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Problem Set 2


MIT students: This problem set is due in lecture on Monday, October 3, 2005. The homework 
lab for this problem set will be held 2–4 P.M. on Sunday, October 2, 2005. 

SMA students: 

Reading: Sections 5.1-5.3 and Chapters 6, 7, and 9. 
Both exercises and problems should be solved, but only the problems should be turned in. 

Exercises are intended to help you master the course material. Even though you should not turn in 
the exercise solutions, you are responsible for material covered in the exercises. 
Mark the top of each sheet with your name, the course number, the problem number, your 

recitation section, the date and the names of any students with whom you collaborated. 
You will often be called upon to “give an algorithm” to solve a certain problem. Your write-up 

should take the form of a short essay. A topic paragraph should summarize the problem you are 
solving and what your results are. The body of the essay should provide the following: 

1. A description of the algorithm in English and, if helpful, pseudo-code. 

2. At least one worked example or diagram to show more precisely how your algorithm works. 

3. A proof (or indication) of the correctness of the algorithm. 

4. An analysis of the running time of the algorithm. 

Remember, your goal is to communicate. Full credit will be given only to correct solutions 
which are described clearly. Convoluted and obtuse descriptions will receive low marks. 

Exercise 2-1. Do Exercise 5.2-4 on page 98 in CLRS. 

Exercise 2-2. Do Exercise 6.5-7 on page 142 in CLRS. 

Exercise 2-3. Do Exercise 7.2-1 on page 153 in CLRS. 

Exercise 2-4. Do Exercise 9.3-8 on page 193 of CLRS. 

Exercise 2-5. Do Problem 9-1 on page 194 of CLRS. 
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Problem 2-1. Is this (almost) sorted? 

Harry Potter, the child wizard of Hogwarts fame, has once again run into trouble. Professor Snape 
has sent Harry to detention and assigned him the task of sorting all the old homework assignments 
from the last 200 years. Being a wizard, Harry waves his wand and says, ordinatus sortitus, and 
the papers rapidly pile themselves in order. 

Professor Snape, however, wants to determine whether Harry’s spell correctly sorted the papers. 
Unfortunately, there are a large number n of papers and determining whether they are in perfect 
order takes �(n) time. 

Professor Snape instead decides to check whether the papers are almost sorted. He wants to know 
whether 90% of the papers are sorted: is it possible to remove 10% of the papers and have the 
resulting list be sorted? 

In this problem, we will help Professor Snape to find an algorithm that takes as input a list A 
containing n distinct elements, and acts as follows: 

• If the list A is sorted, the algorithm always returns true. 

• If the list A is not 90% sorted, the algorithm returns false with probability at least 2/3. 

(a)	 Professor Snape first considers the following algorithm: 

Repeat k times: 
1. Choose a paper i independently and uniformly at random from the open in
terval (1, n). (That is, 1 < i < n.) 

2. Compare paper A[i− 1] and A[i]. Output false and halt if they are not sorted 
correctly. 

3. Compare paper A[i] and A[i + 1]. Output false and halt if they are not sorted 
correctly.


Output true.


Show that for this algorithm to correctly discover whether the list is almost sorted 
with probability at least 2/3 requires k = �(n). Hint: Find a sequence that is not 
almost sorted, but with only a small number of elements that will cause the algorithm 
to return false. 

(b)	 Imagine you are given a bag of n balls. You are told that at least 10% of the balls are

blue, and no more than 90% of the balls are red. Asymptotically (for large n) how

many balls do you have to draw from the bag to see a blue ball with probability at

least 2/3? (You can assume that the balls are drawn with replacement.)
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(c)	 Consider performing a “binary search” on an unsorted list: 
BINARY-SEARCH(A, key, left, right) � Search for key in A[left . . right]. 
1 if left = right 
2 then return left 
3 else mid � ←(left + right)/2≤ 
4 if key < A[mid] 
5 then return BINARY-SEARCH(A, key, left,mid − 1) 
6 else return BINARY-SEARCH(A, key,mid, right) 

Assume that a binary search for key
1 in A (even though A is not sorted) returns slot i. 

Similarly, a binary search for key
2 in A returns slot j. Explain why the following fact 

is true: if i < j, then key
1 � key2. Draw a picture. Hint: First think about why this is 

obviously true if list A is sorted. 
(d)	 Professor Snape proposes a randomized algorithm to determine whether a list is 90%

sorted. The algorithm uses the function RANDOM(1, n) to choose an integer inde

pendently and uniformly at random in the closed interval [1, n]. The algorithm is

presented below.

IS-ALMOST-SORTED(A, n, k) � Determine if A[1 . . n] is almost sorted.

1 for r � 1 to k

2 do i � RANDOM(1, n) � Pick i uniformly and independently.

3 j � BINARY-SEARCH(A, A[i], 1, n)

4 if i �
= j 
5 then return false 
6 return true 

Show that the algorithm is correct if k is a sufficiently large constant. That is, with k 
chosen appropriately, the algorithm always outputs true if a list is correctly sorted and 
outputs false with probability at least 2/3 if the list is not 90% sorted. 

(e)	 Imagine instead that Professor Snape would like to determine whether a list is 1 − �

sorted for some 0 < � < 1. (In the previous parts � = 0.10.) For large n, determine the

appropriate value of k, asymptotically, and show that the algorithm is correct. What is

the overall running time?


Problem 2-2. Sorting an almost sorted list. 
On his way back from detention, Harry runs into his friend Hermione. He is upset because Pro
fessor Snape discovered that his sorting spell failed. Instead of sorting the papers correctly, each 
paper was within k slots of the proper position. Hermione immediately suggests that insertion sort 
would have easily fixed the problem. In this problem, we show that Hermione is correct (as usual). 
As before, A[1 . . n] in an array of n distinct elements. 

(a) First, we define an “inversion.” If i < j and A[i] > A[j], then the pair (i, j) is called an 
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inversion of A. What permutation of the array {1, 2, . . . , n} has the most inversions? 
How many does it have? 

(b)	 Show that, if every paper is initially within k slots of its proper position, insertion

sort runs in time O(nk). Hint: First, show that INSERTION-SORT(A) runs in time

O(n + I), where I is the number of inversions in A.


(c)	 Show that sorting a list in which each paper is within k slots of its proper position

takes �(n lg k) comparisons. Hint: Use the decision-tree technique.


(d)	 Devise an algorithm that matches the lower bound, i.e., sorts a list in which each paper

is within k slots of its proper position in �(n lg k) time. Hint: See Exercise 6.5-8 on

page 142 of CLRS.


Problem 2-3. Weighted Median. 
For n distinct elements x1, x2, . . . , xn with positive weights w1, w2, . . . , wn such that 

�
n wi = 1,i=1 

the weighted (lower) median is the element xk satisfying 


 1 
wi < 

2 xi<xk 

and 
 1 
.wi � 

2 xi>xk 

(a)	 Argue that the median of x1, x2, . . . , xn is the weighted median of x1, x2, . . . , xn with

weights wi = 1/n for i = 1, 2, . . . , n.


(b)	 Show how to compute the weighted median of n elements in O(n lg n) worst-case

time using sorting.


(c)	 Show how to compute the weighted median in �(n) worst-case time using a linear-

time median algorithm such as SELECT from Section 9.3 of CLRS.


(d)	 The post-office location problem is defined as follows. We are given n points p1, p2, . . . , pn 

with associated weights w1, w2, . . . , wn. We wish to find a point p (not necessarily one 
of the input points) that minimizes the sum 

�
n wi d(p, pi), where d(a, b) is the dis-i=1 

tance between points a and b. 
Argue that the weighted median is a best solution for the one-dimensional post-office 
location problem, in which points are simply real numbers and the distance between 
points a and b is d(a, b) = |a− b|. 

(e)	 Find the best solution for the two-dimensional post-office location problem, in which

the points are (x, y) coordinate pairs and the distance between points a = (x1, y1) and

b = (x2, y2) is the Manhattan distance given by d(a, b) = |x1 − x2| + |y1 − y2|.



