6.047/6.878/HST.507 Computational Biology: Genomes, Networks, Evolution

Lecture 4

Modeling Biological Sequences using Hidden Markov Models

1

Module 1: Aligning and modeling genomes

Module 1: Computational foundations

- Dynamic programming: exploring exponential spaces in poly-time
- Linear-time string matching, Hashing, Content-based indexing
- Hidden Markov Models: decoding, evaluation, parsing, learning
- Last week: Sequence alignment / comparative genomics
 - Local/global alignment: infer nucleotide-level evolutionary events
 - Database search: scan for regions that may have common ancestry
- This week: Modeling genomes / exon / CpG island finding
 - Modeling class of elements, recognizing members of a class
 - Application to gene finding, conservation islands, CpG islands

We have learned how to align sequences to other sequences

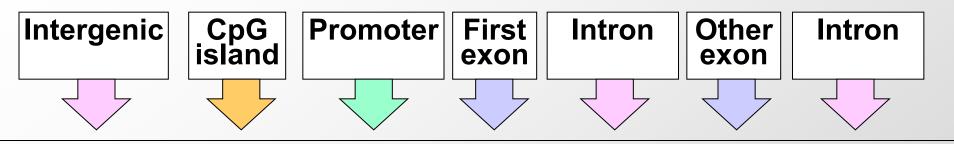
- L2: Sequence alignment

 - Global / local alignment, general gap penalties
- L3: Rapid string search
 - Exact string match, semi-numerical matching
 - Database search: Hashing, BLAST, variations
- L15:Comparative genomics: evolutionary signatures
 - Tell me how you evolve, I'll tell you what you are
 - Identifying conserved elements through evolution
- L16: Whole-genome assembly/alignment/duplication:
 - Finding all common substrings within/across species
 - Contigs/scaffolds, string graphs, glocal alignmt paths
- Problem set 1, project planning, Problem set 2 out

Today: apply these ideas to model DNA sequences ...GTACTCACCGGGTTACAGGATTATGGGTTACAGGTAACCGTT...

- What to do with a completely new piece of DNA
 - Align it to things we know about (database search)
 - Align it to things we don't know about (assembly)
- Stare at it
 - Non-standard nucleotide composition?
 - Interesting k-mer frequencies?
 - Recurrent patterns?
- Model it
 - Make some hypotheses about it
 - Build a 'generative model' to describe it
 - Find sequences of similar type
- → How do we model DNA sequences?

Modeling biological sequences with HMMs (a.k.a. What to do with big unlabelled chunks of DNA)



TACAGGATTATGGGTTACAGGTAACCGTTGTACTCACCGGGTTACAGGATTATGGGTTACAGGTAACCGGTACTCACGGGTTACAGGATTATGGTAACGGTACTCACCGGGTTACAGGATTGTTAC GG

- Ability to emit DNA sequences of a certain type
 - Not exact alignment to previously known gene
 - Preserving 'properties' of type, not identical sequence
- Ability to recognize DNA sequences of a certain type (state)
 - What (hidden) state is most likely to have generated observations
 - Find set of states and transitions that generated a long sequence
- Ability to learn distinguishing characteristics of each state
 - Training our generative models on large datasets
 - Learn to classify unlabelled data

Why Probabilistic Sequence Modeling?

- Biological data is noisy
- Probability provides a calculus for manipulating models
- Not limited to yes/no answers can provide "degrees of belief"
- Many common computational tools based on probabilistic models
- Our tools:

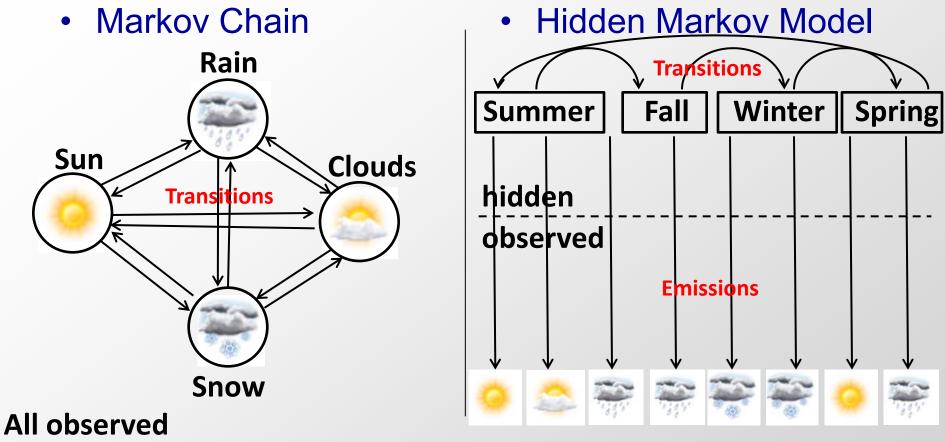
Markov Chains and Hidden Markov Models (HMMs)

Markov Chains and Hidden Markov Models

Andrey Markov (1856-1922)

Image in the public domain.

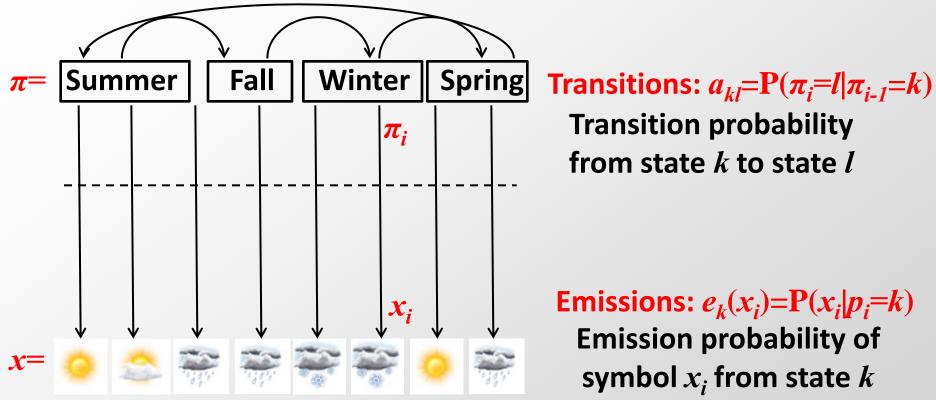
Predicting tomorrow's weather



• What you see is what you get: next state only depends on current state (no memory)

- Hidden state of the world (e.g. storm system) determines emission probabilities
- State transitions governed by a Markov chain

HMM nomenclature for this course



- Vector x = Sequence of observations
- Vector π = Hidden path (sequence of hidden states)
- Transition matrix $A=a_{kl}=probability$ of $k \rightarrow l$ state transition
- Emission vector $E = e_k(x_i) = \text{prob. of observing } x_i$ from state k
- Bayes's rule: Use $P(x_i | \pi_i = k)$ to estimate $P(\pi_i = k | x_i)$

Components of a Markov Chain

Definition: A Markov chain is a triplet (Q, p, A), where:

 \succ **Q** is a finite set of states. Each state corresponds to a symbol in the alphabet Σ

- > p is the initial state probabilities.
- > A is the state transition probabilities, denoted by a_{st} for each s, t in Q.

> For each *s*, *t* in *Q* the transition probability is: $a_{st} \equiv P(x_i = t | x_{i-1} = s)$ Output: The output of the model is the set of states at each instant time => the set of states are observable

Property: The probability of each symbol x_i depends only on the value of the preceding symbol x_{i-1} : $P(x_i | x_{i-1}, ..., x_1) = P(x_i | x_{i-1})$

Formula: The probability of the sequence:

 $P(x) = P(x_{L}, x_{L-1}, \dots, x_{1}) = P(x_{L} | x_{L-1}) P(x_{L-1} | x_{L-2}) \dots P(x_{2} | x_{1}) P(x_{1})$

Components of an HMM (Hidden Markov Model)

Definition: An HMM is a 5-tuple (Q, V, p, A, E), where:

- Q is a finite set of states, |Q|=N
- V is a finite set of observation symbols per state, |V|=M
- *p* is the initial state probabilities.
- > A is the state transition probabilities, denoted by a_{st} for each s, t in Q.

> For each s, t in Q the transition probability is: $a_{st} = P(x_i = t | x_{i-1} = s)$

 \succ E is a probability emission matrix, $e_{sk} \equiv P(v_k \text{ at time } t \mid q_t = s)$

Output: Only emitted symbols are observable by the system but not the underlying random walk between states -> "hidden"

Property: Emissions and transitions are dependent on the current state only and not on the past.

Slide credit: Serafim Batzoglou

The six algorithmic settings for HMMs One path All paths

ß	1. Scoring x, one path	2. Scoring x, all paths		
Scoring	P(x,π)	$P(x) = \sum_{\pi} P(x,\pi)$		
Sc	Prob of a path, emissions	Prob of emissions, over all paths		
G	3. Viterbi decoding	4. Posterior decoding		
din	$\pi^* = \operatorname{argmax}_{\pi} P(x,\pi)$	$π^{*} = {π_i π_i = argmax_k Σ_π P(π_i = k x)}$		
Decoding	Most likely path	Path containing the most likely state at any time point.		
6 u	5. Supervised learning, given π $\Lambda^* = \operatorname{argmax}_{\Lambda} P(x,\pi \Lambda)$	6. Unsupervised learning		
earning	6. Unsupervised learning. $\Lambda^* = \operatorname{argmax}_{\Lambda} \operatorname{max}_{\pi} P(x, \pi \Lambda)$	$\Lambda^* = \operatorname{argmax}_{\Lambda} \Sigma_{\pi} P(x, \pi \Lambda)$		
Le	Viterbi training, best path	Baum-Welch training, over all paths		

Examples of HMMs

The dishonest casino The dishonest genome ... and many more

Example: The Dishonest Casino

A casino has two dice:

• Fair die

P(1) = P(2) = P(3) = P(5) = P(6) = 1/6

Loaded die
P(1) = P(2) = P(3) = P(4) = P(5) = 1/10

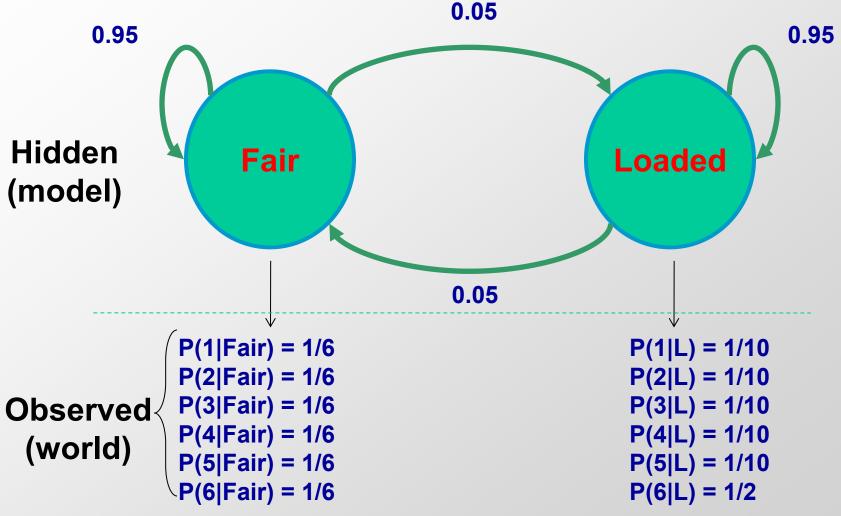
P(6) = 1/2

Casino player switches between fair and loaded die on average once every 20 turns

Game:

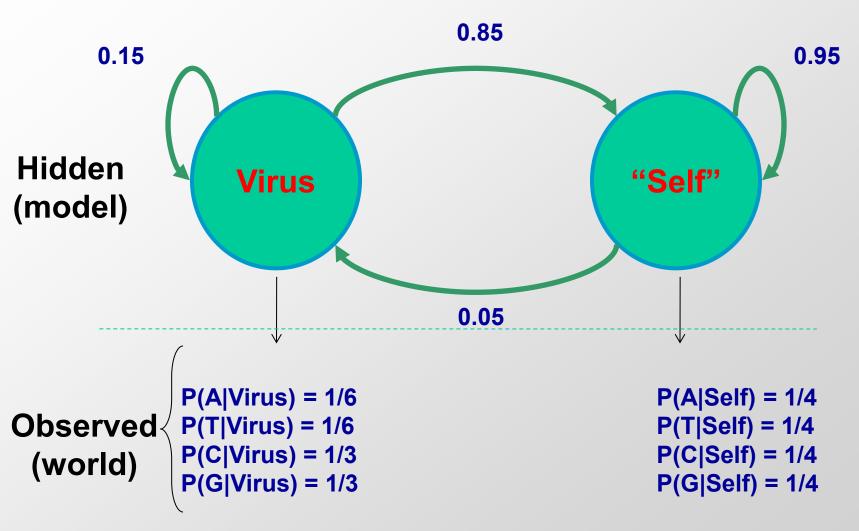
- 1. You bet \$1
- 2. You roll (always with a fair die)
- 3. Casino player rolls (maybe with fair die, maybe with loaded die)
- 4. Highest number wins \$2

The dishonest casino model



Slide credit: Serafim Batzoglou

The dishonest genome model

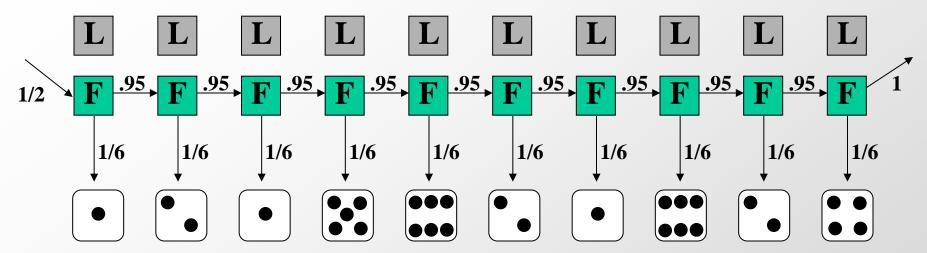


Slide credit: Serafim Batzoglou

Examples of HMMs for genome annotation

Application	Detection of GC-rich regions	Detection of conserved regions	Detection of protein- coding exons	Detection of protein- coding conservatio n	Detection of protein- coding gene structures	Detection of chromatin states
Topology / Transitions	2 states, different nucleotide composition	2 states, different conservation levels	2 states, different tri- nucleotide composition	2 states, different evolutionary signatures	~20 states, different composition/ conservation , specific structure	40 states, different chromatin mark combination s
Hidden States / Annotation	GC-rich / AT- rich	Conserved / non- conserved	Coding exon / non-coding (intron or intergenic)	Coding exon / non-coding (intron or intergenic)	First/last/mid dle coding exon,UTRs, intron1/2/3, intergenic, *(+/- strand)	Enhancer / promoter / transcribed / repressed / repetitive
Emissions / Observatio ns	Nucleotides	Level of conservation	Triplets of nucleotides	Nucleotide triplets, conservation levels	Codons, nucleotides, splice sites, start/stop codons	Vector of chromatin mark frequencies

Running the model: Probability of a sequence



What is the joint probability of observing x and a specific path π :

 π = Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair and rolls

x = 1 , 2, 1, 5, 6, 2, 1, 6, 2, 4 Joined probability $P(x,\pi)=P(x|\pi)P(\pi)=P(emissions|path)*P(path)$

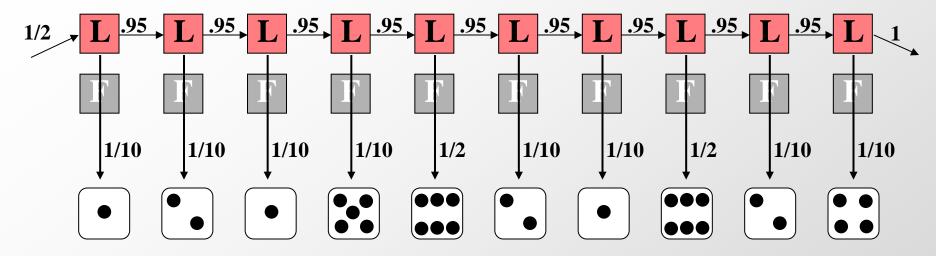
emission transition emission transition emission $p = \frac{1}{2} \times P(1 | Fair) P(Fair_{i+1} | Fair_i) P(2 | Fair) P(Fair | Fair) \dots P(4 | Fair)$ $= \frac{1}{2} \times (1/6)^{10} \times (0.95)^{9}$

$$= 5.2 \times 10^{-9}$$

Slide credit: Serafim Batzoglou

Why is p so small?

Running the model: Probability of a sequence



What is the likelihood of

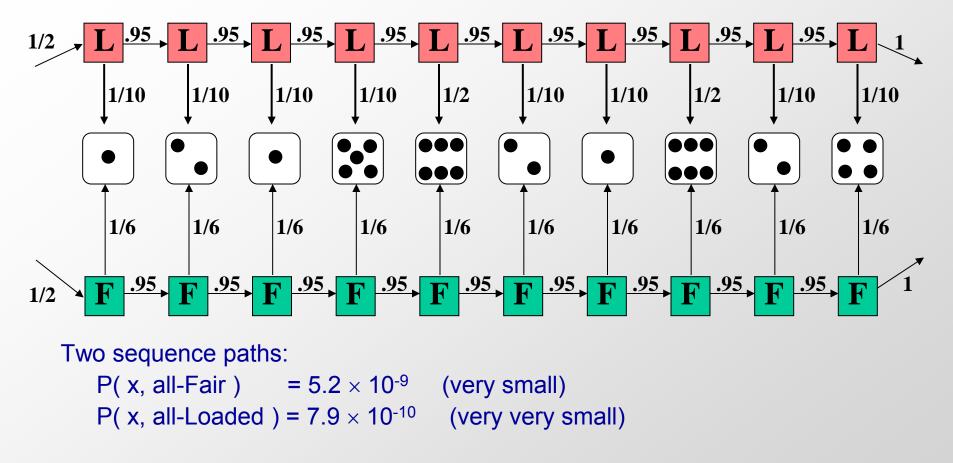
 π = Load, and rolls

x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4

emissiontransitionemissiontransitionemission $p = \frac{1}{2} \times P(1 \mid Load) P(Load_{i+1} \mid Load_i) P(2 \mid Load) P(Load|Load) ... P(4 \mid Fair)$ $= \frac{1}{2} \times (1/10)^8 \times (1/2)^2 (0.95)^9$ Compare the two!

Slide credit: Serafim Batzoglou

Comparing the two paths

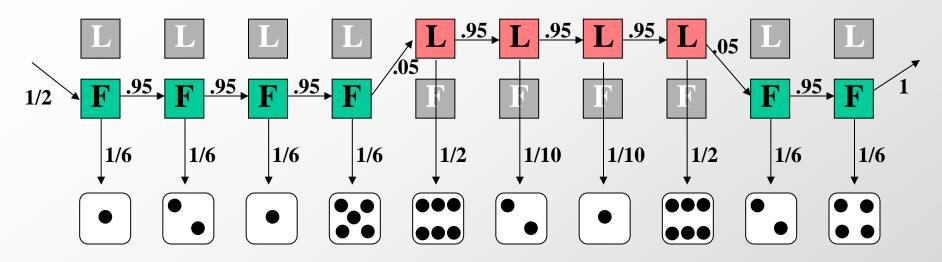


Likelihood ratio:

P(x, all-Fair) is 6.59 times more likely than P(x, all-Loaded)

It is 6.59 times more likely that the die is fair all the way, than loaded all the way.

What about partial runs and die switching



What is the likelihood of

 π = Fair, Fair, Fair, Fair, Load, Load, Load, Load, Fair, Fair and rolls

Much less likely, due to high cost of transitions

Model comparison

Let the sequence of rolls be: x = 1, 6, 6, 5, 6, 2, 6, 6, 3, 6

Now, what is the likelihood π = F, F, ..., F? $\frac{1}{2} \times (1/6)^{10} \times (0.95)^9 = 0.5 \times 10^{-9}$, same as before

What is the likelihood π = L, L, ..., L? $\frac{1}{2} \times (1/10)^4 \times (1/2)^6 (0.95)^9 = 0.5 \times 10^{-7}$

So, it is 100 times more likely the die is loaded

Model evaluation

	The six algorithm One path	ic settings for HMMs All paths		
6	1. Scoring x, one path	2. Scoring x, all paths		
Scoring	P(x,π)	$P(x) = \sum_{\pi} P(x,\pi)$		
Sc	Prob of a path, emissions	Prob of emissions, over all paths		
Decoding	3. Viterbi decoding	4. Posterior decoding		
	$\pi^* = \operatorname{argmax}_{\pi} P(x,\pi)$	$π^{*} = {π_i π_i = argmax_k Σ_π P(π_i = k x)}$		
	Most likely path	Path containing the most likely state at any time point.		
bи	5. Supervised learning, given π	6. Unsupervised learning		
arni	$\Lambda^* = \operatorname{argmax}_{\Lambda} P(x, \pi \Lambda)$ 6. Unsupervised learning. $\Lambda^* = \operatorname{argmax}_{\Lambda} \operatorname{max}_{\pi} P(x, \pi \Lambda)$	$\Lambda^* = \operatorname{argmax}_{\Lambda} \Sigma_{\pi} P(x, \pi \Lambda)$		
Lea	Viterbi training, best path	Baum-Welch training, over all paths		

3. DECODING: What was the sequence of hidden states?

- Given: Model parameters $e_i(.)$, a_{ij}
- Given: Sequence of emissions x
- Find: Sequence of hidden states π

Finding the optimal path

- We can now evaluate any path through hidden states, given the emitted sequences
- How do we find the best path?
- Optimal substructure! Best path through a given state is:
 - Best path to previous state
 - Best transition from previous state to this state
 - Best path to the end state

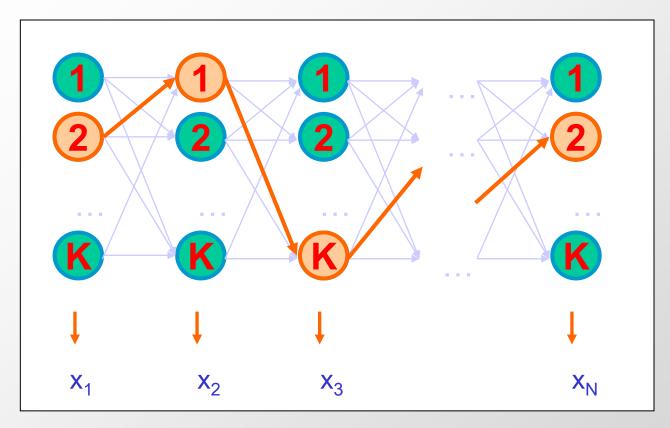
➔ Viterbi algortithm

- Define $V_k(i)$ = Probability of the most likely path through state π_i =k
- Compute $V_k(i+1)$ as a function of $\max_{k'} \{ V_{k'}(i) \}$
- $V_k(i+1) = e_k(x_{i+1}) * max_j a_{jk} V_j(i)$

➔ Dynamic Programming

Photograph of Andrew J. Viterbi removed due to copyright restrictions.

Finding the most likely path

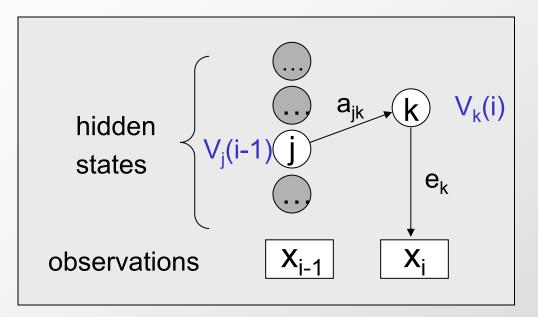


• Find path π^* that maximizes total joint probability P[x, π]

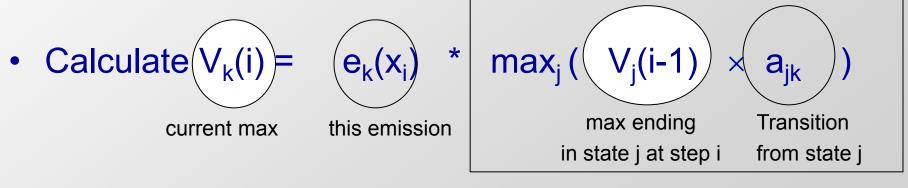
•
$$P(x,\pi) = a_{0\pi_1} * \prod_i e_{\pi_i}(x_i) \times a_{\pi_i\pi_{i+1}}$$

start emission transition

Calculate maximum $P(x,\pi)$ recursively

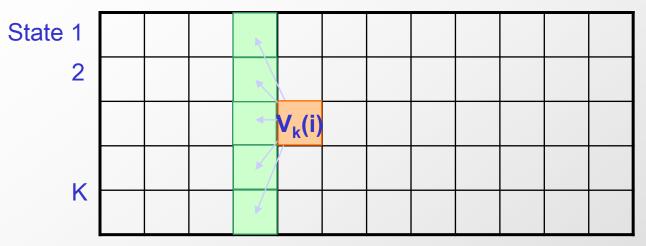


Assume we know V_i for the previous time step (i-1)



all possible previous states j

The Viterbi Algorithm



 $\mathbf{x}_1 \quad \mathbf{x}_2 \quad \mathbf{x}_3 \quad \dots \quad \mathbf{x}_N$

Input: x = x1....xN

Initialization:

 $V_0(0)=1$, $V_k(0)=0$, for all k > 0

Iteration:

 $V_k(i) = e_K(x_i) \times \max_j a_{jk} V_j(i-1)$

Termination:

 $\mathsf{P}(\mathsf{x},\,\pi^*)=\max_{\mathsf{k}}\mathsf{V}_{\mathsf{k}}(\mathsf{N})$

Slide credit: Serafim Batzoglou

Traceback:

Follow max pointers back

Similar to aligning states to seq

In practice:

Use log scores for computation

Running time and space:

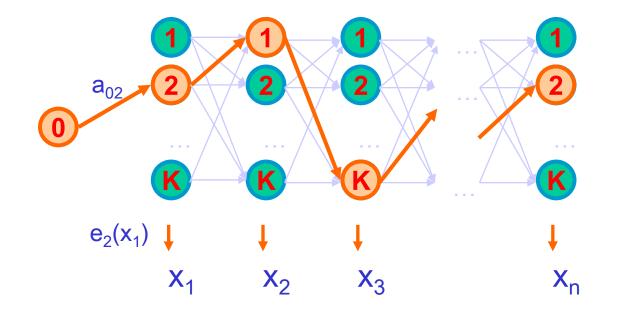
Time: O(K²N) Space: O(KN)

	The six algorithm One path	ic settings for HMMs All paths		
6	1. Scoring x, one path	2. Scoring x, all paths		
Scoring	P(x,π)	$P(x) = \sum_{\pi} P(x,\pi)$		
Sc	Prob of a path, emissions	Prob of emissions, over all paths		
Decoding	3. Viterbi decoding	4. Posterior decoding		
	$\pi^* = \operatorname{argmax}_{\pi} P(x,\pi)$	$π^{*} = {π_i π_i = argmax_k Σ_π P(π_i = k x)}$		
	Most likely path	Path containing the most likely state at any time point.		
bи	5. Supervised learning, given π	6. Unsupervised learning		
arni	$\Lambda^* = \operatorname{argmax}_{\Lambda} P(x, \pi \Lambda)$ 6. Unsupervised learning. $\Lambda^* = \operatorname{argmax}_{\Lambda} \operatorname{max}_{\pi} P(x, \pi \Lambda)$	$\Lambda^* = \operatorname{argmax}_{\Lambda} \Sigma_{\pi} P(x, \pi \Lambda)$		
Lea	Viterbi training, best path	Baum-Welch training, over all paths		

2. EVALUATION (how well does our model capture the world)

- Given: Model parameters e_i(.), a_{ii}
- Given: Sequence of emissions x
- Find: P(x|M), summed over all possible paths π

Simple: Given the model, generate some sequence x

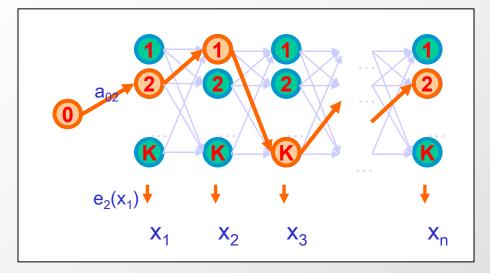


Given a HMM, we can generate a sequence of length n as follows:

- 1. Start at state π_1 according to prob $a_{0\pi 1}$
- 2. Emit letter x_1 according to prob $e_{\pi 1}(x_1)$
- 3. Go to state π_2 according to prob $a_{\pi 1 \pi 2}$
- 4. ... until emitting x_n

We have some sequence x that can be emitted by p. Can calculate its likelihood. However, in general, many different paths may emit this same sequence x. How do we find the <u>total probability</u> of generating a given x, over any path?

Complex: Given x, was it generated by the model?



Given a sequence x,

What is the probability that x was generated by the model (using any path)?

$$- P(x) = \sum_{\pi} P(x,\pi) = \sum_{\pi} P(x|\pi) P(\pi)$$

- (weighted average of conditional probability, summed over all paths, weighted by each path's probability)
- Challenge: exponential number of paths

Calculate probability of emission over all paths

- Each path has associated probability
 - Some paths are likely, others unlikely: sum them all up
 - → Return total probability that emissions are observed, summed over all paths
 - Viterbi path is the most likely one
 - How much 'probability mass' does it contain?
- (cheap) alternative:
 - Calculate probability over maximum (Viterbi) path π^*
 - Good approximation if Viterbi has highest density
 - BUT: incorrect
- (real) solution
 - Calculate the exact sum iteratively
 - $P(x) = \sum_{\pi} P(x,\pi)$
 - Can use dynamic programming

The Forward Algorithm – derivation

Define the forward probability:

 $f_{I}(i) = P(x_{1}...x_{i}, \pi_{i} = I)$

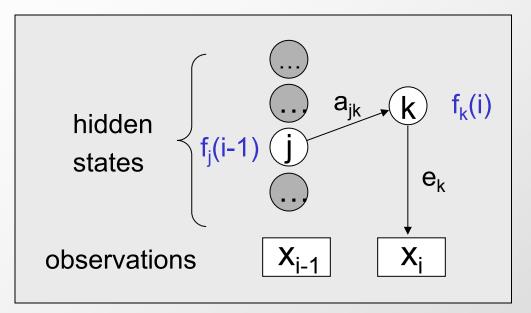
=
$$\Sigma_{\pi_1...\pi_{i-1}} P(\mathbf{x}_1...\mathbf{x}_{i-1}, \pi_1, ..., \pi_{i-2}, \pi_{i-1}, \pi_i = I) e_I(\mathbf{x}_i)$$

=
$$\Sigma_{k} \sum_{\pi_{1}...\pi_{i-2}} P(x_{1}...x_{i-1}, \pi_{1},..., \pi_{i-2}, \pi_{i-1}=k) a_{kl} e_{l}(x_{1})$$

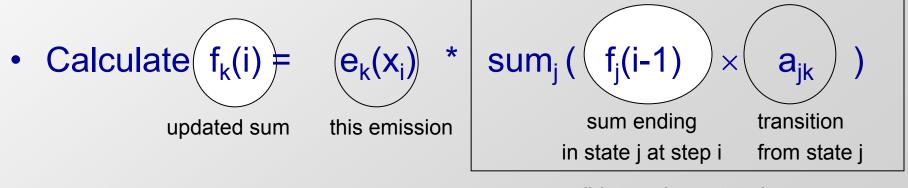
$$= \Sigma_k \mathbf{f}_k(\mathbf{i-1}) \mathbf{a}_{kl} \mathbf{e}_l(\mathbf{x}_i)$$

$$= \mathbf{e}_{\mathbf{i}}(\mathbf{x}_{\mathbf{i}}) \Sigma_{\mathbf{k}} \mathbf{f}_{\mathbf{k}}(\mathbf{i-1}) \mathbf{a}_{\mathbf{k}}$$

Calculate total probability $\Sigma_{\pi} P(x,\pi)$ recursively

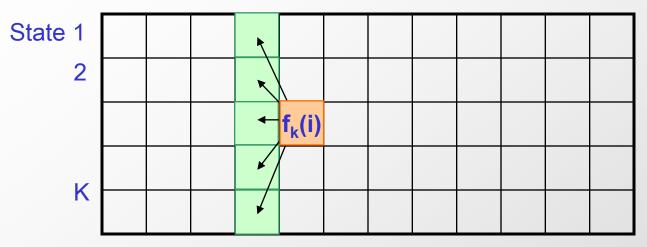


Assume we know f_i for the previous time step (i-1)



every possible previous state j

The Forward Algorithm



 $\mathbf{x}_1 \quad \mathbf{x}_2 \quad \mathbf{x}_3 \quad \dots \quad \mathbf{x}_N$

Input: x = x1.....xN

Initialization:

 $f_0(0)=1$, $f_k(0)=0$, for all k > 0

Iteration:

 $f_k(i) = e_K(x_i) \times sum_j a_{jk} f_j(i-1)$

Termination:

 $\mathsf{P}(\mathsf{x},\,\pi^*) = \operatorname{sum}_{\mathsf{k}}\mathsf{f}_{\mathsf{k}}(\mathsf{N})$

Slide credit: Serafim Batzoglou

In practice:

Sum of log scores is difficult

- \rightarrow approximate exp(1+p+q)
- \rightarrow scaling of probabilities

Running time and space:

Time: O(K²N) Space: O(KN)

	The six algorithm One path	ic settings for HMMs All paths		
Scoring	1. Scoring x, one path	2. Scoring x, all paths		
	P(x,π)	$P(x) = \sum_{\pi} P(x,\pi)$		
Sc	Prob of a path, emissions	Prob of emissions, over all paths		
Decoding	3. Viterbi decoding	4. Posterior decoding		
	$\pi^* = \operatorname{argmax}_{\pi} P(x,\pi)$	$π^{*} = {π_i π_i = argmax_k Σ_π P(π_i = k x)}$		
	Most likely path	Path containing the most likely state at any time point.		
bu	5. Supervised learning, given π $\Lambda^* = \operatorname{argmax}_{\Lambda} P(x,\pi \Lambda)$	6. Unsupervised learning		
arni	6. Unsupervised learning. $\Lambda^* = \operatorname{argmax}_{\Lambda} \operatorname{max}_{\pi} P(x, \pi \Lambda)$	$\Lambda^* = \operatorname{argmax}_{\Lambda} \Sigma_{\pi} P(x, \pi \Lambda)$		
Lea	Viterbi training, best path	Baum-Welch training, over all paths		

Examples of HMMs for genome annotation

Application	Detection of GC-rich regions	Detection of conserved regions	Detection of protein- coding exons	Detection of protein- coding conservatio n	Detection of protein- coding gene structures	Detection of chromatin states
Topology / Transitions	2 states, different nucleotide composition	2 states, different conservation levels	2 states, different tri- nucleotide composition	2 states, different evolutionary signatures	~20 states, different composition/ conservation , specific structure	40 states, different chromatin mark combination s
Hidden States / Annotation	GC-rich / AT- rich	Conserved / non- conserved	Coding exon / non-coding (intron or intergenic)	Coding exon / non-coding (intron or intergenic)	First/last/mid dle coding exon,UTRs, intron1/2/3, intergenic, *(+/- strand)	Enhancer / promoter / transcribed / repressed / repetitive
Emissions / Observatio ns	Nucleotides	Level of conservation	Triplets of nucleotides	64x64 matrix of codon substitution frequencies	Codons, nucleotides, splice sites, start/stop codons	Vector of chromatin mark frequencies

What have we learned ?

- Modeling sequential data
 - Recognize a type of sequence, genomic, oral, verbal, visual, etc...
- Definitions
 - Markov Chains
 - Hidden Markov Models (HMMs)
- Examples of HMMs
 - Recognizing GC-rich regions, preferentially-conserved elements, coding exons, protein-coding gene structures, chromatin states
- Our first computations
 - Running the model: know model \rightarrow generate sequence of a 'type'
 - Evaluation: know model, emissions, states \rightarrow p?
 - Viterbi: know model, emissions \rightarrow find optimal path
 - Forward: know model, emissions \rightarrow total p over all paths
- Next time:
 - Posterior decoding
 - Supervised learning
 - Unsupervised learning: Baum-Welch, Viterbi training

6.047 / 6.878 / HST.507 Computational Biology Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.