
MIT OpenCourseWare 
http://ocw.mit.edu 

6.046J Introduction to Algorithms, Fall 2005 

Please use the following citation format: 

Erik Demaine and Charles Leiserson, 6.046J Introduction to 
Algorithms, Fall 2005. (Massachusetts Institute of Technology: MIT 
OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). 
License: Creative Commons Attribution-Noncommercial-Share Alike. 

Note: Please use the actual date you accessed this material in your citation. 

For more information about citing these materials or our Terms of Use, visit: 
http://ocw.mit.edu/terms 



MIT OpenCourseWare 
http://ocw.mit.edu 

6.046J Introduction to Algorithms, Fall 2005 
Transcript – Lecture 22 

We only have four more lectures left, and what Professor Demaine and I have 
decided to do is give two series of lectures on sort of advanced topics. So, today at 
Wednesday we're going to talk about parallel algorithms, algorithms where you have 
more than one processor whacking away on your problem. And this is a very hot 
topic right now because all of the chip manufacturers are now producing so-called 
multicore processors where you have more than one processor per chip. So, knowing 
something about that is good. The second topic we're going to cover is going to be 
caching, and how you design algorithms for systems with cache. 

Right now, we've sort of program to everything as if it were just a single level of 
memory, and for some problems that's not an entirely realistic model. You'd like to 
have some model for how the caching hierarchy works, and how you can take 
advantage of that. And there's been a lot of research in that area as well. So, both of 
those actually turn out to be my area of research. So, this is actually fun for me. 

Actually, most of it's fun anyway. So, today we'll talk about parallel algorithms. And 
the particular topic, it turns out that there are lots of models for parallel algorithms, 
and for parallelism. And it's one of the reasons that, whereas for serial algorithms, 
most people sort of have this basic model that we've been using. It's sometimes 
called a random access machine model, which is what we've been using to analyze 
things, whereas in the parallel space, there's just a huge number of models, and 
there is no general agreement on what is the best model because there are different 
machines that are made with different configurations, etc. and people haven't, sort 
of, agreed on, even how parallel machines should be organized. 

So, we're going to deal with a particular model, which goes under the rubric of 
dynamic multithreading, which is appropriate for the multicore machines that are 
now being built for shared memory programming. It's not appropriate for what's 
called distributed memory programs particularly because the processors are able to 
access things. And for those, you need more involved models. And so, let me start 
just by giving an example of how one would write something. I'm going to give you a 
program for calculating the nth Fibonacci number in this model. This is actually a 
really bad algorithm that I'm going to give you because it's going to be the 
exponential time algorithm, whereas we know from week one or two that you can 
calculate the nth Fibonacci number and how much time? 

Log n time. So, this is too exponentials off what you should be able to get, OK, two 
exponentials off. OK, so here's the code. OK, so this is essentially the pseudocode we 
would write. And let me just explain a little bit about, we have a couple of key words 
here we haven't seen before: in particular, spawn and sync. OK, so spawn, this 
basically says that the subroutine that you're calling, you use it as a keyword before 
a subroutine, that it can execute at the same time as its parent. So, here, what we 
say x equals spawn of n minus one, we immediately go onto the next statement. 



And now, while we're executing fib of n minus one, we can also be executing, now, 
this statement which itself will spawn something off. OK, and we continue, and then 
we hit the sync statement. And, what sync says is, wait until all children are done. 
OK, so it says once you get to this point, you've got to wait until everything here has 
completed before you execute the x plus y because otherwise you're going to try to 
execute the calculation of x plus y without having computed it yet. OK, so that's the 
basic structure. 

What this describes, notice in here we never said how many processors or anything 
we are running on. OK, so this actually is just describing logical parallelism -- -- not 
the actual parallelism when we execute it. And so, what we need is a scheduler, OK, 
to determine how to map this dynamically, unfolding execution onto whatever 
processors you have available. OK, and so, today actually we're going to talk mostly 
about scheduling. OK, and then, next time we're going to talk about specific 
application algorithms, and how you analyze them. OK, so you can view the actual 
multithreaded computation. 

If you take a look at the parallel instruction stream, it's just a directed acyclic graph, 
OK? So, let me show you how that works. So, normally when we have an instruction 
stream, I look at each instruction being executed. If I'm in a loop, I'm not looking at 
it as a loop. I'm just looking at the sequence of instructions that actually executed. I 
can do that just as a chain. Before I execute one instruction, I have to execute the 
one before it. Before I execute that, I've got to execute the one before it. At least, 
that's the abstraction. If you've studied processors, you know that there are a lot of 
tricks there in figuring out instruction level parallelism, and how you can actually 
make that serial instruction stream actually execute in parallel. 

But what we are going to be mostly talking about is the logical parallelism here, and 
what we can do in that context. So, in this DAG, the vertices are threads, which are 
maximal sequences of instructions not containing -- -- parallel control. And by 
parallel control, I just mean spawn, sync, and return from a spawned procedure. So, 
let's just mark the, so the vertices are threads. So, let's just mark what the vertices 
are here, OK, what the threads are here. So, when we enter the function here, we 
basically execute up to the point where, basically, here, let's call that thread A where 
we are just doing a sequential execution up to either returning or starting to do the 
spawn, fib of n minus one. 

So actually, thread A would include the calculation of n minus one right up to the 
point where you actually make the subroutine jump. That's thread A. Thread B would 
be the stuff that you would do, executing from fib of, sorry, B would be from the, 
right. We'd go up to the spawn. So, we've done the spawn. I'm really looking at this. 
So, B would be up to the spawn of y. OK, spawn of fib of n minus two to compute y, 
and then we'd have essentially an empty thread. So, I'll ignore that for now, but 
really then we have after the sync up to the point that we get to the return of x plus 
y. So basically, we're just looking at maximal sequences of instructions that are all 
serial. 

And every time I do a parallel instruction, OK, spawn or a sync, or return from it, 
that terminates the current thread. OK, so we can look at that as a bunch of small 
threads. So those of you who are familiar with threads from Java threads, or POSIX 
threads, OK, so-called P threads, those are sort of heavyweight static threads. This is 
a much lighter weight notion of thread, OK, that we are using in this model. OK, so 
these are the vertices. And now, let me map out a little bit how this works, so we 



can where the edges come from. So, let's imagine we're executing fib of four. So, 
I'm going to draw a horizontal oval. 

That's going to correspond to the procedure execution. And, in this procedure, there 
are essentially three threads. We start out with A, so this is our initial thread is this 
guy here. And then, when he executes a spawn, OK, he's going to execute a spawn, 
we are going to create a new procedure, and he's going to execute a new A 
recursively within that procedure. But at the same time, we're also going to be, now, 
aloud to go on and execute B in the parent, we have parallelism here when I do a 
spawn. OK, and so there's an edge here. This edge we are going to call a spawn 
edge, and this is called a continuation edge because it's just simply continuing the 
procedure execution. 

OK, now at this point, this guy, we now have two things that can execute at the 
same time. Once I've executed A, I now have two things that can execute. OK, so 
this one, for example, may spawn another thread here. Oh, so this is fib of three, 
right? And this is now fib of two. OK, so he spawns another guy here, and 
simultaneously, he can go on and execute B here, OK, with a continued edge. And B, 
in fact, can also spawn at this point. OK, and this is now fib of two also. 

And now, at this point, we can't execute C yet here even though I've spawned things 
off. And the reason is because C won't execute until we've executed the sync 
statement, which can't occur until A and B have both been executed, OK? So, he just 
sort of sits there waiting, OK, and a scheduler can't try to schedule him. Or if he 
does, then nothing's going to happen here, OK? So, we can go on. Let's see, here we 
could call fib of one. The fib of one is only going to execute an A statement here. 

OK, of course it can't continue here because A is the only thing, when I execute fib of 
one, if we look at the code, it never executes B or C. OK, and similarly here, this guy 
here to do fib of one. OK, and this guy, I guess, could execute A here of fib of one. 
OK, and maybe now this guy calls his another fib of one, and this guy does another 
one. This is going to be fib of zero, right? I keep drawing that arrow to the wrong 
place, OK? 

And now, once these guys return, well, let's say these guys return here, I can now 
execute C. But I can't execute with them until both of these guys are done, and that 
guy is done. So, you see that we get a synchronization point here before executing 
C. And then, similarly here, now that we've executed this and this, we can now 
execute this guy here. And so, those returns go to there. Likewise here, this guy can 
now execute his C, and now once both of those are done, we can execute this guy 
here. And then we are done. This is our final thread. 

So, I should have labeled also that when I get one of these guys here, that's a return 
edge. So, the three types of edges are spawn, return, and continuation. OK, and by 
describing it in this way, I essentially get a DAG that unfolds. So, rather than having 
just a serial execution trace, I get something where I have still some serial 
dependencies. There are still some things that have to be done before other things, 
but there are also things that can be done at the same time. 

So how are we doing? Yeah, question? Is every spawn were covered by a sync, 
effectively, yeah, yeah, effectively. There's actually a null thread that gets executed 
in there, which I hadn't bothered to show. But yes, basically you would then not 
have any parallelism, OK, because you would spawn it off, but then you're not doing 



anything in the parent. So it's pretty much the same, yeah, as if it had executed 
serially. 

Yep, OK, so you can see that basically what we had here in some sense is a DAG 
embedded in a tree. OK, so you have a tree that's sort of the procedure structure, 
but in their you have a DAG, and that DAG can actually get to be pretty complicated. 
OK, now what I want to do is now that we understand that we've got an underlying 
DAG, I want to switch to trying to study the performance attributes of a particular 
DAG execution, so looking at performance measures. 

So, the notation that we'll use is we'll let T_P be the running time of whatever our 
computation is on P processors. OK, so, T_P is, how long does it take to execute this 
on P processors? Now, in general, this is not going to be just a particular number, 
OK, because I can have different scheduling disciplines would lead me to get 
numbers for T_P, OK? But when we talk about the running time, we'll still sort of use 
this notation, and I'll try to be careful as we go through to make sure that there's no 
confusion about what that means in context. 

There are a couple of them, though, which are fairly well defined. One is based on 
this. One is T_1. So, T_1 is the running time on one processor. OK, so if I were to 
execute this on one processor, you can imagine it's just as if I had just gotten rid of 
the spawn, and syncs, and everything, and just executed it. That will give me a 
particular running time. We call that running time on one processor the work. It's 
essentially the serial time. OK, so when we talk about the work of a computation, we 
just been essentially a serial running time. OK, the other measure that ends up being 
interesting is what we call T infinity. OK, and this is the critical pathlength, OK, which 
is essentially the longest path in the DAG. 

So, for example, if we look at the fib of four in this example, it has T of one equal to, 
so let's assume we have unit time threads. I know they're not unit time, but let's just 
imagine, for the purposes of understanding this, that every thread costs me one unit 
of time to execute. What would be the work of this particular computation? 17, right, 
OK, because all we do is just add up three, six, nine, 12, 13, 14, 15, 16, 17. So, the 
work is 17 in this case if it were unit time threads. 

In general, you would add up how many instructions or whatever were in there. OK, 
and then T infinity is the longest path. So, this is the longest sequence. It's like, if 
you had an infinite number of processors, you still can't just do everything at once 
because some things have to come before other things. But if you had an infinite 
number of processors, as many processors as you want, what's the fastest you could 
possibly execute this? 

A little trickier. Seven? So, what's your seven? So, one, two, three, four, five, six, 
seven, eight, yeah, eight is the longest path. So, the work and the critical path 
length, as we'll see, are key attributes of any computation. And abstractly, and this 
is just for [the notes?], if they're unit time threads. OK, so we can use these two 
measures to derive lower bounds on T_P for P that fall between one and infinity, OK? 

OK, so the first lower bound we can derive is that T_P has got to be at least T_1 over 
P. OK, so why is that a lower bound? Yeah? But if I have P processors, and, OK, and 
why would I have this lower bound? OK, yeah, you've got the right idea. So, but can 
we be a little bit more articulate about it? So, that's right, so you want to use all of 
processors. If you could use all of processors, why couldn't I use all the processors, 



though, and have T_P be less than this? Why does it have to be at least as big as 
T_1 over P? I'm just asking for a little more precision in the answer. You've got 
exactly the right idea, but I need a little more precision if we're going to persuade 
the rest of the class that this is the lower bound. 

Yeah? Yeah, that's another way of looking at it. If you were to serialize the 
computation, OK, so whatever things you execute on each step, you do P of them, 
and so if you serialized it, somehow then it would take you P steps to execute one 
step of a P way, a machine with P processors. So then, OK, yeah? OK, maybe a little 
more precise. David? Yeah, good, so let me just state this a little bit. So, P 
processors, so what are we relying on? P processors can do, at most, P work in one 
step, right? So, in one step they do, at most P work. They can't do more than P 
work. And so, if they can do, at most P work in one step, then if the number of steps 
was, in fact, less than T_1 over P, they would be able to do more than T_1 work in P 
steps. 

And, there's only T_1 work to be done. OK, I just stated that almost as badly as all 
the responses I got. [LAUGHTER] OK, P processors can do, at most, P work in one 
step, right? So, if there's T_1 work to be done, the number of steps is going to be at 
least T_1 over P, OK? There we go. OK, it wasn't that hard. It's just like, I've got a 
certain amount of, I've got T_1 work to do. I can knock off, at most, P on every step. 
How many steps? Just divide. OK, so it's going to have to be at least that amount. 
OK, good. The other lower bound is T_P is greater than or equal to T infinity. 

Somebody explain to me why that might be true. Yeah? Yeah, if you have an infinite 
number of processors, you have P. so if you could do it in a certain amount of time 
with P, you can certainly do it in that time with an infinite number of processors. OK, 
this is in this model where, you know, there is lots of stuff that this model doesn't 
model like communication costs and interference, and all sorts of things. 

But it is simple model, which actually in practice works out pretty well, OK, you're 
not going to be able to do more work with P processors than you are with an infinite 
number of processors. OK, so those are helpful bounds to understand when we are 
trying to make something go faster, it's nice to know what you could possibly hope 
to achieve, OK, as opposed to beating your head against a wall, how come I can't 
get it to go much faster? 

Maybe it's because one of these lower bounds is operating. OK, well, we're interested 
in how fast we can go. That's the main reason for using multiple processors is you 
hope you're going to go faster than you could with one processor. So, we define T_1 
over T_P to be the speedup on P processors. OK, so we say, how much faster is it on 
P processors than on one processor? OK, that's the speed up. If T_1 over T_P is 
order P, we say that it's linear speedup. OK, in other words, why? 

Because that says that it means that if I've thrown P processors at the job I'm going 
to get a speedup that's proportional to P. OK, so when I throw P processors at the 
job and I get T_P, if that's order P, that means that in some sense my processors 
each contributed within a constant factor its full measure of support. If this, in fact, 
were equal to P, we'd call that perfect linear speedup. OK, so but here we're looking 
at giving ourselves, for theoretical purposes, a little bit of a constant buffer here, 
perhaps. If T_1 over T_P is greater than P, we call that super linear speedup. 



OK, so can somebody tell me, when can I get super linear speedup? When can I get 
super linear speed up? Never. OK, why never? Yeah, if we buy these lower bounds, 
the first lower bound there, it is T_P is greater than or equal to T_1 over P. And, if I 
just take T_1 over T_P, that says it's less than or equal to P. so, this is never, OK, 
not possible in this model. OK, there are other models where it is possible to get 
super linear speed up due to caching effects, and things of that nature. 

But in this simple model that we are dealing with, it's not possible to get super linear 
speedup. OK, not possible. Now, the maximum possible speedup, given some 
amount of work and critical path length is what? What's the maximum possible speed 
up I could get over any number of processors? What's the maximum I could possibly 
get? No, I'm saying, no matter how many processors, what's the most speedup that 
I could get? 

T_1 over T infinity, because this is the, so T_1 over T infinity is the maximum I could 
possibly get. OK, if I threw an infinite number of processors at the problem, that's 
going to give me my biggest speedup. OK, and we call that the parallelism. OK, so 
that's defined to be the parallelism. So the parallelism of the particular algorithm is 
essentially the work divided by the critical path length. 

Another way of viewing it is that this is the average amount of work that can be done 
in parallel along each step of the critical path. And, we denote it often by P bar. So, 
do not get confused. P bar does not have anything to do with P at some level. OK, P 
is going to be a certain number of processors you're running. P bar is defined just in 
terms of the computation you're executing, not in terms of the machine you're 
running it on. OK, it's just the average amount of work that can be done in parallel 
along each step of the critical path. OK, questions so far? 

So mostly we're just doing definitions so far. OK, now we get into, OK, so it's helpful 
to know what the parallelism is, because the parallelism is going to, there's no real 
point in trying to get speed up bigger than the parallelism. OK, so if you are given a 
particular computation, you'll be able to say, oh, it doesn't go any faster. You're 
throwing more processors at it. Why is it that going any faster? And the answer 
could be, no more parallelism. OK, let's see what I want to, yeah, I think we can 
raise the example here. We'll talk more about this model. Mostly, now, we're going 
to just talk about DAG's. So, we'll talk about the programming model next time. 

So, let's talk about scheduling. The goal of scheduler is to map the computation to P 
processors. And this is typically done by a runtime system, which, if you will, is an 
algorithm that is running underneath the language layer that I showed you. OK, so 
the programmer designs an algorithm using spawns, and syncs, and so forth. Then, 
underneath that, there's an algorithm that has to actually map that executing 
program onto the processors of the machine as it executes. And that's the scheduler. 
OK, so it's done by the language runtime system, typically. 

OK, so it turns out that online schedulers, let me just say they're complex. OK, 
they're not necessarily easy things to build. OK, they're not too bad actually. But, we 
are not going to go there because we only have two lectures to do this. Instead, 
we're going to do is we'll illustrate the ideas using off-line scheduling. OK, so you'll 
get an idea out of this for what a scheduler does, and it turns out that doing these 
things online is another level of complexity beyond that. And typically, the online 
schedulers that are good, these days, are randomized schedulers. 



And they have very strong proofs of their ability to perform. But we're not going to 
go there. We'll keep it simple. And in particular, we're going to look at a particular 
type of scheduler called a greedy scheduler. So, if you have a DAG to execute, so the 
basic rules of the scheduler is you can't execute a node until all of the nodes that 
precede it in the DAG have executed. OK, so you've got to wait until everything is 
executed. So, a greedy scheduler, what it says is let's just try to do as much as 
possible on every step, OK? 

In other words, it says I'm never going to try to guess that it's worthwhile delaying 
doing something. If I could do something now, I'm going to do it. And so, each step 
is going to correspond to be one of two types. The first type is what we'll call a 
complete step. And this is a step in which there are at least P threads ready to run. 
And, I'm executing on P processors. There are at least P threads ready to run. So, 
what's a greedy strategy here? I've got P processors. I've got at least P threads. Run 
any P. Yeah, first P would be if you had a notion of ordering. That would be perfectly 
reasonable. Here, we are just going to execute any P. 

We might make a mistake there, because there may be a particular one that if we 
execute now, that'll enable more parallelism later on. We might not execute that 
one. We don't know. OK, but basically, what we're going to do is just execute any P 
willy-nilly. So, there's some, if you will, non-determinism in this step here because 
which one you execute may or may not be a good choice. OK, the second type of 
step we're going to have is an incomplete step. And this is a situation where we have 
fewer than P threads ready to run. So, what's our strategy there? 

Execute all of them. OK, if it's greedy, no point in not executing. OK, so if I've got 
more than P threads ready to run, I execute any P. If I have fewer than P threads 
ready to run, we execute all of them. So, it turns out this is a good strategy. It's not 
a perfect strategy. In fact, the strategy of trying to schedule optimally a DAG on P 
processors is NP complete, meaning it's very difficult. So, those of you going to take 
6.045 or 6.840, I highly recommend these courses, and we'll talk more about that in 
the last lecture as we talked a little bit about what's coming up in the theory 
engineering concentration. 

You can learn about NP completeness and about how you show that certain 
problems, there are no good algorithms for them, OK, that we are aware of, OK, and 
what exactly that means. So, it turns out that this type of scheduling problem turns 
out to be a very difficult problem to get it optimal. But, there's nice theorem, due 
independently to Graham and Brent. It says, essentially, a greedy scheduler 
executes any computation, 

G, with work, T_1, and critical path length, T infinity in time, T_P, less than or equal 
to T_1 over P plus T infinity -- -- on a computer with P processors. OK, so, it says 
that I can achieve T_1 over P plus T infinity. So, what does that say? If we take a 
look and compare this with our lower bounds on runtime, how efficient is this? How 
does this compare with the optimal execution? Yeah, it's two competitive. It's within 
a factor of two of optimal because this is a lower bound and this is a lower bound. 

And so, if I take twice the max of these two, twice the maximum of these two, that's 
going to be bigger than the sum. So, I'm within a factor of two of which ever is the 
stronger, lower bound for any situation. So, this says you get within a factor of two 
of efficiency of scheduling in terms of the runtime on P processors. OK, does 
everybody see that? So, let's prove this theorem. It's quite an elegant theorem. It's 



not a hard theorem. One of the nice things, by the way, about this week, is that 
nothing is very hard. It just requires you to think differently. OK, so the proof has to 
do with counting up how many complete steps we have, and how many incomplete 
steps we have. 

OK, so we'll start with the number of complete steps. So, can somebody tell me 
what's the largest number of complete steps I could possibly have? Yeah, I heard 
somebody mumble it back there. T_1 over P. Why is that? Yeah, so the number of 
complete steps is, at most, T_1 over P because why? Yeah, once you've had this 
many, you've done T_1 work, OK? So, every complete step I'm getting P work done. 
So, if I did more than T_1 over P steps, there would be no more work to be done. 
So, the number of complete steps can't be bigger than T_1 over P. 

OK, so that's this piece. OK, now we're going to count up the incomplete steps, and 
show its bounded by T infinity. OK, so let's consider an incomplete step. And, let's 
see what happens. And, let's let G prime be the subgraph of G that remains to be 
executed. OK, so we'll draw a picture here. So, imagine we have, let's draw it on a 
new board. So here, we're going to have a graph, our graph, G. We're going to do 
actually P equals three as our example here. So, imagine that this is the graph, G. 
And, I'm not showing the procedures here because this actually is a theorem that 
works for any DAG. 

And, the procedure outlines are not necessary. All we care about is the threads. I 
missed one. OK, so imagine that's my DAG, G, and imagine that I have executed up 
to this point. Which ones have I executed? Yeah, I've executed these guys. So, the 
things that are in G prime are just the things that have yet to be executed. And 
these guys are the ones that are already executed. And, we'll imagine that all of 
them are unit time threads without loss of generality. The theorem would go 
through, even if each of these had a particular time associated with it. The same 
scheduling algorithm will work just fine. So, how can I characterize the threads that 
are ready to be executed? 

Which are the threads that are ready to be executed here? Let's just see. So, that 
one? No, that's not ready to be executed. Why? Because it's got a predecessor here, 
this guy. OK, so this guy is ready to be executed, and this guy is ready to be 
executed. OK, so those two threads are ready to be, how can I characterize this? 
What's their property? What's a graph theoretic property in G prime that tells me 
whether or not something is ready to be executed? It has no predecessor, but what's 
another way of saying that? It's got no predecessor in G prime. 

What does it mean for a node not to have a predecessor in a graph? Its in degree is 
zero, right? Same thing. OK, the threads with in degree, zero and G prime are the 
ones that are ready to be executed. OK, and if it's incomplete step, what do I do? 
I'm going to execute says, if it's an incomplete step, I execute all of them. OK, so I 
execute all of these. OK, now I execute all of the in degree zero threads, what 
happens to the critical path length of the graph that remains to be executed? 

It decreases by one. OK, so the critical path length of what remains to be executed, 
G prime, is reduced by one. So, what's left to be executed on every incomplete step, 
what's left to be executed always reduces by one. Notice the next step here is going 
to be a complete step, because I've got four things that are ready to go. And, I can 
execute them in such a way that the critical path length doesn't get reduced on that 



step. OK, but if I had to execute all of them, then it does reduce the critical path 
length. 

Now, of course, both could happen, OK, at the same time, OK, but any time that I 
have an incomplete step, I'm guaranteed to reduce the critical path length by one. 
OK, so that implies that the number of incomplete steps is, at most, T infinity. And 
so, therefore, T of P is, at most, the number of complete steps plus the number of 
incomplete steps. And we get our bound. This is sort of an amortized argument if 
you want to think of it that way, OK, that at every step I'm either amortizing the 
step against the work, or I'm amortizing it against the critical path length, or 
possibly both. 

But I'm at least doing one of those for every step, OK, and so, in the end, I just have 
to add up the two contributions. Any questions about that? So this, by the way, is 
the fundamental theorem of all scheduling. If ever you study anything having to do 
with scheduling, this basic result is sort of the foundation of a huge number of 
things. And then what people do is they gussy it up, like, let's do this online, OK, 
with a scheduler, etc., that everybody's trying to match these bounds, OK, of what 
an omniscient greedy scheduler would achieve, OK, and there are all kinds of other 
things. 

But this is sort of the basic theorem that just pervades the whole area of scheduling. 
OK, let's do a quick corollary. I'm not going to erase those. Those are just too 
important. I want to erase those. Let's not erase those. I want to erase that either. 
We're going to go back to the top. Actually, we'll put the corollary here because 
that's just one line. OK. The corollary says you get linear speed up if the number of 
processors that you allocate, that you run your job on is order, the parallelism. OK, 
so greedy scheduler gives you linear speed up if you're running on essentially 
parallelism or fewer processors. 

OK, so let's see why that is. And I hope I'll fit this, OK? So, P bar is T_1 over T 
infinity. And that implies that if P equals order T_1 over T infinity, then that says just 
bringing those around, T infinity is order T_1 over P. So, everybody with me? It's 
just algebra. So, it says this is the definition of parallelism, T_1 over T infinity, and 
so, if P is order parallelism, then it's order T_1 over T infinity. 

And now, just bring it around. It says T infinity is order T_1 over P. So, that says T 
infinity is order T_1 over P. OK, and so, therefore, continue the proof here, thus T_P 
is at most T_1 over P plus T infinity. Well, if this is order T_1 over P, the whole thing 
is order T_1 over P. OK, and so, now I have T_P is order T_1 over P, and what we 
need is to compute T_1 over T_P, and that's going to be order T_P. OK? 

Does everybody see that? So what that says is that if I have a certain amount of 
parallelism, if I run essentially on fewer processors than that parallelism, I get linear 
speed up if I use greedy scheduling. OK, if I run on more processors than the 
parallelism, in some sense I'm being wasteful because I can't possibly get enough 
speed up to justify those extra processors. So, understanding parallelism of a job 
says that's sort of a limit on the number of processors I want to have. And, in fact, I 
can achieve that. Question? 

Yeah, really, in some sense, this is saying it should be omega P. Yeah, so that's fine. 
It's a question of, so ask again. No, no, it's only if it's bounded above by a constant. 
T_1 and T infinity aren't constants. They're variables in this. So, we are doing 



multivariable asymptotic analysis. So, any of these things can be a function of 
anything else, and can be growing as much as we want. So, the fact that we say we 
are given it for a particular thing, we're really not given that number. We're given a 
whole class of DAG's or whatever of various sizes is really what we're talking about. 

So, I can look at the growth. Here, where it's talking about the growth of the 
parallelism, sorry, the growth of the runtime T_P as a function of T_1 and T infinity. 
So, I am talking about things that are growing here, OK? OK, so let's put this to 
work, OK? And, in fact, so now I'm going to go back to here. Now I'm going to tell 
you about a little bit of my own research, and how we use this in some of the work 
that we did. OK, so we've developed a dynamic multithreaded language called Cilk, 
spelled with a C because it's based on the language, C. 

And, it's not an acronym because silk is like nice threads, OK, although at one point 
my students had a competition for what the acronym silk could mean. The winner, 
turns out, was Charles' Idiotic Linguistic Kluge. So anyway, if you want to take a look 
at it, you can find some stuff on it here. OK, OK, and what it uses is actually one of 
these more complicated schedulers. It's a randomized online scheduler, OK, and if 
you look at its expected runtime on P processors, it gets effectively T_1 over P plus 
O of T infinity provably. 

OK, and empirically, if you actually look at what kind of runtimes you get to find out 
what's hidden in the big O there, it turns out, in fact, it's T_1 over P plus T infinity 
with the constants here being very close to one empirically. So, no guarantees, but 
this turns out to be a pretty good bound. Sometimes, you see a coefficient on T 
infinity that's up maybe close to four or something. But generally, you don't see 
something that's much bigger than that. And mostly, it tends to be around, if you do 
a linear regression curve fit, you get that the constant here is close to one. And so, 
with this, you get near perfect if you use this formula as a model for your runtime. 
You get near perfect linear speed up if the number of processors you're running on is 
much less than your average parallelism, which, of course, is the same thing as if T 
infinity is much less than T_1 over P. 

So, what happens here is that when P is much less than P infinity, that is, T infinity is 
much less than T_1 over P, this term ceases to matter very much, and you get very 
good speedup, OK, in fact, almost perfect speedup. So, each processor gives you 
another processor's work as long as you are the range where the number of 
processors is much less than the number of parallelism. Now, with this language 
many years ago, which seems now like many years ago, OK, it turned out we 
competed. We built a bunch of chess programs. 

And, among our programs were Starsocrates, and Cilkchess, and we also had several 
others. And these were, I would call them, world-class. In particular, we tied for first 
in the 1995 World Computer Chess Championship in Hong Kong, and then we had a 
playoff and we lost. It was really a shame. We almost won, running on a big parallel 
machine. That was, incidentally, some of you may know about the Deep Blue chess 
playing program. That was the last time before they faced then world champion 
Kasparov that they competed against programs. They tied for third in that 
tournament. OK, so we actually out-placed them. 

However, in the head-to-head competition, we lost to them. So we had one loss in 
the tournament up to the point of the finals. They had a loss and a draw. Most 
people aren't aware that Deep Blue, in fact, was not the reigning World Computer 



Chess Championship when they faced Kasparov. The reason that they faced 
Kasparov was because IBM was willing to put up the money. OK, so we developed 
these chess programs, and the way we developed them, let me in particular talk 
about Starsocrates. We had this interesting anomaly come up. We were running on a 
32 processor computer at MIT for development. 

And, we had access to a 512 processor computer for the tournament at NCSA at the 
University of Illinois. So, we had this big machine. Of course, they didn't want to give 
it to us very much, but we have the same machine, just a small one, at MIT. So, we 
would develop on this, and occasionally we'd be able to run on this, and this was 
what we were developing for on our processor. So, let me show you sort of the 
anomaly that came up, OK? 

So, we had a version of a program that I'll call the original program, OK, and we had 
an optimized program that included some new features that were supposed to make 
the program go faster. And so, we timed it on our 32 processor machine. And, it took 
us 65 seconds to run it. OK, and then we timed this new program. So, I'll call that T 
prime of sub 32 on our 32 processor machine, and it ran and 40 seconds to do this 
particular benchmark. Now, let me just say, I've lied about the actual numbers here 
to make the calculations easy. But, the same idea happened. Just the numbers were 
messier. 

OK, so this looks like a significant improvement in runtime, but we rejected the 
optimization. OK, and the reason we rejected it is because we understood about the 
issues of work and critical path. So, let me show you the analysis that we did, OK? 
So the analysis, it turns out, if we looked at our instrumentation, the work in this 
case was 2,048. And, the critical path was one second, which, over here with the 
optimized program, the work was, in fact, 1,024. But the critical path was eight. 

So, if we plug into our simple model here, the one I have up there with the 
approximation there, I have T_32 is equal to T_1 over 32 plus T infinity, and that's 
equal to, well, the work is 2,048 divided by 32. What's that? 64, good, plus the 
critical path, one, that's 65. So, that checks out with what we saw. OK, in fact, we 
did that, and it checked out. OK, it was very close. OK, over here, T prime of 32 is T 
prime, one over 32 plus T infinity prime, and that's equal to 1,024 divided by 32 is 
32 plus eight, the critical path here. 

That's 40. So, that checked out too. So, now what we did is we said is we said, OK, 
let's extrapolate to our big machine. How fast are these things going to run on our 
big machine? Well, for that, we want T of 512. And, that's equal to T_1 over 512 plus 
T infinity. And so, what's 2,048 divided by 512? It's four, plus T infinity is one. That's 
equal to five. So, go quite a bit faster on this. But here, T prime of 512 is equal to T 
one prime over 512 plus T infinity prime is equal to, well, 1,024 plus divided by 512 
is two plus critical path of eight, that's ten. 

OK, and so, you see that on the big machine, we would have been running twice as 
slow had we adopted that, quote, "optimization", OK, because we had run out of 
parallelism, and this was making the path longer. We needed to have a way of doing 
it where we could reduce the work. Yeah, it's good to reduce the work but not as the 
critical path ends up getting rid of the parallels that we hope to be able to use during 
the runtime. 



So, it's twice as slow, OK, twice as slow. So the moral is that the work and critical 
path length predict the performance better than the execution time alone, OK, when 
you look at scalability. And a big issue on a lot of these machines is scalability; not 
always, sometimes you're not worried about scalability. Sometimes you just care. 
Had we been running in the competition on a 32 processor machine, we would have 
accepted this optimization. It would have been a good trade-off. OK, but because we 
knew that we were running on a machine with a lot more processors, and that we 
were close to running out of the parallelism, it didn't make sense to be increasing the 
critical path at that point, because that was just reducing the parallelism of our 
calculation. 

OK, next time, any questions about that first? No? OK. Next time, now that we 
understand the model for execution, we're going to start looking at the performance 
of particular algorithms what we code them up in a dynamic, multithreaded style, 
OK? 


