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of a bill. To find the density, use what you know: Money is paper. Paper is wood or 
fabric, except for many complex processing stages whose analysis is far beyond the scope 
of this book. When a process, here papermaking, looks formidable, forget about it and hope 
that you’ll be okay anyway. More important is to get an estimate; correct the egregiously 
inaccurate assumptions later (if ever). How dense is wood? Wood barely floats, so its 
density is roughly that of water, which is ρ ∼ 1 g cm−3. So the density of a $100 bill is 
roughly 1 g cm−3. 
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value/mass for $100

value mass

density volume

length width thickness

sheets in a ream ream thickness

The ream (500 sheets) is roughly 5 cm thick. The only missing leaf value is the density 

volume of a bill is roughly 

V ∼ 6 cm × 15 cm × 10−2 cm ∼ 1 cm3 . 

So the mass is 

m ∼ 1 cm3 
× 1 g cm−3 

∼ 1 g. 

How simple! Therefore the value per mass of a $100 bill is $100/g. To choose between the 
bills and gold, compare that value to the value per mass of gold. Unfortunately our figure 
for gold is in dollars per ounce rather than per gram. Fortunately one ounce is roughly 27 g 
so $800/oz is roughly $30/g. Moral: Take the $100 bills but leave the $20 bills. 

2.5 Random walks 

Here is a tree including all the leaf values: 

value/mass for $100

value
$100

mass

density
1 g cm−3

volume

length
6 cm

width
15 cm

thickness

sheets in a ream
500

ream thickness
5 cm

Now propagate the leaf values upward. The thickness of a bill is roughly 10−2 cm, so the 
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The estimates in Section 2.1 and Section 2.3 are surprisingly accurate. The true pit spacing 
in a CDROM varies from 1 µm to 3 µm, according to the so-called Red Book where Philips 
and Sony give the specification of the CDROM; our estimate of 1 µm is not too bad. The 
true value for the oil imports is only 10% different from our estimate. 

Equally important, the estimates are more accurate after doing divide-and-conquer reason­
ing. My 95% probability interval for oil imports, if I had to guess a value without subdivid­
ing the problem, is say from 106 b/yr to 1012 b/yr. In other words, if someone had claimed 
that the value is 10 million barrels per year, it would have seemed low, but I wouldn’t have 
bet too much against it. After doing the divide-and-conquer estimate, I’d have been sur­
prised if the true answer were more than a factor of 10 smaller or larger than the estimate. 

This section presents a model for guessing in order to explain how divide-and-conquer 
reasoning can make estimates more accurate. The idea is that when we guess a value far 
outside our intuitive experience – for example, micron-sized distances or gigabarrels – the 
error in the exponent will be proportional to the exponent. For example, when guessing a 
quantity like 109 in one gulp, I really mean: ‘It could be, say, 106 on the low side or, say, 
1012 on the high side.’ And when guessing a quantity like 1030 (the mass of the sun in 
kilograms), I would like to hedge my bets with a region like 1020 to 1040. So, in this model 
any quantity 10β is really shorthand for 

10β 10β−β/3 . . . 10β+β/3 .→ 

Now further simplify the model: Replace the range of values by its endpoints. So, if we try 
to guess a quantity whose true value is 10β, we are equally likely to guess 102β/3 or 104β/3. 
A more realistic model would include 10β as a likely possibility, but the simplest model is 
easy to simulate and to reason with (that justification is a fancy way to say that I am lazy). 

To see the consequences of the model, I’ll compare subdividing and not subdividing by 
using a numerical example. Suppose that we want to guess a quantity whose true value is 
1012. Without subdividing, we might guess 108 or 1016 (adding or subtracting one-third of 
the exponent), a wide range. 

Compare that range to the range when we subdivide the estimate into 16 equal factors. 
Each factor is 1012/16 = 103/4. When guessing each factor, the model says that we would 
guess 101/2 or 101 each with p = 0.5. Here is an example of choosing 16 such factors ran­
domly from 101/2 and 101 and multiplying them: 

100.5 100.5 101 100.5 101 101 100.5 101 100.5 100.5 100.5 100.5 100.5 100.5 101 100.5 = 1010.5 
· · · · · · · · · · · · · · · 

Here are three other randomly generated examples: 

101 100.5 101 101 101 101 100.5 101 100.5 101 101 100.5 100.5 101 101 100.5 = 1013.0 
· · · · · · · · · · · · · · · 

101 101 100.5 100.5 101 101 100.5 100.5 100.5 100.5 101 101 101 100.5 100.5 100.5 = 1011.5 
· · · · · · · · · · · · · · · 

100.5 100.5 100.5 100.5 100.5 101 100.5 100.5 101 101 101 100.5 100.5 100.5 101 100.5 = 1010.5 
· · · · · · · · · · · · · · · 

These estimates are mostly within one factor of 10 from the true answer of 1012, whereas 
the one-shot estimate might be off by four factors of 10. What has happened is that the 
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errors in the individual pieces are unlikely to point in the same direction. Some pieces will 
be underestimates, some will be overestimates, and the product of all the pieces is likely to 
be close to the true value. 

This numerical example is our first experience with the random walk. Their crucial feature 
is that the expected wanderings are significantly smaller than if one walks in a straight line 
without switching back and forth. How much smaller is a question that we will answer in 
Chapter 8 when we introduce special-cases reasoning. 

2.6 The Unix philosophy 

Organizing complexity by breaking it into manageable parts is not limited to numerical 
estimation; it is a general design principle. It pervades the Unix and its offspring operating 
systems such as GNU/Linux and FreeBSD. This section discusses a few examples. 

2.6.1 Building blocks and pipelines 

Here are a few of Unix’s building-blocks programs: 

head: prints the first n lines from the input; for example, head -15 prints the first 15 • 

lines. 

tail: prints the last n lines from the input; for example, tail -15 prints the last 15 • 

lines. 

How can you use these building blocks to print the 23rd line of a file? Divide and conquer! 
One solution is to break the problem into two parts: printing the first 23 lines and, from 
those lines, printing the last line. The first subproblem is solved with head -23. The 
second subproblem is solved with tail -1. 

To combine solutions, Unix provides the pipe operator. Denoted by the vertical bar |, it 
connects the output of one program to the input of another command. In the numerical 
estimation problems, we combined the solutions to the subproblems by using multiplica­
tion. The pipe operator is analogous to multiplication. Both multiplication in numerical 
estimation, and pipes in programming, are examples of composition operators, which are 
essential to a divide-and-conquer solution. 

To print the 23rd line, use this combination: 

head -23 | tail -1 

To tell the system where to get the input, there are alternatives: 

1.	 Use the preceding combination as is. Then the input comes from the keyboard, and the 
combination will read 23 typed lines, print out the final line from those 23 lines, and 
then will exit. 

2.	 Tell head to get its input from a file. An example file is the dictionary. On my GNU/Linux 
laptop it is the file /usr/share/dict/words, with one word per line. To print the 23rd 
line (i.e. the 23rd word): 


