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Module 1: Aligning and modeling genomes 

• Module 1: Computational foundations 
– Dynamic programming: exploring exponential spaces in poly-time 
– Linear-time string matching, Hashing, Content-based indexing 
– Hidden Markov Models: decoding, evaluation, parsing, learning 

• Last week: Sequence alignment / comparative genomics 
– Local/global alignment: infer nucleotide-level evolutionary events 
– Database search: scan for regions that may have common ancestry 

• This week: Modeling genomes / exon / CpG island finding 
– Modeling class of elements, recognizing members of a class 
– Application to gene finding, conservation islands, CpG islands 
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We have learned how to align sequences to other sequences 

• L2: Sequence alignment 
– Dynamic programming, duality path  alignment 
– Global / local alignment, general gap penalties 

• L3: Rapid string search 
– Exact string match, semi-numerical matching 
– Database search: Hashing, BLAST, variations 

• L15:Comparative genomics: evolutionary signatures 
– Tell me how you evolve, I’ll tell you what you are 
– Identifying conserved elements through evolution 

• L16: Whole-genome assembly/alignment/duplication:  
– Finding all common substrings within/across species 
– Contigs/scaffolds, string graphs, glocal alignmt paths 

• Problem set 1, project planning, Problem set 2 out 
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Today: apply these ideas to model DNA sequences 

• What to do with a completely new piece of DNA 
– Align it to things we know about (database search) 
– Align it to things we don’t know about (assembly) 

• Stare at it 
– Non-standard nucleotide composition? 
– Interesting k-mer frequencies? 
– Recurrent patterns? 

• Model it 
– Make some hypotheses about it 
– Build a ‘generative model’ to describe it 
– Find sequences of similar type 

 How do we model DNA sequences? 

…GTACTCACCGGGTTACAGGATTATGGGTTACAGGTAACCGTT… 
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Modeling biological sequences with HMMs 
(a.k.a. What to do with big unlabelled chunks of DNA) 

• Ability to emit DNA sequences of a certain type 
– Not exact alignment to previously known gene 
– Preserving ‘properties’ of type, not identical sequence 

• Ability to recognize DNA sequences of a certain type (state) 
– What (hidden) state is most likely to have generated observations 
– Find set of states and transitions that generated a long sequence 

• Ability to learn distinguishing characteristics of each state 
– Training our generative models on large datasets 
– Learn to classify unlabelled data 

Intergenic 
 

CpG 
island 

Promoter 
 

First 
exon 

Intron 
 

Other 
exon 

Intron 
 

GGTTACAGGATTATGGGTTACAGGTAACCGTTGTACTCACCGGGTTACAGGATTATGGGTTACAGGTAACCGGTACTCACCGGGTTACAGGATTATGGTAACGGTACTCACCGGGTTACAGGATTGTTACA
GG 
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Why Probabilistic Sequence Modeling? 
• Biological data is noisy 

 
• Probability provides a calculus for manipulating models 

 
• Not limited to yes/no answers – can provide “degrees of 

belief” 
 

• Many common computational tools based on probabilistic 
models 
 

• Our tools:  
 
– Markov Chains and Hidden Markov Models (HMMs) 
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Markov Chains and Hidden Markov Models 
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Andrey Markov (1856-1922) 

Image in the public domain. 
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Predicting tomorrow’s weather 

• What you see is what you get: 
next state only depends on 
current state (no memory) 

• Markov Chain • Hidden Markov Model 

Sun 

Rain 

Clouds 

Snow 

• Hidden state of the world (e.g. 
storm system) determines 
emission probabilities 

• State transitions governed by a 
Markov chain 

hidden 

observed 

All observed 

Summer Fall Winter Spring 

Transitions 

Emissions 

Transitions 
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HMM nomenclature for this course 

• Vector x = Sequence of observations 

• Vector π = Hidden path (sequence of hidden states) 

• Transition matrix A=akl=probability of kl state transition 

• Emission vector E=ek(xi) = prob. of observing xi from state k 

• Bayes’s rule: Use P(xi|πi=k) to estimate P(πi=k|xi) 

Fall Winter Spring 

Emissions: ek(xi)=P(xi|pi=k) 

Transitions: akl=P(πi=l|πi-1=k) Summer π= 

x= 

πi 

xi 

Transition probability 
from state k to state l 

Emission probability of 
symbol xi from state k 
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Components of a Markov Chain 

Definition: A Markov chain is a triplet (Q, p, A), where: 

 Q is a finite set of states. Each state corresponds to a symbol in the 
alphabet Σ 

 p is the initial state probabilities. 

 A is the state transition probabilities, denoted by ast for each s, t in Q. 

 For each s, t in Q the transition probability is:   ast ≡ P(xi = t|xi-1 = s) 

Property: The probability of each symbol xi depends only on 
the value of the preceding symbol xi-1 :  P (xi | xi-1,…, x1) = P (xi | xi-1) 

Formula: The probability of the sequence: 

  P(x) = P(xL,xL-1,…, x1) = P (xL | xL-1) P (xL-1 | xL-2)… P (x2 | x1) P(x1)  

Output: The output of the model is the set of states at each 
instant time => the set of states are observable 

Slide credit: Serafim Batzoglou 11



Components of an HMM (Hidden Markov Model) 

Definition: An HMM is a 5-tuple (Q, V, p, A, E), where: 
 Q is a finite set of states, |Q|=N 

 V is a finite set of observation symbols per state, |V|=M 

 p is the initial state probabilities. 

 A is the state transition probabilities, denoted by ast for each s, t  in  Q. 

 For each s, t in Q the transition probability is:   ast ≡ P(xi = t|xi-1 = s) 

 E is a probability emission matrix, esk ≡ P (vk at time t | qt = s) 

Property: Emissions and transitions are dependent on the current state 
only and not on the past. 

Output: Only emitted symbols are observable by the system but not the 
underlying random walk between states   -> “hidden” 

Slide credit: Serafim Batzoglou 12



1.  Scoring x, one path 
 
  P(x,π) 
 
Prob of a path, emissions 
 

2.  Scoring x, all paths 
 
  P(x) = Σπ P(x,π) 
 
Prob of emissions, over all paths 

3. Viterbi decoding 
 
 π* = argmaxπ P(x,π) 
 
Most likely path 

4.  Posterior decoding 
 
π^ = {πi | πi=argmaxk ΣπP(πi=k|x)} 
 
Path containing the most likely 
state at any time point. 
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5. Supervised learning, given π 
 Λ* = argmaxΛ P(x,π|Λ) 
6. Unsupervised learning.  
  Λ* = argmaxΛ maxπP(x,π|Λ) 
 Viterbi training, best path 

6.  Unsupervised learning 
  
 Λ* = argmaxΛ ΣπP(x,π|Λ) 
 
Baum-Welch training, over all paths 

The six algorithmic settings for HMMs 
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Examples of HMMs 

The dishonest casino 
The dishonest genome 

… and many more 
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Example: The Dishonest Casino 

 
A casino has two dice: 
• Fair die 
 P(1) = P(2) = P(3) = P(5) = P(6) = 1/6 
• Loaded die 
 P(1) = P(2) = P(3) = P(4) = P(5) = 1/10 
 P(6) = 1/2 
Casino player switches between fair and loaded 

die on average once every 20 turns 
 
Game: 
1. You bet $1 
2. You roll (always with a fair die) 
3. Casino player rolls (maybe with fair die, 

maybe with loaded die) 
4. Highest number wins $2 

Slide credit: Serafim Batzoglou 15



The dishonest casino model 

Fair Loaded 

0.05 

0.05 

0.95 0.95 

P(1|Fair) = 1/6 
P(2|Fair) = 1/6 
P(3|Fair) = 1/6 
P(4|Fair) = 1/6 
P(5|Fair) = 1/6 
P(6|Fair) = 1/6 

P(1|L) = 1/10 
P(2|L) = 1/10 
P(3|L) = 1/10 
P(4|L) = 1/10 
P(5|L) = 1/10 
P(6|L) = 1/2 

Observed 
(world) 

Hidden 
(model) 

Slide credit: Serafim Batzoglou 16



The dishonest genome model 

Virus “Self” 

0.85 

0.05 

0.95 0.15 

P(A|Virus) = 1/6 
P(T|Virus) = 1/6 
P(C|Virus) = 1/3 
P(G|Virus) = 1/3 

P(A|Self) = 1/4 
P(T|Self) = 1/4 
P(C|Self) = 1/4 
P(G|Self) = 1/4 

Observed 
(world) 

Hidden 
(model) 

Slide credit: Serafim Batzoglou 17



Examples of HMMs for genome annotation 
Application Detection 

of GC-rich 
regions 

Detection 
of 
conserved 
regions 

Detection 
of protein-
coding 
exons 

Detection 
of protein-
coding 
conservatio
n 

Detection 
of protein-
coding 
gene 
structures 

Detection 
of 
chromatin 
states 

Topology / 
Transitions 

2 states, 
different 
nucleotide 
composition 

2 states, 
different 
conservation 
levels 

2 states, 
different tri-
nucleotide 
composition 

2 states, 
different 
evolutionary 
signatures 

~20 states, 
different 
composition/
conservation
, specific 
structure 

40 states, 
different 
chromatin 
mark 
combination
s 

Hidden 
States / 
Annotation 

GC-rich / AT-
rich 

Conserved / 
non-
conserved 

Coding exon 
/ non-coding 
(intron or 
intergenic) 

Coding exon 
/ non-coding 
(intron or 
intergenic) 

First/last/mid
dle coding 
exon,UTRs, 
intron1/2/3, 
intergenic, 
*(+/- strand) 

Enhancer / 
promoter / 
transcribed / 
repressed / 
repetitive 

Emissions / 
Observatio
ns 

Nucleotides Level of 
conservation 

Triplets of 
nucleotides 

Nucleotide 
triplets, 
conservation 
levels 

Codons, 
nucleotides, 
splice sites, 
start/stop 
codons 

Vector of 
chromatin 
mark 
frequencies 
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Running the model:  Probability of a sequence 

What is the joint probability of observing x and a specific path π:  
 π = Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair 
and rolls 
 x   =   1   ,   2,     1,     5,     6,      2,     1,     6,     2,      4 
Joined probability P(x,π)=P(x|π)P(π)=P(emissions|path)*P(path) 
 
              emission      transition       emission     transition         emission 
p = ½  P(1 | Fair) P(Fairi+1 | Fairi) P(2 | Fair) P(Fair | Fair) … P(4 | Fair) 
   = ½  (1/6)10  (0.95)9 
   = 5.2  10-9 

1/2 F 

1/6 

L 

.95 F 

1/6 

L 

.95 F 

1/6 

L 

.95 F 

1/6 

L 

.95 F 

1/6 

L 

.95 F 

1/6 

L 

.95 F 

1/6 

L 

.95 F 

1/6 

L 

.95 F 

1/6 

L 

.95 F 

1/6 

L 

1 

Why is p so small? 

Slide credit: Serafim Batzoglou 19



Running the model:  Probability of a sequence 

What is the likelihood of 
 π = Load, Load, Load, Load, Load, Load, Load, Load, Load, Loaded 
and rolls 
 x   =     1   ,   2,      1,      5,        6,       2,       1,       6,       2,      4 
 
              emission        transition       emission     transition         emission 
p = ½  P(1 | Load) P(Loadi+1 | Loadi) P(2 | Load) P(Load|Load) … P(4 | Fair) 
   = ½  (1/10)8  (1/2)2 (0.95)9 
   = 7.9  10-10 

1/2 

1/10 

L .95 

1/10 

L .95 

1/10 

L .95 

1/10 

L .95 

1/2 

L .95 

1/10 

L .95 

1/10 

L .95 

1/2 

L .95 

1/10 

L .95 

F F F F F F F F F F 

1/10 

L 1 

Compare the two! 

Slide credit: Serafim Batzoglou 20



Comparing the two paths 

Two sequence paths:  
 P( x, all-Fair )       = 5.2  10-9     (very small) 
 P( x, all-Loaded ) = 7.9  10-10     (very very small) 
 
Likelihood ratio:   
 P( x, all-Fair ) is 6.59 times more likely than P( x, all-Loaded ) 
 
It is 6.59 times more likely that the die is fair all the way, than loaded all the way. 
 

1/2 

1/10 

L .95 

1/10 

L .95 

1/10 

L .95 

1/10 

L .95 

1/2 

L .95 

1/10 

L .95 

1/10 

L .95 

1/2 

L .95 

1/10 

L .95 

1/10 

L 1 

1/2 F .95 F .95 F .95 F .95 F .95 F .95 F .95 F .95 F .95 F 

1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6 

1 

Slide credit: Serafim Batzoglou 21



What about partial runs and die switching 

What is the likelihood of 
 π = Fair, Fair, Fair, Fair, Load, Load, Load, Load, Fair, Fair 
and rolls 
 x   =   1   ,   2,     1,     5,      6,       2,      1,       6,      2,      4 
              emission      transition       emission     transition         emission 
p = ½  P(1 | Fair) P(Fairi+1 | Fairi) P(2 | Fair) P(Fair | Fair) … P(4 | Fair) 
   = ½  (1/10)2  (1/2)2  (1/6)5  (0.95)7  (0.05)2 

   = 2.8  10-10 

1/2 F 

1/6 

L 

.95 F 

1/6 

L 

.95 F 

1/6 

L 

.95 F 

1/6 

L 
.05 

F 

1/2 

L .95 

F 

1/10 

L .95 

F 

1/10 

L .95 

F 

1/2 

L .05 

F 

1/6 

L 

.95 F 

1/6 

L 

1 

Much less likely, due to high cost of transitions 
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Model comparison 

Let the sequence of rolls be: 
 x = 1, 6, 6, 5, 6, 2, 6, 6, 3, 6 
 
Now, what is the likelihood  = F, F, …, F? 
 ½  (1/6)10  (0.95)9 = 0.5  10-9, same as before 
 
What is the likelihood  = L, L, …, L? 
 ½  (1/10)4  (1/2)6 (0.95)9 = 0.5  10-7 
 
So, it is 100 times more likely the die is loaded 

Model evaluation 
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1.  Scoring x, one path 
 
  P(x,π) 
 
Prob of a path, emissions 
 

2.  Scoring x, all paths 
 
  P(x) = Σπ P(x,π) 
 
Prob of emissions, over all paths 

3. Viterbi decoding 
 
 π* = argmaxπ P(x,π) 
 
Most likely path 

4.  Posterior decoding 
 
π^ = {πi | πi=argmaxk ΣπP(πi=k|x)} 
 
Path containing the most likely 
state at any time point. 

One path All paths 
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5. Supervised learning, given π 
 Λ* = argmaxΛ P(x,π|Λ) 
6. Unsupervised learning.  
  Λ* = argmaxΛ maxπP(x,π|Λ) 
 Viterbi training, best path 

6.  Unsupervised learning 
  
 Λ* = argmaxΛ ΣπP(x,π|Λ) 
 
Baum-Welch training, over all paths 

The six algorithmic settings for HMMs 
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3. DECODING:  
What was the sequence of hidden states? 

Given:   Model parameters ei(.), aij 
Given:   Sequence of emissions x 
 
Find:  Sequence of hidden states π 
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Finding the optimal path 

• We can now evaluate any path through hidden states, given 
the emitted sequences 
 

• How do we find the best path? 
 

• Optimal substructure!  Best path through a given state is:  
– Best path to previous state 
– Best transition from previous state to this state 
– Best path to the end state 

 
 Viterbi algortithm 

– Define Vk(i) = Probability of the most likely path through state i=k 
– Compute Vk(i+1) as a function of maxk’ { Vk’(i) } 

 
– Vk(i+1) = ek(xi+1) * maxj ajk Vj(i) 

 Dynamic Programming 
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Photograph of Andrew J. Viterbi removed due to copyright restrictions.

27



Finding the most likely path 

1 
2 

K 
… 

1 
2 

K 
… 

1 
2 

K 
… 

… 

… 

… 

1 
2 

K 
… 

x2 x3 xN 

2 
1 

K 

2 

x1 

• Find path * that maximizes total joint probability P[ x,  ] 

• P(x,) = a01
 * Πi ei

(xi)    aii+1 

start emission transition 
Slide credit: Serafim Batzoglou 28



Calculate maximum P(x,) recursively 

• Assume we know Vj for the previous time step (i-1) 
 

• Calculate Vk(i) =     ek(xi)   *   maxj (   Vj(i-1)     ajk    ) 

xi 

ek 

k 
j 

ajk … 
… 

xi-1 

… 
Vj(i-1) 

Vk(i) hidden 
states 

observations 

this emission Transition 
from state j 

max ending 
in state j at step i 

all possible previous states j 

current max 

Slide credit: Serafim Batzoglou 29



The Viterbi Algorithm 

x1   x2   x3 ………………………………………..xN 

Input: x = x1……xN 
 

Initialization: 
 V0(0)=1, Vk(0) = 0, for all k > 0 
 

Iteration: 
 Vk(i) = eK(xi)  maxj ajk Vj(i-1)  
 

Termination: 
 P(x, *) = maxk Vk(N) 

Traceback: 
 Follow max pointers back 
 Similar to aligning states to seq 
 

In practice: 
 Use log scores for computation 
 

Running time and space:  
 Time:    O(K2N) 
 Space:  O(KN) 

State 1 

2 

K 

Vk(i) 

Slide credit: Serafim Batzoglou 30



1.  Scoring x, one path 
 
  P(x,π) 
 
Prob of a path, emissions 
 

2.  Scoring x, all paths 
 
  P(x) = Σπ P(x,π) 
 
Prob of emissions, over all paths 

3. Viterbi decoding 
 
 π* = argmaxπ P(x,π) 
 
Most likely path 

4.  Posterior decoding 
 
π^ = {πi | πi=argmaxk ΣπP(πi=k|x)} 
 
Path containing the most likely 
state at any time point. 

One path All paths 
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5. Supervised learning, given π 
 Λ* = argmaxΛ P(x,π|Λ) 
6. Unsupervised learning.  
  Λ* = argmaxΛ maxπP(x,π|Λ) 
 Viterbi training, best path 

6.  Unsupervised learning 
  
 Λ* = argmaxΛ ΣπP(x,π|Λ) 
 
Baum-Welch training, over all paths 

The six algorithmic settings for HMMs 
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2. EVALUATION 
(how well does our model capture the world) 

Given:   Model parameters ei(.), aij 
Given:   Sequence of emissions x 
 
Find:  P(x|M), summed over all possible paths π 
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Simple: Given the model, generate some sequence x 

Given a HMM, we can generate a sequence of length n as follows: 
1. Start at state 1 according to prob a01  
2. Emit letter x1 according to prob e1(x1) 
3. Go to state 2 according to prob a12 
4. … until emitting xn  

 
We have some sequence x that can be emitted by p.  Can calculate its likelihood.  
However, in general, many different paths may emit this same sequence x. 
How do we find the total probability of generating a given x, over any path? 

1 

2 

K 
… 
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2 
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K 
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… 

… 

… 

1 

2 

K 
… 

x1 x2 x3 xn 

2 

1 

K 

2 
0 

e2(x1) 

a02 

Slide credit: Serafim Batzoglou 33



Complex: Given x, was it generated by the model? 

Given a sequence x, 
What is the probability that x was generated by the model 

(using any path)? 

– P(x) = Σπ P(x,π) = Σπ P(x|π) P(π) 
– (weighted average of conditional probability, summed 

over all paths, weighted by each path’s probability) 
• Challenge: exponential number of paths 

1 
2 

K 
… 

1 
2 

K 
… 

1 
2 
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… 

… 
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2 

K 
… 

x1 x2 x3 xn 

2 
1 

K 

2 
0 

e2(x1) 

a02 
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Calculate probability of emission over all paths 
• Each path has associated probability 

– Some paths are likely, others unlikely: sum them all up 
 Return total probability that emissions are observed, 

summed over all paths 
– Viterbi path is the most likely one 

• How much ‘probability mass’ does it contain? 
• (cheap) alternative:   

– Calculate probability over maximum (Viterbi) path π* 
– Good approximation if Viterbi has highest density 
– BUT:  incorrect 

• (real) solution 
– Calculate the exact sum iteratively 

• P(x) = Σπ P(x,π) 

– Can use dynamic programming 
Slide credit: Serafim Batzoglou 35



The Forward Algorithm – derivation 
Define the forward probability: 
 
fl(i) = P(x1…xi, i = l)  
 
   =     1…i-1 P(x1…xi-1, 1,…,  i-2, i-1,   i = l) el(xi) 
 
   = k 1…i-2 P(x1…xi-1, 1,…, i-2, i-1=k)    akl el(xi) 
 
   = k fk(i-1) akl el(xi)  
 
   = el(xi) k fk(i-1) akl 
 
 

Slide credit: Serafim Batzoglou 36



Calculate total probability Σπ P(x,) recursively 

• Assume we know fj for the previous time step (i-1) 
 

• Calculate  fk(i) =     ek(xi)   *   sumj (   fj(i-1)        ajk    ) 

xi 

ek 

k 
j 

ajk … 
… 

xi-1 

… 
fj(i-1) 

fk(i) hidden 
states 

observations 

this emission transition 
from state j 

sum ending 
in state j at step i 

every possible previous state j 

updated sum 

Slide credit: Serafim Batzoglou 37



The Forward Algorithm 

x1   x2   x3 ………………………………………..xN 

Input: x = x1……xN 
 

Initialization: 
 f0(0)=1, fk(0) = 0, for all k > 0 
 

Iteration: 
 fk(i) = eK(xi)  sumj ajk fj(i-1)  
 

Termination: 
 P(x, *) = sumk fk(N) 

In practice: 
 Sum of log scores is difficult 
  approximate exp(1+p+q) 
  scaling of probabilities 
 
Running time and space:  
 Time:    O(K2N) 
 Space:  O(KN) 

State 1 

2 

K 

fk(i) 

Slide credit: Serafim Batzoglou 38



1.  Scoring x, one path 
 
  P(x,π) 
 
Prob of a path, emissions 
 

2.  Scoring x, all paths 
 
  P(x) = Σπ P(x,π) 
 
Prob of emissions, over all paths 

3. Viterbi decoding 
 
 π* = argmaxπ P(x,π) 
 
Most likely path 

4.  Posterior decoding 
 
π^ = {πi | πi=argmaxk ΣπP(πi=k|x)} 
 
Path containing the most likely 
state at any time point. 

One path All paths 
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5. Supervised learning, given π 
 Λ* = argmaxΛ P(x,π|Λ) 
6. Unsupervised learning.  
  Λ* = argmaxΛ maxπP(x,π|Λ) 
 Viterbi training, best path 

6.  Unsupervised learning 
  
 Λ* = argmaxΛ ΣπP(x,π|Λ) 
 
Baum-Welch training, over all paths 

The six algorithmic settings for HMMs 
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Examples of HMMs for genome annotation 
Application Detection 

of GC-rich 
regions 

Detection 
of 
conserved 
regions 

Detection 
of protein-
coding 
exons 

Detection 
of protein-
coding 
conservatio
n 

Detection 
of protein-
coding 
gene 
structures 

Detection 
of 
chromatin 
states 

Topology / 
Transitions 

2 states, 
different 
nucleotide 
composition 

2 states, 
different 
conservation 
levels 

2 states, 
different tri-
nucleotide 
composition 

2 states, 
different 
evolutionary 
signatures 

~20 states, 
different 
composition/
conservation
, specific 
structure 

40 states, 
different 
chromatin 
mark 
combination
s 

Hidden 
States / 
Annotation 

GC-rich / AT-
rich 

Conserved / 
non-
conserved 

Coding exon 
/ non-coding 
(intron or 
intergenic) 

Coding exon 
/ non-coding 
(intron or 
intergenic) 

First/last/mid
dle coding 
exon,UTRs, 
intron1/2/3, 
intergenic, 
*(+/- strand) 

Enhancer / 
promoter / 
transcribed / 
repressed / 
repetitive 

Emissions / 
Observatio
ns 

Nucleotides Level of 
conservation 

Triplets of 
nucleotides 

64x64 matrix 
of codon 
substitution 
frequencies 

Codons, 
nucleotides, 
splice sites, 
start/stop 
codons 

Vector of 
chromatin 
mark 
frequencies 
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What have we learned ? 
• Modeling sequential data 

– Recognize a type of sequence, genomic, oral, verbal, visual, etc… 
• Definitions 

– Markov Chains 
– Hidden Markov Models (HMMs) 

• Examples of HMMs 
– Recognizing GC-rich regions, preferentially-conserved elements, coding 

exons, protein-coding gene structures, chromatin states 
• Our first computations 

– Running the model:  know model  generate sequence of a ‘type’ 
– Evaluation:  know model, emissions, states  p? 
– Viterbi: know model, emissions  find optimal path 
– Forward: know model, emissions  total p over all paths 

• Next time: 
– Posterior decoding 
– Supervised learning 
– Unsupervised learning:  Baum-Welch, Viterbi training 
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