6.057
Introduction to programming in MATLAB

Lecture 4: Advanced Methods

Orhan Celiker

IAP 2019

Note about functions in files

e Whenever possible, write your functions in their own files

> e.g. myfun should be in a file by itself, and the file should
be called myfun.m*

> If you include more than one function per file, only the
first function is accessible in other scripts

> More info here:

https://www.mathworks.com/help/matlab/matlab prog/c
reate-functions-in-files.html

* If filename and function name differs, MATLAB recognizes your
function by its filename**, not the function name

** yes, this is very confusing :(

https://www.mathworks.com/help/matlab/matlab_prog/create-functions-in-files.html

(1) Probability and Statistics

e Whenever analyzing data, you have to compute statistics
» scores = 100*rand(1,100); % random data

e Built-in functions
> mean, median, mode

e To group data into a histogram
» hist(scores,5:10:95) ;
> makes a histogram with bins centered at 5, 15, 25...95
» hist (scores, 20) ;
> makes a histogram with 20 bins
» N=histc(scores,0:10:100) ;

> returns the number of occurrences between the specified
bin edges 0 to <10, 10 to <20...90 to <100. you can plot
these manually:

» bar(0:10:100,N, 'r")

e Many probabilistic processes rely on random numbers

e MATLAB contains the common distributions built in

» rand
> draws from the uniform distribution from 0 to 1

» randn
> draws from the standard normal distribution (Gaussian)

» random
> can give random numbers from many more distributions
> see help random

e You can also seed the random number generators

» rand('state',0); rand(l);, rand(1l);
rand('state',0); rand(l); % same random number

5

Changing Mean and Variance

e We can alter the given distributions
» y=rand(1,100)*10+5;
> gives 100 uniformly distributed numbers between 5 and 15
» y=floor (rand(1,100)*10+6) ;

> gives 100 uniformly distributed integers between 6 and 15.
floor or ceil is better to use here than round

> Yyou can also use randi ([6,15],1,100)

» y=randn(1,1000)
» y2=y*5+8

o 8 Bl8 8 ¥ 8 oy 8

> increases std to 5 and makes the mean 8

g e

s
8

Vg/e will simulate Brownian motion in 1 dimension. Call the script
‘brwn’

Make a 10,001 element vector of zeros

Write a loop to keep track of the particle’s position at each time

Assume middle of the vector is position 0. To get the new
position, pick a random number, and if it's <0.5, go left; if it's
>O.5,dgo right. Keep count of how many times each position is
visited.

Plot a 50 bin histogram of the positions.

(2) Data Structures

e We have used 2D matrices
> Can have n-dimensions (e.g., RGB images)

> Every element must be the same type (ex. integers,
doubles, characters...)

> Matrices are space-efficient and convenient for calculation
> Large matrices with many zeros can be made sparse
— More on this later this lecture

e Sometimes, more complex data structures are more
appropriate
: it's like an array, but elements don't have to be
the same type

: can bundle variable names and values into one
structure

— Like object oriented programming in MATLAB

9

e A cell is just like a matrix, but each field can contain
anything (even other matrices):

3x3 Cell Array

3x3 Matrix
Jlo |h|n :
1.2 [-3 |s5.5 E // 4
7.8 |-1.1|4 |18 —
T
Lie|o

e One cell can contain people's names, ages, and the ages of
their children

e To do the same with matrices, you would need 3 variables
and padding o

To initialize a cell, specify the size
» a=cell (3,10) ;
> a will be a cell with 3 rows and 10 columns

or do it manually, with curly braces {}

» c={'hello world',[1 5 6 2],rand(3,2)};
> cis a cell with 1 row and 3 columns

Each element of a cell can be anything
To access a cell element, use curly braces {}
» a{l,1}=[1 3 4 -10];

» a{2,1}="hello world 2';
» a{l,2}=c{3};

1"

Write a script called sentGen

Make a 2x3 cell, and put three names into the first row,
and adjectives into the second row

Pick two random integers (values 1 to 3)
Display a sentence of the form '[name] is [adjective].’
Run the script a few times

12

Structs allow you to name and bundle relevant variables
> Like C-structs, which are containers with fields

To initialize an empty struct:

» s=struct;
> size(s) will be 1x1

> initialization is optional but is recommended when using large
structs

To add fields

» s.name = ‘Leo’';
» s.age = 18;

» s.childAge = [];

> Fields can be anything: matrix, cell, even struct
> Useful for keeping variables together

For more information, see helpmstruct

To initialize a struct array, give field, values pairs
» ppl=struct('name',{'John', 'Mary',6 'Leo'}, ...
'age',{32,27,18}, 'childAge',{[2,;4]1,1,[1})
> size(ppl)=1x3
> every cell must have the same size
» person=ppl (2);
> person is now a struct with fields name, age, children
> the values of the fields are the second index into each cell

» ppl(3)=s;
> adds struct (fields must match)

» person.name ppl ppI(1) ppI(2) ppI(3)
> returns 'Mary’

» ppl(l) .age

> returns 32 name:—— |'John’

age:——» 32

childAge:—— | [2;4]

e To access 1x1 struct fields, give name of the field
» stu=s.name;
» a=s.age;

> 1x1 structs are useful when passing many variables to a
function. Put them all in a struct, and pass the struct

e To access nx1 struct arrays, use indices
» person=ppl (2) ;
> person is a struct with name, age, and child age
» personName=ppl (2) .name;
> personName is 'Mary'

» a=[ppl.age];
> a is a 1x3 vector of the ages; this may not always work,
the vectors must be able to be concatenated

15

Modify the script sentGen

Create a struct array with a field "name” and a field “adj”
containing the values from the previous cell array

Do not create it from scratch! Use the previously defined
cell array!

Modify the display command to use the struct array
Run the script a few times

16

(3) Images

Manipulate graphics objects using ‘handles’
» L=plot(1:10,rand(1,10)) ;
> gets the handle for the plotted line
» A=gca;
> gets the handle for the current axis
» F=gcf;
> gets the handle for the current figure
To see the current property values, use get
» get (L)
» yVals=get (L, 'YData') ;
To change the properties, use set
» set (A, 'FontName',6 'Arial', 'XScale',b 'log');
» set (L, 'LineWidth',1.5, '"Marker','*"');

Everything you see in a figure is completely customizable
through handles "

Reading/Writing Images

e Images can be imported as a matrix of pixel values
» im=imread('myPic.jpg');
» imshow (im) ;

e Matlab supports almost all image formats
> jpeg, tiff, gif, bmp, png, ...
> see help imread for details (e.g., pixel format and types)

e To write an image, give:
> rgb matrix (0 to 1 doubles, or 0 to 255 uint8)
» imwrite (rand(300,300,3),'tl.jpg"');
> indices and colormap
» imwrite (ceil (rand(200)*256) ,jet(256),'t2.9pg’');
> see help imwrite for more options

19

AT3 1m4 O01.
AT3 1m4 03.
AT3 1m4 05.
AT3 1m4 07.
AT3 1m4 09.

autumn.
.png
cameraman.

cell.
.png
.png
.png
.png
forest.
.png
.png
.png
m83.
.tif
office 1.
office 3.
office 5.

blobs

circles

coins
concordorthophoto
fabric

glass
hestain

liftingbody

moon

onion
pears
pillsetc
rice

testpatl

westconcordorthophoto

tif
tif
tif
tif
tif
tif

tif
tif

tif

tif
jpg
jpg
jpg

-png
-png
-png
-png
shadow.

spine.
.png

tire.
trees.

-png

tif
tif
tif
tif

AT3 1m4 02.
AT3 1m4 04.
AT3 1m4 06.
AT3 1m4 08.
AT3 1m4 10.
.png
board.
canoe.
circbw.
circuit.
.png
eight.
football.

bag

concordaerial

gantrycrane

mri

peppers

pout.
-png
-png
-png
-png
-png
-png

saturn

snowflakes

tape

text

tissue
westconcordaerial

tif
tif
tif
tif
tif

tif
tif
tif
tif

tif
jpg

.png
greens.

kids.

logo.
mandi.
Ltif
office 2.
office 4.
office_6.

paperl.
.png

jpg
tif
tif
tif
jpg
jpg
jpg
tif

tif

20

Load these like you'd load
anything else 1n your
current directory:

>> load(cameraman.tif');

Outline

(4) FileI/O

e Matlab is a great environment for processing data. If you
have a text file with some data:
Jane Jjoe Jjimmy
10 11 12
5 4 2
56 4

e To import data from files on your hard drive, use
importdata
» a=importdata ('textFile.txt');
> a is a struct with data, textdata, and colheaders fields

a -
data: [3x3 double]
textdata: {'jane' 'joe! "Jirmeay' }
colheaders: {'jane' 'joe! "Jimay' }

» xX=a.data;
» names=a.colheaders;

22

With importdata, you can also specify delimiters. For
example, for comma separated values, use:
» a=importdata('filename', ',')
> The second argument tells matlab that the tokens of
interest are separated by commas

importdata is very robust, but sometimes it can have
trouble. To read files with more control, use £scanf (similar
to C/Java), textscan. See for information on how to
use these functions

23

Matlab contains specific functions for reading and writing
Microsoft Excel files

To write a matrix to an Excel file, use xlswrite
» xlswrite ('randomNumbers',rand(10)) ;

» xXlswrite ('randomNumbers',rand(10), ...
'Sheetl', 'C1l1:L20"');
> Sheet name and range optional

You can also write a cell array if you have mixed data:
» C={'hello', 'goodbye';10,-2;-3,4};
» xXlswrite ('randomNumbers',6C, 'mixedData’) ;

See help xIlswrite for more usage options

24

Reading Excel Files

e Reading excel files is equally easy

e To read from an Excel file, use xl1sread

» [num, txt,raw]=xlsread('randomNumbers.xls') ;
> Reads the first sheet
> num contains numbers, txt contains strings,

raw is the entire cell array containing everything

» [num, txt, raw]=xlsread('randomNumbers.xls', ...
'mixedData') ;
> Reads the mixedData sheet

» [num, txt,raw]=xlsread('randomNumbers.xls',6-1) ;

> Opens the file in an Excel window and lets you click on the
data you want!

e See help xlsread for even more fancy options

25

Reading ANY File

e You can read any file as binary data

e To read from a file, use fopen
» fid = fopen(‘'fileName’, ‘r’);

> Returns a handle to a file

» data = fread(fid, 10);

> Reads the next 10 bytes from the file and stores them in
data

» fseek (fid, 5, 0);
> Moves forward 5 bytes from the current position

e See help fopen/fread/fwrite/ftell/fseek for even more
fancy options

26

e Not mandatory — but highly recommended!

e More cool stuff Matlab has to offer

e Some things we can cover:
 Animations
« Build a GUI for your projects!
« Use cool toolboxes

« Interact with hardware (scopes, analyzers, Arduino,
Raspberry PI, Lego Mindstorm...)

« Use Simulink to graphically build complex systems and
simulate

Do image processing
* Plus... No Homework assignment!

27

Comment your code!

help and Google are your best friends -
use them!

Vectorize whenever possible

Matlab is powerful but it is not a substitute
for your own insights

End of Lecture 4

(1) Probability and Statistics
(2) Data Structures

(3) Images

(4) FileI/O

MIT OpenCourseWare
https://ocw.mit.edu

6.057 Introduction to MATLAB
IAP 2019

Forinformation about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

