
MIT OpenCourseWare
http://ocw.mit.edu

6.055J / 2.038J The Art of Approximation in Science and Engineering
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

13 13

13 13
2008-01-14 22:31:34 / rev 55add9943bf1

of a bill. To find the density, use what you know: Money is paper. Paper is wood or
fabric, except for many complex processing stages whose analysis is far beyond the scope
of this book. When a process, here papermaking, looks formidable, forget about it and hope
that you’ll be okay anyway. More important is to get an estimate; correct the egregiously
inaccurate assumptions later (if ever). How dense is wood? Wood barely floats, so its
density is roughly that of water, which is ρ ∼ 1 g cm−3. So the density of a $100 bill is
roughly 1 g cm−3.

2 Assorted subproblems 13

value/mass for $100

value mass

density volume

length width thickness

sheets in a ream ream thickness

The ream (500 sheets) is roughly 5 cm thick. The only missing leaf value is the density

volume of a bill is roughly

V ∼ 6 cm × 15 cm × 10−2 cm ∼ 1 cm3 .

So the mass is

m ∼ 1 cm3
× 1 g cm−3

∼ 1 g.

How simple! Therefore the value per mass of a $100 bill is $100/g. To choose between the
bills and gold, compare that value to the value per mass of gold. Unfortunately our figure
for gold is in dollars per ounce rather than per gram. Fortunately one ounce is roughly 27 g
so $800/oz is roughly $30/g. Moral: Take the $100 bills but leave the $20 bills.

2.5 Random walks

Here is a tree including all the leaf values:

value/mass for $100

value
$100

mass

density
1 g cm−3

volume

length
6 cm

width
15 cm

thickness

sheets in a ream
500

ream thickness
5 cm

Now propagate the leaf values upward. The thickness of a bill is roughly 10−2 cm, so the

14 14

14 14
2008-01-14 22:31:34 / rev 55add9943bf1

6.055 / Art of approximation 14

The estimates in Section 2.1 and Section 2.3 are surprisingly accurate. The true pit spacing
in a CDROM varies from 1 µm to 3 µm, according to the so-called Red Book where Philips
and Sony give the specification of the CDROM; our estimate of 1 µm is not too bad. The
true value for the oil imports is only 10% different from our estimate.

Equally important, the estimates are more accurate after doing divide-and-conquer reason­
ing. My 95% probability interval for oil imports, if I had to guess a value without subdivid­
ing the problem, is say from 106 b/yr to 1012 b/yr. In other words, if someone had claimed
that the value is 10 million barrels per year, it would have seemed low, but I wouldn’t have
bet too much against it. After doing the divide-and-conquer estimate, I’d have been sur­
prised if the true answer were more than a factor of 10 smaller or larger than the estimate.

This section presents a model for guessing in order to explain how divide-and-conquer
reasoning can make estimates more accurate. The idea is that when we guess a value far
outside our intuitive experience – for example, micron-sized distances or gigabarrels – the
error in the exponent will be proportional to the exponent. For example, when guessing a
quantity like 109 in one gulp, I really mean: ‘It could be, say, 106 on the low side or, say,
1012 on the high side.’ And when guessing a quantity like 1030 (the mass of the sun in
kilograms), I would like to hedge my bets with a region like 1020 to 1040. So, in this model
any quantity 10β is really shorthand for

10β 10β−β/3 . . . 10β+β/3 .→

Now further simplify the model: Replace the range of values by its endpoints. So, if we try
to guess a quantity whose true value is 10β, we are equally likely to guess 102β/3 or 104β/3.
A more realistic model would include 10β as a likely possibility, but the simplest model is
easy to simulate and to reason with (that justification is a fancy way to say that I am lazy).

To see the consequences of the model, I’ll compare subdividing and not subdividing by
using a numerical example. Suppose that we want to guess a quantity whose true value is
1012. Without subdividing, we might guess 108 or 1016 (adding or subtracting one-third of
the exponent), a wide range.

Compare that range to the range when we subdivide the estimate into 16 equal factors.
Each factor is 1012/16 = 103/4. When guessing each factor, the model says that we would
guess 101/2 or 101 each with p = 0.5. Here is an example of choosing 16 such factors ran­
domly from 101/2 and 101 and multiplying them:

100.5 100.5 101 100.5 101 101 100.5 101 100.5 100.5 100.5 100.5 100.5 100.5 101 100.5 = 1010.5
· · · · · · · · · · · · · · ·

Here are three other randomly generated examples:

101 100.5 101 101 101 101 100.5 101 100.5 101 101 100.5 100.5 101 101 100.5 = 1013.0
· · · · · · · · · · · · · · ·

101 101 100.5 100.5 101 101 100.5 100.5 100.5 100.5 101 101 101 100.5 100.5 100.5 = 1011.5
· · · · · · · · · · · · · · ·

100.5 100.5 100.5 100.5 100.5 101 100.5 100.5 101 101 101 100.5 100.5 100.5 101 100.5 = 1010.5
· · · · · · · · · · · · · · ·

These estimates are mostly within one factor of 10 from the true answer of 1012, whereas
the one-shot estimate might be off by four factors of 10. What has happened is that the

15 15

15 15
2008-01-14 22:31:34 / rev 55add9943bf1

2 Assorted subproblems	 15

errors in the individual pieces are unlikely to point in the same direction. Some pieces will
be underestimates, some will be overestimates, and the product of all the pieces is likely to
be close to the true value.

This numerical example is our first experience with the random walk. Their crucial feature
is that the expected wanderings are significantly smaller than if one walks in a straight line
without switching back and forth. How much smaller is a question that we will answer in
Chapter 8 when we introduce special-cases reasoning.

2.6 The Unix philosophy

Organizing complexity by breaking it into manageable parts is not limited to numerical
estimation; it is a general design principle. It pervades the Unix and its offspring operating
systems such as GNU/Linux and FreeBSD. This section discusses a few examples.

2.6.1 Building blocks and pipelines

Here are a few of Unix’s building-blocks programs:

head: prints the first n lines from the input; for example, head -15 prints the first 15 •

lines.

tail: prints the last n lines from the input; for example, tail -15 prints the last 15 •

lines.

How can you use these building blocks to print the 23rd line of a file? Divide and conquer!
One solution is to break the problem into two parts: printing the first 23 lines and, from
those lines, printing the last line. The first subproblem is solved with head -23. The
second subproblem is solved with tail -1.

To combine solutions, Unix provides the pipe operator. Denoted by the vertical bar |, it
connects the output of one program to the input of another command. In the numerical
estimation problems, we combined the solutions to the subproblems by using multiplica­
tion. The pipe operator is analogous to multiplication. Both multiplication in numerical
estimation, and pipes in programming, are examples of composition operators, which are
essential to a divide-and-conquer solution.

To print the 23rd line, use this combination:

head -23 | tail -1

To tell the system where to get the input, there are alternatives:

1.	 Use the preceding combination as is. Then the input comes from the keyboard, and the
combination will read 23 typed lines, print out the final line from those 23 lines, and
then will exit.

2.	 Tell head to get its input from a file. An example file is the dictionary. On my GNU/Linux
laptop it is the file /usr/share/dict/words, with one word per line. To print the 23rd
line (i.e. the 23rd word):

