
Introduction to Algorithms October 24, 2005

Massachusetts Institute of Technology 6.046J/18.410J

Professors Erik D. Demaine and Charles E. Leiserson Handout 16

Problem Set 5

MIT students: This problem set is due in lecture on Monday, October 31, 2005. The homework
lab for this problem set will be held 2–4 P.M. on Sunday, October 30, 2005.

Reading: Chapter 14 and Skip List Handout.
Both exercises and problems should be solved, but only the problems should be turned in.

Exercises are intended to help you master the course material. Even though you should not turn in
the exercise solutions, you are responsible for material covered in the exercises.
Mark the top of each sheet with your name, the course number, the problem number, your

recitation section, the date and the names of any students with whom you collaborated. Please
staple and turn in your solutions on 3-hole punched paper.
You will often be called upon to “give an algorithm” to solve a certain problem. Your write-up

should take the form of a short essay. A topic paragraph should summarize the problem you are
solving and what your results are. The body of the essay should provide the following:

1. A description of the algorithm in English and, if helpful, pseudo-code.

2. At least one worked example or diagram to show more precisely how your algorithm works.

3. A proof (or indication) of the correctness of the algorithm.

4. An analysis of the running time of the algorithm.

Remember, your goal is to communicate. Full credit will be given only to correct solutions
which are described clearly. Convoluted and obtuse descriptions will receive low marks.

Exercise 5-1. Do Exercise 14.1-5 on page 307 of CLRS.

Exercise 5-2. Do Exercise 14.2-1 on page 310 of CLRS.

Exercise 5-3. Do Exercise 14.3-4 on page 317 of CLRS.

Exercise 5-4. Do Problem 14.2 on page 318 of CLRS.

2 Handout 16: Problem Set 5

Problem 5-1. Skip Lists and B-trees
Intuitively, it is easier to find an element that is nearby an element you’ve already seen. In a
dynamic-set data structure, a finger search from x to y is the following query: given the node in
the data structure that stores the element x, and given another element y, find the node in the data
structure that stores y. Skip lists support fast finger searches in the following sense.

(a)	 Give an algorithm for finger searching from x to y in a skip list. Your algorithm

should run in O(lg(2+|rank(x)−rank(y)|)) time with high probability, where rank(x)

denotes the current rank of element x in the sorted order of the dynamic set.

When we say “with high probability” we mean high probability with respect to m =
2 + |rank(x) − rank(y)|. That is, your algorithm should run in O(lg m) time with
probability 1 − 1/m�, for any � � 1.
Assume that the finger-search operation is given the node in the bottommost list of the
skip list that stores the element x.

To support fast finger searches in B-trees, we need two ideas: B+-trees and level linking. Through
out this problem, assume that B = O(1).
A B+-tree is a B-tree in which all the keys are stored in the leaves, and internal nodes store copies
of these keys. More precisely, an internal node p with k + 1 children c1, c2, . . . , ck+1 stores k keys:
the maximum key in c1’s subtree, the maximum key in c2’s subtree, . . . , the maximum key in ck ’s
subtree.

(b)	 Describe how to modify the B-tree SEARCH algorithm in order to find the leaf con

taining a given key x in a B+-tree in O(lg n) time.

(c)	 Describe how to modify the B-tree INSERT and DELETE algorithms to work for B+-

trees in O(lg n) time.

A level-linked B+-tree is a B+-tree in which each node has an additional pointer to the node
immediately to its left among nodes at the same depth, as well as an additional pointer to the node
immediately to its right among nodes at the same depth.

(d)	 Describe how your B+-tree INSERT and DELETE algorithms from part (c) can be

modified to maintain level links in O(log n) time per operation.

(e)	 Give an algorithm for finger searching from x to y in a level-linked B+-tree. Your

algorithm should run in O(lg(2 + |rank(x) − rank(y)|)) time.

These ideas suggest a connection between skip lists and level-linked 2-3-4 trees. In fact, a skip list
is essentially a randomized version of level-linked B+-tree.

(f)	 Describe how to implement a deterministic skip list. That is, your data structure

should have the same general pointer structure as a skip list: a sequence of one or

�

3

x

Handout 16: Problem Set 5

(1, 5)	 y
y

m7 = 3 (5, 4)

m5 = 6

(3, 3) (−2, 3)
(−2, 3)

m6 = 3	 m1 = 3
m1 = 3

(3, 2)

(1, 1) m4 = 4

m3 = 2

x

(−1, −1)
(−1, −1)	 (2, −1)

m2 = 2
m2 = 2 m8 = 2

(1, 5)

m7 = 3	 (5, 4)

m5 = 6

(3, 3)

m6 = 3

(3, 2)

(1, 1) m4 = 4

m3 = 2

(2, −1)

m8 = 2

= 1xmin

Figure 1: In this example of eight points, if Figure 2: When xmin = 1, T (1) =
f(pi) = mi, then F (S) = 25. {p3, p4, p5, p6, p7, p8} and F (T (1)) = 20.

more linked lists with pointers between nodes in adjacent lists that store the same key.
The SEARCH algorithm should be identical to that of a skip list. You will need to
modify the INSERT operation to avoid the use of randomization to determine whether
a key should be promoted. You may ignore DELETE for this problem part.

Problem 5-2. Fun with Points in the Plane
It is 3 a.m. and you are attempting to watch 6.046 lectures on video, looking for hints for Problem
Set 5. For some odd reason, possibly because you are fading in and out of consciousness, you start
to notice a strange cloud of black dots on an otherwise white wall in your room. Thus, instead of
watching the lecture, your subconscious mind starts trying to solve the following problem.

Let S = {p1, p2, . . . , pn} be a set of n points in the xy plane. Each point pi has coordinates (xi, yi)
and has a weight mi (a real number representing the size of the dot). Let f(p) = f(x, y, m) be
an arbitrary function mapping a point p with coordinates (x, y) and weight m to a real number,
computable in O(1) time. For a subset T of S, define the function F (T) to be the sum of f(pi)
over all points in T , i.e.,

F (T) = f(p).
p�T

For example, if f(pi) = mi, then F (S) is the sum of the weights of all n points. This case is
depicted in Figure 1.

Our goal is to compute the function F for certain subsets of the points. We call each subset a
query, and for each query T , we want to calculate F (T). Because there may be a large number of
queries, we want to design a data structure that will allow us to efficiently answer each query.

4 Handout 16: Problem Set 5

First we consider queries that restrict the x coordinate. In particular, consider the set of points
whose x coordinates are at least xmin. Formally, let T (xmin) be the set of points

T (xmin) = {pi � S | xi � xmin} .

We want to answer queries of the following form: given any value xmin as input, calculate the
value F (T (xmin)). Figure 2 is an example of such a query. In this case, xmin = 1, and the points
of interest are those with x coordinate at least 1.

(a)	 Show how to modify a balanced binary search tree to support such a query in O(lg n)

time. More specifically, the computation of F (T (xmin)) can be performed using only

a single walk down the tree. You do not need to support updates (insertions and

deletions) for this problem part.

(b)	 Consider the static problem, where all n points are known ahead of time. How long

does it take to build your data structure from part (a)?

(c)	 In total, given n points, how long does it take to build your data structure and answer

k different queries? On the other hand, how long would it take to answer k different

queries without using any data structure and using the naı̈ve algorithm of computing

F (T (xmin)) from scratch for every query? For what values of k is it asymptotically

more efficient to use the data structure?

(d)	We can make this data structure dynamic by using a red-black tree. Argue that the

augmentation for your solution in part (a) can be efficiently supported in a red-black

tree, i.e., that points can be inserted or deleted in O(lg n) time.

Next we consider queries that take an interval X = [xmin, xmax] (with xmin � xmax) as input
instead of a single number xmin. Let T (X) be the set of points whose x coordinates fall in that
interval, i.e.,

T (X) = {pi | xi � [xmin, xmax]} .

See Figure 3 for an example of this sort of query.

We claim that we can use the same dynamic data structure from part (d) to compute F (T (X)).

(e)	 Show how to modify your algorithm from part (a) to compute F (T (X)) in O(lg n)

time. Hint: Find the shallowest node in the tree whose x coordinate lies between xmin

and xmax.

Finally, we generalize the static problem to two dimensions. Suppose that we are given two inter
vals, X = [xmin, xmax] and Y = [ymin, ymax]. Let T (X, Y) be the set of all points in this rectangle,
i.e.,

T (X, Y) = {pi | xi � X and yi � Y } .

See Figure 4 for an example of a two-dimensional query.

5

x

Handout 16: Problem Set 5

y (1, 5)

m7 = 3

(3, 3)
(−2, 3)

m6 = 3
m1 = 3

(3, 2)

(1, 1) m4 = 4

m3 = 2

(2, −1)

m2 = 2 m8 = 2

xmin = 1

(−1, −1)

(5, 4)

m5 = 6

x

= 1xmax

(1, 5)
y

m7 = 3 (5, 4)

m5 =

(3, 3)
(−2, 3)

m6 = 3
m1 = 3 = 2.5ymax

(−1, −1)

m2 = 2

m3 = 2

(1, 1)

m8 = 2

(2, −1)

(3, 2)
m4 = 4

xmax =

= −2 = 1 ymin xmin

6

3.5

Figure 3: When X = [1, 3.5], T (X) = Figure 4: For X = [1, 3.5] and Y =
{p3, p4, p6, p7, p8} and F (T (X)) = 14. [−2, 2.5], T (X, Y) = {p3, p4, p8} and

F (T (X, Y)) = 8.

(f)	 Describe a data structure that efficiently supports a query to compute F (T (X, Y)) for

arbitrary intervals X and Y . A query should run in O(lg2 n) time. Hint: Augment a

range tree.

(g) How long does it take to build your data structure? How much space does it use?

Unfortunately, there are problems with making this data structure dynamic.

(h)	 Explain whether your argument in part (d) can be generalized to the two-dimensional

case. What is the worst-case time required to insert a new point into the data structure

in part (f)?

(i)	 Suppose that, once we construct the data structure with n initial points, we will per

form at most O(lg n) updates. How can we modify the data structure to support both

queries and updates efficiently in this case?

Completely Optional Parts
The remainder of this problem presents an example of a function F that is useful in an actual
application and that can be computed efficiently using the data structures you described in the
previous parts. Parts (j) through (l) outline the derivation of the corresponding function f(pi).

The remainder of this problem is completely optional. Please do not turn these parts in!

As before, consider a set S = {p1, p2, . . . , pn} of n points in the plane, with each point pi having
coordinates (xi, yi) and a weight mi. We want to compute the axis that minimizes the moment of

�

� �	 �

�	 � �

6 Handout 16: Problem Set 5

inertia of the points in the set. Formally, we want to compute a line L in the plane that minimizes
the quantity

n
�

�

2
mi d(L, pi) ,

i=1

where d(L, pi) is the distance from point pi to the line L. If mi = 1 for all i, we can think of this
axis as the “orientation” of the set.

(j)	 One parameterization of a line in the xy plane is to describe it using a pair (�, �),

where � is the distance from the origin to the line and � is the angle the line makes

with the x axis. It can be shown that the distance between a point (x, y) and a line L

parameterized by (�, �) is

|x sin � − y cos � + �|.

We defined the orientation of the set of points S as the line L = (�, �) that minimizes
the function

n

f (�, �) = mi (xi sin � − yi cos � + �)2 .
i=1

Show that setting αf = 0 gives us the constraint
α�

Mx1 sin � − My1 cos � + M0� = 0,

where
n n	 n

M0 = mi, Mx1 = mixi, My1 = miyi .
i=1 i=1 i=1

(k)	 Show that setting αf = 0 and using the constraint from part (j) leads to the equation
α�

2 (M0Mxy − Mx1My1)
tan 2� =

M0 (Mx2 − My2) + M 2 − M 2 ,
y1 x1

where
n	 n n

2Mxy = mixiyi, Mx2 = mixi , My2 = miyi
2 .

i=1 i=1 i=1

(l)	 Give the function f (pi) that makes the orientation problem a special case of the prob

lem we just solved. Hint: The function f (pi) is a vector-valued function.

