

Lecture 4: Advanced Methods

6.057
Introduction to programming in MATLAB

Orhan Celiker

IAP 2019

1

Note about functions in files

• Whenever possible, write your functions in their own files

➢ e.g. myfun should be in a file by itself, and the file should
be called myfun.m*

➢ If you include more than one function per file, only the
first function is accessible in other scripts

➢ More info here:
https://www.mathworks.com/help/matlab/matlab_prog/c
reate-functions-in-files.html

* If filename and function name differs, MATLAB recognizes your
function by its filename**, not the function name

** yes, this is very confusing :(

2

https://www.mathworks.com/help/matlab/matlab_prog/create-functions-in-files.html

Outline

(1) Probability and Statistics
(2) Data Structures
(3) Images
(4) File I/O

3

Statistics

• Whenever analyzing data, you have to compute statistics
» scores = 100*rand(1,100); % random data

• Built-in functions
➢ mean, median, mode

• To group data into a histogram
» hist(scores,5:10:95);
➢ makes a histogram with bins centered at 5, 15, 25…95

» hist(scores,20);
➢ makes a histogram with 20 bins

» N=histc(scores,0:10:100);
➢ returns the number of occurrences between the specified

bin edges 0 to <10, 10 to <20…90 to <100. you can plot
these manually:

» bar(0:10:100,N,'r')
4

Random Numbers

• Many probabilistic processes rely on random numbers

• MATLAB contains the common distributions built in
» rand
➢ draws from the uniform distribution from 0 to 1

» randn
➢ draws from the standard normal distribution (Gaussian)

» random
➢ can give random numbers from many more distributions
➢ see help random

• You can also seed the random number generators
» rand('state',0); rand(1); rand(1);
rand('state',0); rand(1); % same random number

5

Changing Mean and Variance

• We can alter the given distributions
» y=rand(1,100)*10+5;
➢ gives 100 uniformly distributed numbers between 5 and 15

» y=floor(rand(1,100)*10+6);
➢ gives 100 uniformly distributed integers between 6 and 15.

floor or ceil is better to use here than round
➢ you can also use randi([6,15],1,100)

» y=randn(1,1000)
» y2=y*5+8
➢ increases std to 5 and makes the mean 8➢ increases

6

Exercise: Probability

• We will simulate Brownian motion in 1 dimension. Call the script
‘brwn’

• Make a 10,001 element vector of zeros
• Write a loop to keep track of the particle’s position at each time
• Assume middle of the vector is position 0. To get the new

position, pick a random number, and if it’s <0.5, go left; if it’s
>0.5, go right. Keep count of how many times each position is
visited.

• Plot a 50 bin histogram of the positions.

7

Outline

(1) Probability and Statistics
(2) Data Structures
(3) Images
(4) File I/O

8

Advanced Data Structures

• We have used 2D matrices
➢ Can have n-dimensions (e.g., RGB images)
➢ Every element must be the same type (ex. integers,

doubles, characters…)
➢ Matrices are space-efficient and convenient for calculation
➢ Large matrices with many zeros can be made sparse

– More on this later this lecture

• Sometimes, more complex data structures are more
appropriate

➢ Cell array: it's like an array, but elements don't have to be
the same type

➢ Structs: can bundle variable names and values into one
structure

– Like object oriented programming in MATLAB

9

Cells: organization

• A cell is just like a matrix, but each field can contain
anything (even other matrices):

3x3 Matrix 3x3 Cell Array

1.2 -3 5.5

-2.4 15 -10

7.8 -1.1 4

32

27 1

18

J o h n

M a r y

L e o

2
4

[]

3x3 Matrix

1.2 -3 5.5

-2.4 15 -10

7.8 -1.1 4

3x3 Cell Array

32

27 1

18

J oJ o h n

M aM a r y

L eL e o

2
4

[]

• One cell can contain people's names, ages, and the ages of
their children

• To do the same with matrices, you would need 3 variables
and padding 10

Cells: initialization

• To initialize a cell, specify the size
» a=cell(3,10);
➢ a will be a cell with 3 rows and 10 columns

• or do it manually, with curly braces {}
» c={'hello world',[1 5 6 2],rand(3,2)};
➢ c is a cell with 1 row and 3 columns

• Each element of a cell can be anything

• To access a cell element, use curly braces {}
» a{1,1}=[1 3 4 -10];
» a{2,1}='hello world 2';
» a{1,2}=c{3};

11

Exercise: Cells

• Write a script called sentGen
• Make a 2x3 cell, and put three names into the first row,

and adjectives into the second row
• Pick two random integers (values 1 to 3)
• Display a sentence of the form '[name] is [adjective].'
• Run the script a few times

12

Structs

• Structs allow you to name and bundle relevant variables
➢ Like C-structs, which are containers with fields

• To initialize an empty struct:
» s=struct;

➢ size(s) will be 1x1
➢ initialization is optional but is recommended when using large

structs

• To add fields
» s.name = ‘Leo';
» s.age = 18;
» s.childAge = [];

➢ Fields can be anything: matrix, cell, even struct
➢ Useful for keeping variables together

• For more information, see help struct
13

Struct Arrays

• To initialize a struct array, give field, values pairs
» ppl=struct('name',{'John','Mary','Leo'},...
'age',{32,27,18},'childAge',{[2;4],1,[]});
➢ size(ppl)=1x3
➢ every cell must have the same size

» person=ppl(2);
➢ person is now a struct with fields name, age, children
➢ the values of the fields are the second index into each cell

» ppl(3)=s;
➢ adds struct (fields must match)

» person.name
➢ returns 'Mary'

» ppl(1).age
➢ returns 32

ppl ppl(1) ppl(2) ppl(3)

name:

age:
'John' 'Mary' 'Leo'

32 27 18
childAge: [2;4] 1 []

'John'

32
[2;4]

'Mary'

27
1

'Leo'

18
[]

ppl(1) ppl(2) ppl(3)ppl(1) ppl(2) ppl(3)ppl(1) ppl(2) ppl(3)

Structs: Access

• To access 1x1 struct fields, give name of the field
» stu=s.name;
» a=s.age;
➢ 1x1 structs are useful when passing many variables to a

function. Put them all in a struct, and pass the struct

• To access nx1 struct arrays, use indices
» person=ppl(2);
➢ person is a struct with name, age, and child age

» personName=ppl(2).name;
➢ personName is 'Mary'

» a=[ppl.age];
➢ a is a 1x3 vector of the ages; this may not always work,

the vectors must be able to be concatenated

15

Exercise: Structs

• Modify the script sentGen
• Create a struct array with a field “name” and a field “adj”

containing the values from the previous cell array
• Do not create it from scratch! Use the previously defined

cell array!
• Modify the display command to use the struct array
• Run the script a few times

16

Outline

(1) Probability and Statistics
(2) Data Structures
(3) Images
(4) File I/O

17

Handles

• Manipulate graphics objects using ‘handles’
» L=plot(1:10,rand(1,10));
➢ gets the handle for the plotted line

» A=gca;
➢ gets the handle for the current axis

» F=gcf;
➢ gets the handle for the current figure

• To see the current property values, use get
» get(L);
» yVals=get(L,'YData');

• To change the properties, use set
» set(A,'FontName','Arial','XScale','log');
» set(L,'LineWidth',1.5,'Marker','*');

• Everything you see in a figure is completely customizable
through handles 18

Reading/Writing Images

• Images can be imported as a matrix of pixel values
» im=imread('myPic.jpg');
» imshow(im);

• Matlab supports almost all image formats
➢ jpeg, tiff, gif, bmp, png, …
➢ see help imread for details (e.g., pixel format and types)

• To write an image, give:
➢ rgb matrix (0 to 1 doubles, or 0 to 255 uint8)

» imwrite(rand(300,300,3),'t1.jpg');
➢ indices and colormap

» imwrite(ceil(rand(200)*256),jet(256),'t2.jpg');
➢ see help imwrite for more options

19

MATLAB's built-in images

AT3_1m4_01.tif
AT3_1m4_03.tif
AT3_1m4_05.tif
AT3_1m4_07.tif
AT3_1m4_09.tif

autumn.tif
blobs.png

cameraman.tif
cell.tif

circles.png
coins.png

 concordorthophoto.png
fabric.png
forest.tif
glass.png

hestain.png
liftingbody.png

m83.tif
moon.tif

office_1.jpg
office_3.jpg
office_5.jpg

onion.png
pears.png

pillsetc.png
rice.png

shadow.tif
spine.tif

testpat1.png
tire.tif
trees.tif

westconcordorthophoto.png

AT3_1m4_02.tif
AT3_1m4_04.tif
AT3_1m4_06.tif
AT3_1m4_08.tif
AT3_1m4_10.tif

bag.png
board.tif
canoe.tif
circbw.tif
circuit.tif

concordaerial.png
eight.tif

football.jpg
gantrycrane.png

greens.jpg
kids.tif
logo.tif
mandi.tif
mri.tif

office_2.jpg
office_4.jpg
office_6.jpg
paper1.tif
peppers.png

pout.tif
saturn.png

snowflakes.png
tape.png
text.png

tissue.png
westconcordaerial.png

Load these like you'd load
anything else in your
current directory:

>> load(cameraman.tif');

20

Outline

(1) Probability and Statistics
(2) Data Structures
(3) Images
(4) File I/O

21

Importing Data

• Matlab is a great environment for processing data. If you
have a text file with some data:

• To import data from files on your hard drive, use
importdata
» a=importdata('textFile.txt');
➢ a is a struct with data, textdata, and colheaders fields

» x=a.data;
» names=a.colheaders;

22

Importing Data

• With importdata, you can also specify delimiters. For
example, for comma separated values, use:
» a=importdata('filename', ',');
➢ The second argument tells matlab that the tokens of

interest are separated by commas

• importdata is very robust, but sometimes it can have
trouble. To read files with more control, use fscanf (similar
to C/Java), textscan. See help for information on how to
use these functions

23

Writing Excel Files

• Matlab contains specific functions for reading and writing
Microsoft Excel files

• To write a matrix to an Excel file, use xlswrite
» xlswrite('randomNumbers',rand(10));
» xlswrite('randomNumbers',rand(10),...
'Sheet1','C11:L20');
➢ Sheet name and range optional

• You can also write a cell array if you have mixed data:
» C={'hello','goodbye';10,-2;-3,4};
» xlswrite('randomNumbers',C,'mixedData');

• See help xlswrite for more usage options
24

Reading Excel Files

• Reading excel files is equally easy

• To read from an Excel file, use xlsread
» [num,txt,raw]=xlsread('randomNumbers.xls');
➢ Reads the first sheet
➢ num contains numbers, txt contains strings,

raw is the entire cell array containing everything
» [num,txt,raw]=xlsread('randomNumbers.xls',...
'mixedData');
➢ Reads the mixedData sheet

» [num,txt,raw]=xlsread('randomNumbers.xls',-1);
➢ Opens the file in an Excel window and lets you click on the

data you want!

• See help xlsread for even more fancy options
25

Reading ANY File

• You can read any file as binary data

• To read from a file, use fopen
» fid = fopen(‘fileName’, ‘r’);
➢ Returns a handle to a file

» data = fread(fid, 10);
➢ Reads the next 10 bytes from the file and stores them in

data
» fseek(fid, 5, 0);
➢ Moves forward 5 bytes from the current position

• See help fopen/fread/fwrite/ftell/fseek for even more
fancy options

26

Lecture 5

• Not mandatory – but highly recommended!

• More cool stuff Matlab has to offer

• Some things we can cover:
• Animations
• Build a GUI for your projects!
• Use cool toolboxes
• Interact with hardware (scopes, analyzers, Arduino,

Raspberry PI, Lego Mindstorm…)
• Use Simulink to graphically build complex systems and

simulate
• Do image processing
• Plus… No Homework assignment!

27

Don’t Forget….

• Comment your code!

• help and Google are your best friends –
use them!

• Vectorize whenever possible

• Matlab is powerful but it is not a substitute
for your own insights

28

End of Lecture 4

(1) Probability and Statistics
(2) Data Structures
(3) Images
(4) File I/O

THE END (ALMOST)

29

MIT OpenCourseWare
https://ocw.mit.edu

6.057 Introduction to MATLAB
IAP 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

