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6.055 / Art of approximation 30 

Now finish propagating toward the root. The available energy is 

Eavail ∝ m. 

So an animal with three times the mass of another animal can store roughly three times the 
energy in its muscles, according to this simple model. 

Now compare the available and required energies to find how the jump height as a function 
of mass. The available energy is 

Eavail ∝ m 

and the required energy is 

Erequired ∝ mh.


Equate these energies, which is an application of conservation of energy. Then mh ∝ m or


h ∝ m0
. 

In other words, all animals jump to the same height. 

The result, that all animals jump to the same height, seems
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surprising. Our intuition tells us that people should be able

to jump higher than locusts. The graph shows jump heights

for animals of various sizes and shapes [source: Scaling: Why

Animal Size is So Important [4, p. 178]. Here is the data:


Animal Mass (g) Height (cm)

Flea 5 10−4 20
· 

Click beetle 4 10−2 30· 

Locust 3 59

Human 7 104 60
· 

The height varies almost not at all when compared to variation in mass, so our result is 
roughly correct! The mass varies more than eight orders of magnitude (a factor of 108), yet 
the jump height varies only by a factor of 3. The predicted scaling of constant h (h ∝ 1) is 
surprisingly accurate. 

5.3.2 Power limits 

Power production might also limit the jump height. In the preceding analysis, energy is 
the limiting reagent: The jump height is determined by the energy that an animal can store 
in its muscles. However, even if the animal can store enough energy to reach that height, 
the muscles might not be able to deliver the energy rapidly enough. This section presents 
a simple model for the limit due to limited power generation. 

Once again we’d like to find out how power P scales (varies) with the size l Power is energy 
per time, so the power required to jump to a height h is 
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31 5 Proportional reasoning 

energy required to jump to height h 
.P ∼ 

time over which the energy is delivered

The energy required is E ∼ mgh. The mass is m ∝ l3. The gravitational acceleration is inde­
pendent of l. And, in the energy-limited model, the height h is independent of l. Therefore 
E ∝ l3. 

The delivery time is how long the animal is in contact with the ground, because only during 
contact can the ground exert a force on the animal. So, the animal crouches, extends up­
ward, and finally leaves the ground. The contact time is the time during which the animal 
extends upward. Time is length over speed, so 

extension distance 
tdelivery ∼ 

extension speed 
. 

The extension distance is roughly the animal’s size l. The extension speed is roughly the 
takeoff velocity. In the energy-limited model, the takeoff velocity is the same for all animals: 

vtakeoff ∝ h1/2 
∝ l0 . 

So 

tdelivery ∝ l. 

The power required is P ∝ l3/l = l2. 

That proportionality is for the power itself, but a more interesting scaling is for the specific 
power: the power per mass. It is 

m
P 
∝ 

l
l

2

3 = l−1 . 

Ah, smaller animals need a higher specific power! 

A model for power limits is that all muscle can generate the same maximum power den­
sity (has the same maximum specific power). So a small-enough animal cannot jump to 
its energy-limited height. The animal can store enough energy in its muscles, but cannot 
release it quickly enough. 

More precisely, it cannot do so unless it finds an alternative method for releasing the energy. 
The click beetle, which is toward the small end in the preceding graph and data set, uses 
the following solution. It stores energy in its shell by bending the shell, and maintains the 
bending like a ratchet would (holding a structure motionless does require energy). This 
storage can happen slowly enough to avoid the specific-power limit, but when the beetle 
releases the shell and the shell snaps back to its resting position, the energy is released 
quickly enough for the beetle to rise to its energy-limited height. 

But that height is less than the height for locusts and humans. Indeed, the largest deviations 
from the constant-height result happen at the low-mass end, for fleas and click beetles. To 
explain that discrepancy, the model needs to take into account another physical effect: drag. 


