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5.4 Drag 

This section section contains a proportional-reasoning analysis of drag – using a home ex­
periment – and then applies the results to jumping fleas. 

5.4.1 Home experiment using falling cones 

Here is a home experiment for understanding drag. Photocopy this page and cut out these 
templates, then tape the edges together to make a cone: 
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If you drop the small cone and the big cone, which falls faster? In particular, what is the 
ratio of their fall times tbig/tsmall? The large cone, having a large area, feels more drag 
than the small cone does. On the other hand, the large cone has a higher driving force (its 
weight) than the small cone has. To decide whether the extra weight or the extra drag wins 
requires finding how drag depends on the parameters of the situation. 

However, finding the drag force is a very complicated calculation. The full calculation 
requires solving the Navier–Stokes equations: 

(v·O)v + 
∂
∂
v 
t 
= −
ρ 
1 
Op + νO2v. 

And the difficulty does not end with this set of second-order, coupled, nonlinear partial-
differential equations. The full description of the situation includes a fourth equation, the 
continuity equation: 

O v = 0.·
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33 5 Proportional reasoning 

One imposes boundary conditions, which include the motion of the object and the require­
ment that no fluid enters the object – and solves for the pressure p and the velocity gradient 
at the surface of the object. Integrating the pressure force and the shear force gives the drag 
force. 

In short, solving the equations analytically is difficult. I could spend hundreds of pages 
describing the mathematics to solve them. Even then, solutions are known only in a few 
circumstances, for example a sphere or a cylinder moving slowly in a viscous fluid or a 
sphere moving at any speed in an zero-viscosity fluid. But an inviscid fluid – what Feyn­
man calls ‘dry water’ – is particularly irrelevant to real life since viscosity is the reason 
for drag, so an inviscid solution predicts zero drag! Proportional reasoning, supplemented 
with judicious lying, is a simple and quick alternative. 

The proportional-reasoning analysis imagines an object of cross-sectional area A moving 

kinetic energy to the fluid, which viscosity eventually removes from the fluid. The kinetic 
energy is mass times velocity squared. The mass disturbed is ρAd, where ρ is the fluid 
density (here, the air density). The velocity imparted to the fluid is roughly the velocity of 
the disturbance, which is v. So the kinetic energy imparted to the fluid is ρAv2d, making 
the drag force 

F ∼ ρAv2 . 

through a fluid at speed v for a distance d: 

A volume ∼ Ad

distance ∼ d

The drag force is the energy consumed per distance. The energy is consumed by imparting 

cones reach terminal velocity quickly – a result discussed later in the book in Part 3 – so 
the relevant quantity in finding the fall time is the terminal velocity. From the drag-force 
formula, the terminal velocity is 

The analysis has a divide-and-conquer tree: 

force ∼ E/d
ρAv2

energy imparted, ∼ mv2

ρAv2d

mass disturbed
ρAd

density
ρ

volume
Ad

velocity imparted
∼ v

distance d

The result that Fdrag ∼ ρv2A is enough to predict the result of the cone experiment. The 
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Fdrag 
.v ∼ 

ρA 

Since the air density ρ is the same for the large and small cone, the relation simplifies to 

Fdrag 
.v ∝ 

A 

The cross-sectional areas are easy to measure with a ruler, and the ratio between the small-
and large-cone terminal velocities is even easier. The experiment is set up to make the drag 
force easy to measure: Since the cones fall at their respective terminal velocities, the drag 
force equals the weight. So 

W 
.v ∝ 

A

Each cone’s weight is proportional to its cross-sectional area, because they are geometri­
cally similar and made out of the same piece of paper. With W ∝ A, the terminal velocity 
becomes 

A 
v ∝ 

A 
= A0 . 

In other words, the terminal velocity is independent of A, so the small and large cones 
should fall at the same speed. To test this prediction, I stood on a handy table and dropped 
the two cones. The fall lasted about two seconds, and they landed within 0.1 s of one an­
other! 

5.4.2 Effect of drag on fleas jumping 

The drag force 

F ∼ ρAv2 

affects the jumps of small animals more than it affects the jumps of people. A comparison 
of the energy required for the jump with the energy consumed by drag explains why. 

The energy that the animal requires to jump to a height h is mgh, if we use the gravitational 
potential energy at the top of the jump; or it is ∼ mv2, if we use the kinetic energy at takeoff. 
The energy consumed by drag is 

Edrag ∼ ρv2A ×h. 

Fdrag 

The ratio of these energies measures the importance of drag. The ratio is 

Edrag ρv2Ah ρAh 
= .

Erequired 
∼ 

mv2 m 


