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Sequence Alignment II 

Database search 
Global vs. Local alignment 

Exact string matching and Karp-Rabin 
Database search and BLAST 

Deterministic linear-time string matching 
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Computational Biology: Genomes, Networks, Evolution 
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Module 1: Aligning and modeling genomes 

• Module 1: Computational foundations 
– Dynamic programming: exploring exponential spaces in poly-time 
– Introduce Hidden Markov Models (HMMs): Central tool in CS 
– HMM algorithms: Decoding, evaluation, parsing, likelihood, scoring 

• This week: Sequence alignment / comparative genomics 
– Local/global alignment: infer nucleotide-level evolutionary events 
– Database search: scan for regions that may have common ancestry 

• Next week: Modeling genomes / exon / CpG island finding 
– Modeling class of elements, recognizing members of a class 
– Application to gene finding, conservation islands, CpG islands 
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Remember Lecture 2 

Sequence alignment 
and 

Dynamic programming 
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Duality:  seq. alignment  path through the matrix 
S1[1..i] i S1[i..n] 

 
 
 

S2[1..j] 

j S 
 
 
 

S2[ j..m] 

Best alignment  Best path 

through the matrix 
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S1 
S2 

A 
G 

T 
C/G 

T 
C 

A 

M[i,j] stores max score of prefix 
alignment of S1[1..i] and S2[1..j] 

Alignments 

Paths 

Prefix alignmt  

score M[i,j] 
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Computing alignments recursively: M[i,j]=F(smaller) 
• Local update rules, only look at neighboring cells:   

– Compute next alignment based on previous alignment 
– Just like Fibonacci numbers:  F[i] = F[i-1] + F[i-2] 
– Table lookup avoids repeated computation 

• Computing the score of a cell from smaller neighbors 
  M( i-1, j  ) -  gap 
– M(i,j) = max{ M( i-1, j-1) + score } 
  M(  i ,  j-1) -  gap 
– Only three possibilities for extending by one nucleotide: 

a gap in one species, a gap in the other, a (mis)match 
• Compute scores for prefixes of increasing length 

– Start with prefixes of length 1, extend by one each time, 
until all prefixes have been computed 

– When you reach bottom right, alignment score of 
S1[1..m] and S2[1..n] is alignment of full S1 and full S2  

– (Can then trace back to construct optimal path to it) 

(i,j) 

i-1 i 
j-1 

j 
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Dynamic Programming for sequence alignment 
• Setting up dynamic programming 

1. Find ‘matrix’ parameterization 
• Prefix parameterization. Score(S1[1..i],S2[1..j])  M(i,j) 
• (i,j) only prefixes vs. (i,j,k,l) all substrings  simpler 2-d matrix 

2. Make sure sub-problem space is finite! (not exponential) 
• It’s just n2, quadratic (which is polynomial, not exponential) 

3. Traversal order: sub-results ready when you need them 
  
 

4. Recursion formula:  larger problems = Func(subparts) 
• Need formula for computing M[i,j] as function of previous results 
• Single increment at a time, only look at M[i-1,j], M[i,j-1], M[i-1,j-1] 

corresponding to 3 options: gap in S1, gap in S2, char in both 
• Score in each case depends on gap/match/mismatch penalties 

5. Remember choice: F() typically includes min() or max() 
• Remember which of three cells (top,left,diag) led to maximum 
• Trace-back from max score to identify path leading to it 

 

Cols 
LR 

Rows 
topbot 

Diags 
topRbotL 
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Algorithmic variations (save time and/or space) 
• Save time:  Bounded-space computation 

– Space: O(k*m) 
– Time:   O(k*m), where k = radius explored 
– Heuristic 

• Not guaranteed optimal answer 
• Works very well in practice 

– Practical interest 
 
 

• Save space:  Linear-space computation 
– Save only one col / row / diag at a time 
– Computes optimal score easily 
– Theoretical interest 

• Effective running time slower 
• Optimal answer guaranteed 

– Recursive call modification allows traceback 
 

AGTGCCCTGGAACCCTGACGGTGGGTCACAAAACTTCTGGA 
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Finding optimal path using only linear space 

Max F(M/2, k) + Fr(M/2, N-k) 

k* 
k* 

Fr(M/2, N-k) F(M/2, k) 

N-k* 

M/2 M/2 

k* 

Iterate procedure in corner quadrants 

N-k* 

M/2 M/2 

k* 

Total cost MN(1+½+¼+⅛+…)≤2MN 

Incoming scores Outgoing scores Sum the two  best transition 
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Genome alignment in an excel spreadsheet 
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K15 

K34 

K53 
AD53 

AD34 

AD15 

K15 

K34 

K53 

AD53 

AD34 

AD15 

Local score of matching 
characters S1[i] and S2[j] 

Max alignment score of 
aligning prefix S1[1..i]  
and prefix S2[1..j] 

Is the max alignment score 
coming from the top (“|”), 
from the left (“--”) or from 
the diagonal up (“\”) 
(show all of them, cuz we can) 

Is the [i,j] part of an optimal 
path? (i.e. are chars S1[i] 
and S2[j] aligned to each 
other in an optimal path)  
(also count number of 
optimal paths/alignment 
through [i.j], cuz we can) 

Construct the optimal alignment for sequence S1 by 
adding in characters or gaps to increasingly large suffixes 
(and arbitrarily choose one path when multiple using nested if’s) Construct the optimal alignment for sequence S2 similarly to S1 

Genome alignment 
in an excel 
spreadsheet 
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Today’s Goal: Diving deeper into alignments 
1. Global alignment vs. Local alignment 

– Variations on initialization, termination, update rule 
– Varying gap penalties, algorithmic speedups 

2. Linear-time exact string matching (expected) 
– Karp-Rabin algorithm and semi-numerical methods 
– Hash functions and randomized algorithms 

3. The BLAST algorithm and inexact matching 
– Hashing with neighborhood search 
– Two-hit blast and hashing with combs 

4. Deterministic linear-time exact string matching 
– Key insight: gather more info from each comparison 
– Pre-processing, Z-algorithm, Boyer-More, KMP 
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Today’s Goal: Diving deeper into alignments 
1. Global alignment vs. Local alignment 

– Variations on initialization, termination, update rule 
– Varying gap penalties, algorithmic speedups 

2. Linear-time exact string matching (expected) 
– Karp-Rabin algorithm and semi-numerical methods 
– Hash functions and randomized algorithms 

3. The BLAST algorithm and inexact matching 
– Hashing with neighborhood search 
– Two-hit blast and hashing with combs 

4. Probabilistic foundations of sequence alignment 
– Mismatch penalties, BLOSUM and PAM matrices 
– Statistical significance of an alignment score 
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Intro to Local Alignments 
• Statement of the problem 

– A local alignment of strings s and t  
 is an alignment of a substring of s  
 with a substring of t 

• Why local alignments? 
– Small domains of a gene may be only conserved portions 
– Looking for a small gene in a large chromosome (search) 
– Large segments often undergo rearrangements 

t 

s 

AGTGCCCTGGAACCCTGACGGTGGGTCACAAAACTTCTGGA 
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Global alignment 

AGTGCCCTGGAACCCTGACGGTGGGTCACAAAACTTCTGGA 
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Local alignment B D A C 

B 

D 

A 

C 

A B C D 

A B C D 
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Global Alignment vs.     Local alignment 

Initialization: F(0, 0) = 0 
 
Iteration: 
    
   F(i – 1, j) – d 
F(i, j) = max  F(i, j – 1) – d 
   F(i – 1, j – 1) + s(xi, yj)   
 
Termination: Bottom right 

 

Initialization: F(0, j) = F(i, 0) = 0 
 
Iteration: 
   0 
F(i, j) = max  F(i – 1, j) – d 
   F(i, j – 1) – d 
   F(i – 1, j – 1) + s(xi, yj)   
 
Termination: Anywhere 

Needleman-Wunsch algorithm Smith-Waterman algorithm 
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More variations on the theme: semi-global alignment 
• Sequence alignment variations 

Global Local Semi-global 

Initialization 

Iteration:max 

Termination 

Top left Top row/left col. Top row or 
left column 

Anywhere Bottom right 

F(i – 1, j) – d 
F(i, j – 1) – d 
F(i – 1, j – 1) + s(xi, yj) 

0 
F(i – 1, j) – d 
F(i, j – 1) – d 
F(i – 1, j – 1) + s(xi, yj) 

F(i – 1, j) – d 
F(i, j – 1) – d 
F(i – 1, j – 1) + s(xi, yj) 

Bottom row  
or right column 

Complete alignment Stretches of similarity No end-gap penalty 
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Sequence alignment with generalized gap penalties 

Initialization: same 
 
Iteration: 
   F(i-1, j-1) + s(xi, yj) 
F(i, j)  = max maxk=0…i-1F(k,j) – (i-k)  
   maxk=0…j-1F(i,k) – (j-k) 
 
Termination:  same 
 

F(i,j) 

Running Time:  O(N2M) (cubic) 
Space:     O(NM) 

Do we have to be 

so general? 

• Implementing a generalized gap penalty function F(gap_length) 
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Algorithmic trade-offs of varying gap penalty functions 

 Linear gap penalty:  w(k) = k*p 
– State: Current index tells if in a gap or not 
– Achievable using quadratic algorithm (even w/ linear space) 

 
 

 Quadratic:  w(k) = p+q*k+rk2. 
– State:  needs to encode the length of the gap, which can be O(n) 
– To encode it we need O(log n) bits of information.  Not feasible 

 
 

 Affine gap penalty:  w(k) = p + q*k, where q<p 
– State:  add binary value for each sequence:  starting a gap or not 
– Implementation:  add second matrix for already-in-gap (recitation) 

 
 

 Length (mod 3) gap penalty for protein-coding regions 
– Gaps of length divisible by 3 are penalized less: conserve frame 
– This is feasible, but requires more possible states 
– Possible states are:  starting, mod 3=1, mod 3=2, mod 3=0 

(n) 

(n) 

(n) 

d 
e 

(n) 
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Today’s Goal: Diving deeper into alignments 

1. Global alignment vs. Local alignment 
– Variations on initialization, termination, update rule 
– Varying gap penalties, algorithmic speedups 

2. Linear-time exact string matching (expected) 
– Karp-Rabin algorithm and semi-numerical methods 
– Hash functions and randomized algorithms 

3. The BLAST algorithm and inexact matching 
– Hashing with neighborhood search 
– Two-hit blast and hashing with combs 

4. Deterministic linear-time exact string matching 
– Key insight: gather more info from each comparison 
– Pre-processing, Z-algorithm, Boyer-More, KMP 
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Linear-time string matching 

• When looking for exact matches of a pattern (no gaps) 
 

• Karp-Rabin algorithm (probabilistic linear time):  
– Interpret String numerically 
– Start with ‘broken’ version of the algorithm 
– Progressively fix it to make it work 

• Deterministicc linear-time solutions exist (not this term): 
– Z-algorithm / fundamental pre-processing, Gusfield 
– Boyer-Moore and Knuth-Morris-Pratt algorithms 

are earliest instantiations, similar in spirit 
– Suffix trees: beautiful algorithms, many different variations 

and applications, limited use in CompBio 
– Suffix arrays: practical variation, Gene Myers 
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Karp-Rabin algorithm 

• Key idea:  
– Interpret strings as numbers:  fast comparison 

 
 

. 

2 3 5 9 0 2 3 1 4 1 5 2 6 7 3 9 9 2 1 T= 

3 1 4 1 5 

x = 31,415 

P= 

y1 = 23,590 
y2 = 35,902 

compute x 

for i in [1..n]:  

 compute yi 

 if x == yi:  

  print “match at S[i]” 

y3 = 59,023 

y7 = 31,415 

x=y7  P=T[7..11] 

(this does not actually work) 
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compute x (mod p) 

for i in [1..n]:  

 compute yi (mod p) (using yi-1) 

 if x == yi:  

    if P==S[i..]:  

   print “match at S[i]” 

    else:  

   (spurious hit) 

Karp-Rabin algorithm 

• Key idea:  
– Interpret strings as numbers:  fast comparison 

• To make it work:  
(a) Compute next number based on previous one  O(1) 
(b) Hashing (mod p)  keep the numbers small  O(1) 
(c) Deal with spurious hits due to hashing collisions 

2 3 5 9 0 2 3 1 4 1 5 2 6 7 3 9 9 2 1 T= 

3 1 4 1 5 

x = 31,415 

P= 

y1 = 23,590 
y2 = 35,902 

compute x (mod p) 

for i in [1..n]:  

 compute yi (using yi-1) 

 if x == yi:  

    if P==S[i..]:  

   print “match at S[i]” 

    else:  

   (spurious hit) 

compute x (mod p) 

for i in [1..n]:  

 compute yi (mod p) (using yi-1) 

 if x == yi:  

  

   print “match at S[i]” 

 

     

y3 = 59,023 

y7 = 31,415 

(this actually works) 

compute x (mod p) 

for i in [1..n]:  

 compute yi (mod p) (using yi-1) 

 if x == yi:  

    if P==S[i..]:  

   print “match at S[i]” 

    else:  

   (spurious hit) 

21



31,415 

14,152 

31,415 

14,152 

31,415 

14,152 

(a) Computing ts+1 based on ts in constant time 

3 1 4 1 5 2 

14,152 = (31,415 - 3 * 10,000) * 10 + 2 

old high-order bit 

left shift new low-order 
digit 

• Middle digits of the number are already computed 
  Shift them to the left  
• Remove the high-order bit 
• Add the low-order bit 

14,152 =? function (31,415) 

• General case: 
  ts=T[s+1]2m-1+T[s+2]2m-2+…+T[s+m]20 

    
 
  ts+1=T[s+2]2m-1+T[s+3]2m-2+…+T[s+m+1]20 
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14,152 = (31,415 - 3 * 10,000) * 10 + 2 (mod 13) 

 = (7-3*3)*10+2 (mod 13) 

           = 8 (mod 13) 

(b) Dealing with long numbers in constant time 
3 1 4 1 5 2 

7 8 

old high-order bit left shift new low-order 
digit 

Problem:  

• To get O(n) time, need to perform each operation in O(1) time 
• But if arguments are m-bit long (2m range), can take O(m) time 
• Need to reduce number range to something more manageable 
Solution:  

• Hashing: Mapping keys k from large universe U (of strings/numbers) 
 into the ‘hash’ of each key h(k), in smaller space [1..m] 
• Many hash functions possible, w/ theoretical & practical properties: 

• Reproducibility: x=yh(x)=h(y) (hash of x always the same) 
• Uniform output distrib: x≠yP(h(x)=h(y))=1/m, for any input dist 

14,152 = (31,415 - 3 * 10,000) * 10 + 2 
  

New problem:  Collisions 
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(c) Dealing with collisions, due to hashing 

• Consequences of (mod p) ‘hashing’ 
– Good:  Enable fast computation (use small numbers) 
– Bad:  Leads to spurious hits (collisions) 

• Dealing with the bad: 
1. Verify that a hit correspond to valid match 
  re-compute equality for entire string (not just hash) 
2. Avoid worst-case behavior of many collisions w/ bad m 
  Choose random m 

• Algorithm and its analysis becomes more complex: 
1. Compute expected run time, include expected cost of verification 
2. Show probability of spurious hits is small, expected run time is linear 

2 3 5 9 0 2 3 1 4 1 5 2 6 7 3 9 9 2 1 T= 

7 8 4 5 10 11 7 9 11 8 9 3 11 0 1 
spurious hit valid match 
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compute x (mod p) 

for i in [1..n]:  

 compute yi (mod p) (using yi-1) 

 if x == yi:  

    if P==S[i..]:  

   print “match at S[i]” 

    else:  

   (spurious hit) 

Karp-Rabin algorithm:  Putting it all together 

• Key idea: Semi-numerical computation 
– Idea: Interpret strings as numbers => fast comparison 
 (other semi-numerical methods:  Fast Fourier Transform,  Shift-And) 

• To make it work:  
(a) Compute next number based on previous one  O(1) 
(b) Hashing (mod p)  keep the numbers small  O(1) 
(c) Dealing with collisions  Randomized p, expected run time  O(1) exp 

2 3 5 9 0 2 3 1 4 1 5 2 6 7 3 9 9 2 1 T= 

3 1 4 1 5 

x = 31,415 

P= 

y1 = 23,590 
y2 = 35,902 

y3 = 59,023 

y7 = 31,415 

(this actually works) 
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Today’s Goal: Diving deeper into alignments 

1. Global alignment vs. Local alignment 
– Needleman-Wunsch and Smith-Waterman 
– Varying gap penalties and algorithmic speedups 

2. Linear-time exact string matching (expected) 
– Karp-Rabin algorithm and semi-numerical methods 
– Hash functions and randomized algorithms 

3. The BLAST algorithm and inexact matching 
– Hashing with neighborhood search 
– Two-hit blast and hashing with combs 

4. Deterministic linear-time exact string matching 
– Key insight: gather more info from each comparison 
– Pre-processing, Z-algorithm, Boyer-More, KMP 
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Sequence Alignment vs. Sequence Database Search 

• Sequence Alignment 
– Assumes sequences have some common ancestry 
– Finding the “right” alignment between two sequences 
– Evolutionary interpretation: min # events, min cost 

• Sequence Database Search 
– Given a query (new seq), and target (many old seqs), 

ask: which sequences (if any) are related to the query 
– Individual alignments need not be perfect: Once initial 

matches are reported, we can fine-tune them later 
– Query must be very fast for a new sequence 
– Most sequences will be completely unrelated to query 

• Exploit distinct nature of database search problem 
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Speeding up your searches in dB setting 

• Exploit nature of the problem (many spurious hits) 
– If you’re going to reject any match with idperc <= 90, 

then why bother even looking at sequences which 
don’t have a stretch of 10 nucleotides in a row. 

– Pre-screen sequences for common long stretches 
• Put the speed where you need it (pre-processing) 

– Pre-processing the database is off-line.  
– Once the query arrives, must act fast 

• Solution:  content-based indexing and BLAST 
– Example: index 10-mers.  
– Only one 10-mer in 410 will match, one in a million 

(even with 500 k-mers, only 1 in 2000 will match). 
– Additional speedups are possible  
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BLAST 

• Two key insights:  
• Hashing: 

– Like Karp-Rabin, semi-numerical string matching 
• Neighborhood search:  

– Can find hits even when no exact k-mer matches 

BLAST citations per year 

PSI-BLAST & Gapped Blast 
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Blast Algorithm Overview 

• Receive query 
1. Split query into overlapping words of length W 
2. Find neighborhood words for each word until threshold T 
3. Look in table where these neighbor words occur: seeds S 
4. Extend seeds S until score drops off under X 

• Report significance and alignment of each match 

PMG 

W-mer 
Database 

2. Expand word 
    neighborhood 

3. Search database for 
    neighborhood matches 

1. Split query into words 

4. Extend each hit into alignment 

T 
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Why BLAST works(1): Pigeonhole and W-mers 

• Pigeonholing mis-matches 
– Two sequences, each 9 amino-acids, with 7 identities 
– There is a stretch of 3 amino-acids perfectly conserved 

• In general: 
– Sequence length: n 
– Identities: t 
– Can use W-mers for W= [n/(n-t+1)] 

RKI          WGD         PRS 

RKI          VGD          RRS   

• Pigeonhole principle 
– If you have 2 pigeons and 3 holes, there must be 

at least one hole with no pigeon  
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Extensions to the basic algorithm 
• Ideas beyond W-mer indexing? Desirata: 

– Faster 
– Better sensitivity (fewer false negatives) 

1) Filtering: Low complexity regions cause spurious hits 
– Filter out low complexity in your query 
– Filter most over-represented items in your database 

2) Two-hit BLAST 
– Two smaller W-mers are more likely than one longer one 
– Therefore it’s a more sensitive searching method to look for two hits 

instead of one, with the same speed. 
– Improves sensitivity for any speed, speed for any sensitivity 

3) Beyond W-mers, hashing with non-consecutive k-mers (combs) 
– Next slide 
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Extension 3: Combs and Random Projections 

• No reason to use only consecutive symbols 
• Instead, we could use combs, e.g.,  

RGIKW  R*IK* , RG**W, … 

• Indexing same as for W-mers: 
– For each comb, store the list of positions in the database where it occurs 
– Perform lookups to answer the query 

• How to choose the combs?  At random 
– Random projections: Califano-Rigoutsos’93, Buhler’01, Indyk-Motwani’98 
– Choose the positions of * at random 
– Analyze false positives and false negatives 

Key idea: 

• Assume we select k positions, which do not 
contain *, at random with replacement 

• What is the probability of a false negative ? 
– At most: 1-idperck 

– In our case: 1-(7/9)4 =0.63... 
• What is we repeat the process l times, 

independently ? 
– Miss prob. = 0.63l 

– For l=5, it is less than 10% 
 

Query: RKIWGDPRS  
Datab.: RKIVGDRRS 

Query: *KI*G***S  
Datab.: *KI*G***S 

k=4 

Performance Analysis: 
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Today’s Goal: Diving deeper into alignments 

1. Global alignment vs. Local alignment 
– Needleman-Wunsch and Smith-Waterman 
– Varying gap penalties and algorithmic speedups 

2. Linear-time exact string matching (expected) 
– Karp-Rabin algorithm and semi-numerical methods 
– Hash functions and randomized algorithms 

3. The BLAST algorithm and inexact matching 
– Hashing with neighborhood search 
– Two-hit blast and hashing with combs 

4. Deterministic linear-time exact string matching 
– Key insight: gather more info from each comparison 
– Pre-processing, Z-algorithm, Boyer-More, KMP 
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The exact matching problem 

• Inputs:  
– a string P, called the pattern 
– a longer string T, called the text 

• Output: 
– Find all occurrences, if any, of pattern P in text T 

 
• Example 

b a a b a c a b a b a d T= 
1 2 3 4 5 6 7 8 9 10 11 12 

a b a P= 
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Basic string definitions 

• A string S 
– Ordered list of characters 
– Written contiguously from left to write 

• A substring S[i..j]  
– all contiguous characters from i to j 
– Example:  S[3..7] = abaxa 

• A prefix is a substring starting at 1 
• A suffix is a substring ending at |S| 
• |S| denotes the number of characters in string S 

b a a b a c a b a b a d S= 
1 2 3 4 5 6 7 8 9 10 11 12 
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The naïve string-matching algorithm 
• NAÏVE STRING MATCHING 

– n  length[T] 
– m length[P] 
– for shift  0 to n 

• do if P[1..m] == T[shift+1 .. shift+m] 
– then print “Pattern occurs with shift” shift 

 
• Where the test operation in line 4: 

– Tests each position in turn 
• If match, continue testing 
• else: stop 

• Running time ~ number of comparisons 
   number of shifts (with one comparison each) 
+ number of successful character comparisons 

1 

2 

3 

4 

5 

O(n) 
O(m) 

Running time: 
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Comparisons made with naïve algorithm 

• Worst case running time:  
– Test every position 
– P=aaaa, T=aaaaaaaaaaa 

• Best case running time: 
– Test only first position 
– P=bbbb, T=aaaaaaaaaaa 

b a a b a c a b 
a b a s=0 

b a a b a c a b 
a b a s=1 

b a a b a c a b 
a b a s=2 

b a a b a c a b 
a b a s=3 

b a a b a c a b 
a b a s=4 

b a a b a c a b 
a b a s=5 

Can we do better? 
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Key insight:  make bigger shifts! 

• If all characters in the pattern are the same: 

? ? ? ? ? ? ? ? 
a a a a 

? ? 

a a x ? ? ? ? ? 
a a a a 

? ? 

? ? ? x ? ? ? ? 
a a a a 

? ? 

? ? ? ? a a a a 
a a a a 

? ? 

? ? ? ? ? ? a a 
a a a a 

a ? 

Knowledge of the 
internal structure of P 

Information gathered 
at every comparison 

Number of comparisons:  O(n) 
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Key insight:  make bigger shifts! 

• If all characters in the pattern are different: 
? ? ? ? ? ? ? ? 
a b c d 

? ? 

a b c d ? ? ? ? 
a b c d 

? ? 

? ? ? ? ? ? ? ? 
a b c d 

? ? 

Number of comparisons: 
•At most n matching comparisons 
•At most n non-matching comparisons 
 
 Number of comparisons:  O(n) 
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Key insight:  make bigger shifts! 

• Special case: 
– If all characters in the pattern are the same: O(n) 
– If all characters in the pattern are different: O(n) 

• General case:  
– Learn internal redundancy structure of the pattern 
– Pattern pre-processing step 

• Methods:  
– Fundamental pre-processing 
– Knuth-Morris-Pratt 
– Finite State Machine 
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Fundamental pre-processing 

a a b c a a b x a a a 

a a a a 

a a 

1 2 3 4 5 6 7 8 9 10 11 

a a 

a a b a a b 

a a a a 

1 3 1 2 2 0 0 0 0 0 1 

• Zi = length of longest prefix in common for S[i..] and S 
(Length of the longest prefix of S[i..] that’s also a prefix of S) 

S = 

Z = 

• Learning the redundancy structure of a string S 

42



Fundamental pre-processing 

• Learning the redundancy structure of a string S 

a a b c a a b x a a a 
1 2 3 4 5 6 7 8 9 10 11 

0 1 0 0 3 1 0 0 2 2 1 

S = 

Z = 

Z-box = a a b c a a b x a a a 

r = a a b c a a b x a a a 

l = a a b c a a b x a a a 

a a b c a a b x a a a 
k 

left right 

Can we compute Z, r, l 
in linear time O(|S|)? 

Z1 Z2 Z3 … Zk-1 Zk 
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Computing Zk given Z1 .. Zk-1 

        a 

k’ 

• Case 1:  k is outside a Z-box:  simply compute Zk 

k 
S 

l r 

a 

• Case 2:  k is inside a Z-box:  Look up Zk’ 

k 
S 

l r Zk Zk 

Zk Zk Zk’ 

 Case 2a: Zk’ < r-k 
 Case 2b: Zk’ >= r-k 
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Computing Zk given Z1 .. Zk-1 

a 

k’ k 
S 

l r 

a 
Zk Zk Zk’ 

Case 2a:  Zk’ < r-k 

Case 2b:  Zk’ >= r-k 

k’ k 
S 

l r 

Zk Zk Zk’ 

a a 

Set Zk = Zk’ 

? ? ? ? ? ? 

Explicitly compare starting at r+1 
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Putting it all together 

• FUNDAMENTAL-PREPROCESSING(S): 
Z2,l,r = explicitly compare S[1..] with S[2..] 
for k in 2..n: 

if k > r:  Zk,l,r = explicitly compare S[1..] with S[k..] 
if k <= r:  

if Zk’<(r-k): Zk = Zk’  
else:  

Zk = explicitly compare S[r+1..] with S[(r-k)+1..] 
l = k 
r = l+Zk 
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Correctness of Z computation 

Case 1:  k is outside a Z-box:  explicitly compute Zk 

k 
S 

l r Zk Zk 

a 

k’ k 
S 

l r 

a 
Zk Zk Zk’ 

Case 2a:  Inside Z-box and Zk’ < r-k: set Zk = Zk’ 

Case 2b:  Inside Z-box and Zk’ >= r-k: explicitly compute starting at r+1 

k’ k 
S 

l r 

Zk Zk Zk’ 

a a 

? ? ? ? ? ? 
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Running time of Z computation 

Case 1:  k is outside a Z-box:  explicitly compute Zk 

k 
S 

l r Zk Zk 

a 

k’ k 
S 

l r 

a 
Zk Zk Zk’ 

Case 2a:  Inside Z-box and Zk’ < r-k: set Zk = Zk’ 

Case 2b:  Inside Z-box and Zk’ >= r-k: explicitly compute starting at r+1 

k’ k 
S 

l r 

Zk Zk Zk’ 

a a 

? ? ? ? ? ? 
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What’s so fundamental about Z? 

a a b c a a b x a a a 

a a b a a b 

1 3 1 2 2 0 0 0 0 0 0 

S = 

Z = 

• Learning the redundancy structure of a string S 

• Zi = fundamental property of internal redundancy structure 

• Most pre-processings can be expressed in terms of Z 
– Length of the longest prefix starting/ending at position i 

– Length of the longest suffix starting/ending at position i 
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Back to string matching  

• Given the fundamental pre-processing of pattern P 
– Compare pattern P to text T 
– Shift P by larger intervals based on values of Z 

• Three algorithms based on these ideas 
– Knuth-Morris-Pratt algorithm 
– Boyer-Moore algorithm 
– Z algorithm 

b a a b a c a b a b a d T= 

a b a P= b a 
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Knuth-Morris-Pratt algorithm 

• Pre-processing:  
– Spi(P) = length of longest proper suffix of P[1..i] that 

matches a prefix of P 

a b c f a b c d e P= 

a b c f a b c d e 

T= 

a b c f a b c d e P= 

a b c a b c 

– No other than the right-hand-side of the Z-boxes 
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Knuth-Morris-Pratt running time 

• Number of comparisons bounded by characters in T 
– Every comparison starts at text position where last 

comparison ended 
– Every shift results in at most one extra comparison 
– At most |T| shifts  Running time bounded by 2*|T| 

a b c f a b c d e P= 

a b c f a b c d e 

T= 
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Boyer-Moore algorithm 

• Three fundamental ideas: 
1. Right-to-left comparison 
2. Alphabet-based shift rule 
3. Preprocessing-based shift rule 

• Results in: 
– Very good algorithm in practice 
– Rule 2 results in large shifts and sub-linear time 

• for larger alphabets, ex: English text 
– Rule 3 ensures worst-case linear behavior 

• even in small alphabets, ex: DNA sequences 

b a a b x c a b a b a d T= 

a b a P= b x 
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The Z algorithm 

• The Z algorithm 
– Concatenate P + ‘$’ + T 
– Compute fundamental pre-processing O(m+n) 
– Report all starting positions i for which Zi=|P| 

b a a b a c a b a b a d a b a P+T= b a $ 
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Today’s Goal: Diving deeper into alignments 

1. Global alignment vs. Local alignment 
– Needleman-Wunsch and Smith-Waterman 
– Varying gap penalties and algorithmic speedups 

2. Linear-time exact string matching (expected) 
– Karp-Rabin algorithm and semi-numerical methods 
– Hash functions and randomized algorithms 

3. The BLAST algorithm and inexact matching 
– Hashing with neighborhood search 
– Two-hit blast and hashing with combs 

4. Deterministic linear-time exact string matching 
– Key insight: gather more info from each comparison 
– Pre-processing, Z-algorithm, Boyer-More, KMP 
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