2.n = R.n − mid 
24 [ Creating first child 

C1.c1 = T.c1 

26 for j = 1 to C1.n 
27 C1.kj = T.kj 
28 C1.cj+1 = T.cj+1 

29 [ Creating second child 
C2.c1 = T.cmid+1 

31 for j = 1 to C2.n 
32 C1.kj = T.kj+mid 

33 C1.cj+1 = T.cj+mid+1 

34 dummy .c1 = C1 

dummy .c2 = C2 

36 T.root = dummy 
37 return T 

(b) [5 points] Consider another special case, in which h1 is assumed to be exactly equal 
to h2 + 1. Give a constant-time algorithm to combine the trees. 

http:dummy.c2
http:dummy.c1
http:dummy.k1
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Solution: 
Append k to the right end of the right child node of T1 and append the root of T2 to 
that. Clearly this preserves sorted order. Now the right child may have anywhere from 
t + 1 to 4t − 1 keys. If it has 2t − 1 or more keys, then split it around its median key. 
If that causes the root node to have 2t − 1 nodes then split that around its median key, 
thus adding another level to the tree. 

COMBINE(T1, T2, k)
 

1 x = T1.root
 
2 x = x.cx.n+1
 

3 r = T2.root
 
4 n = x.n + 1 + r.n
 
5 [ Append k to the rightmost child
 
6 x.kx .n+1 = k
 
7 [ Append the root of T2 to the node
 
8 x.cx .n+2 = r.c1
 

9 for j = 1 to r.n
 
10 x.kx .n+j +2 = r.kj
 
11 x.cx .n+j +3 = r.cj+1
 

12 [ Split node if too big
 
13 if n ≥ 2t − 1
 
14 p = x.parent
 
15 n = p.n
 
16 B-TREE-SPLIT-CHILD(p, n)
 

(c)	 [5 points] Now consider the more general case in which h1 and h2 are arbitrary. 
Because the algorithm must work in such a small amount of time, and must work 
for arbitrary heights, a first step is to develop a new kind of augmented B-tree data 
structure in which each node x always carries information about the height of the 
subtree below x. Describe how to augment the common B-tree insertion and deletion 
operations to maintain this information, while still maintaining the asymptotic time 
complexity of all operations. 

Solution: Augment the tree by adding a height attribute for each node. The height of 
a leaf node is 0. For internal nodes, HEIGHT(x) = HEIGHT(x.c1) + 1. 
Insertion: New nodes are added during splitting. The newly allocated node in a split 
has the same height as the original node. The only other time a node is added is when 
the root is split. This is done by making the root the child of a dummy node and then 
splitting it. The height of the new root is set to one greater than the height of the old 
root. 
Deletion: In deletion, no nodes are deleted except the root. Since height values are 
indexed starting at the leaf, deletion does not affect node heights. 
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With these additions, the asymptotic running time for insertion and deletion is that 
same as before, O(lg n). 

(d)	 [10 points] Now give an algorithm for combining two B-trees T1 and T2, in the general
 
case where h1 and h2 are arbitrary. Your algorithm should run in time O(|h1 −h2|+1).
 

Solution: 
If |h1 − h2| < 2, use part (a) or (b). Otherwise, assume that h1 > h2 +1 (h2 > h1 +1 
works symmetrically). Let x be the rightmost node of T1 at level h2. Add k at the 
right end of x and append the root of T2 to that. Now node x may have anywhere from 
t + 1 to 4t − 1 keys. If it has 2t − 1 or more keys, then split it around its median key. 
The split may propagate upwards, possibly as far as the root. So, the time complexity 
depends linearly on the height difference O(|h1 − h2|). 

COMBINE(T1, T2, k)
 

1 T = T1
 

2 h1 = T1.height
 
3 h2 = T2.height
 
4 x = T.root
 
5 [ Move to the rightmost node at level h2
 

6 for j = 1 to h1 − h2
 

7 n = x.n
 
8 x = x.cn
 

9 r = T2.root
 
10 n = x.n + 1 + r.n
 
11 [ Append k to the node
 
12 x.kx .n+1 = k
 
13 [ Append the root of T2 to the node
 
14 x.cx .n+2 = r.c1
 

15 for j = 1 to r.n
 
16 x.kx .n+j +2 = r.kj
 
17 x.cx .n+j +3 = r.cj+1
 

18 [ Split node if too big
 
19 if n ≥ 2t − 1
 
20 p = x.parent
 
21 n = p.n
 
22 B-TREE-SPLIT-CHILD(p, n)
 
23 return T
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