6.057
Introduction to MATLAB

Lecture 3 : Solving Equations, Curve Fitting,
and Numerical Techniques

Orhan Celiker

IAP 2019

(1) Linear Algebra

Given a system of linear equations
> X+2y-3z=5
> -3X-y+z=-8
> X-y+z=0
Construct matrices so the system is described by Ax=b
» A=[1 2 -3;-3 -1 1;1 -1 17;
» b=[5;-8,;0];

MATLAB makes linear
algebra fun!

And solve with a single line of code!
» x=A\b;
> X is a 3x1 vector containing the values of x, y, and z

The \ will work with square or rectangular systems.

Gives least squares solution for rectangular systems. Solution
depends on whether the system is over or underdetermined.

Worked Example: Linear Algebra

e Solve the following systems of equations:

> System 1:
x+4y=34
—3x+y=2

> System 2:
2x-2y =4
—x+y=3
3x+4y=2

»

»

»

»

»

»

»

»

»

»

A=[1 4;-3 1];
b=[34;2];
rank (A)
x=inv (A) *b;
x=A\b;

A=[2 -2;-1 1;3 4];
b=[4;3;2];

rank (A)

> rectangular matrix

x=A\Db;

> gives least squares solution
error=abs (A*x1-b)

Given a matrix
» mat=[1 2 -3;-3 -1 1;1 -1 1];
Calculate the rank of a matrix
» r=rank (mat) ;
> the number of linearly independent rows or columns
Calculate the determinant
» d=det (mat) ;
> mat must be square; matrix invertible if det nonzero
Get the matrix inverse
» E=inv (mat) ;

> if an equation is of the form A*x=b with A a square matrix,
x=A\b Is (mostly) the same as x=inv(A)*b

Get the condition number
» c=cond (mat); (or its reciprocal: ¢ = rcond(mat) ;)

> if condition number is large, when solving A*x=b,
small errors in b can lead to large errors in x (optimal c==1)

e MATLAB has many built-in matrix decomposition methods

e The most common ones are
» [V,D]=eig(X)
> Eigenvalue decomposition
» [U,S,V]=svd (X)
> Singular value decomposition
» [Q,R]=gr (X)
> QR decomposition
» [L,U]=1lu (X)
> LU decomposition
» R=chol (X)
> Cholesky decomposition (R must be positive definite)

Exercise: Fitting Polynomials

e Find the best second-order polynomial that fits the points:
(_110)1 (01_1)1 (213)

a(=1)> +b(=1)+c=0
a(0)> +b(0)+c=—1
a(2)’ +b(2)+c=3

(2) Polynomials

Many functions can be well described by a high-order
polynomial

MATLAB represents a polynomials by a vector of coefficients
> if vector P describes a polynomial

ax3+bx?+cx+d
A
P(1) P(2) P(3) P(4)

P=[1 0 -2] represents the polynomial x?-2

P=[2 0 0 0] represents the polynomial 2x>

P is a vector of length N+1 describing an N-th order polynomial
To get the roots of a polynomial

» r=roots (P)
> ris a vector of length N

Can also get the polynomial from the roots
» P=poly(r)
> ris a vector length N

To evaluate a polynomial at a point
» yO=polyval (P,x0)
> X0 is a single value; y0 is a single value

To evaluate a polynomial at many points
» y=polyval (P, x)
> X is a vector; y is a vector of the same size
10

Polynomial Fitting

e MATLAB makes it very easy to fit polynomials to data

e Given data vectors X=[-1 0 2] and Y=[0 -1 3]
» p2=polyfit(X,Y,2);
> finds the best (least-squares sense) second-order
polynomial that fits the points (-1,0),(0,-1), and (2,3)
> see help polyfit for more information
plot(X,Y,’o’, ‘MarkerSize’, 10);
» hold on;
» x = -3:.01:3;
» plot(x,polyval (p2,x), ‘r--');

)

v

11

Exercise: Polynomial Fitting

Evaluate y = x* for x=-4:0.1:4.

Add random noise to these samples. Use randn. Plot the
noisy signal with . markers

Fit a 2"d degree polynomial to the noisy data

Plot the fitted polynomial on the same plot, using the same
X values and a red line

12

(3) Optimization

Nonlinear Root Finding

e Many real-world problems require us to solve f(x)=0
e (Can use fzero to calculate roots for any arbitrary function

e fzero needs a function passed to it.

e We will see this more and more as we delve into solving
equations.

e Make a separate function file
» x=fzero('myfun',1l)

» x=fzero (@myfun, 1) % C:\MATLAB6p5\work\myfun.m Q@@
- {e Edit View Text Debug Breakpoints Web Window Help
> 1 S_peCIﬂes a - CEBERo o |([S M F | BX|EEE R stack:f:
point close to where TS

YOU th|nk the I‘OOt |S 2|-| y=cos(exp({x))+x."2-1;

coinToss.m stats.m temp.m getScores.m huggyCode.m myfun.m
myfun Ln2 Col 21

14
MATLAB version 6.5. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

Minimizing a Function

fminbnd: minimizing a function over a bounded interval
» x=fminbnd('myfun',-1,2);
> myfun takes a scalar input and returns a scalar output
> myfun(x) will be the minimum of myfun for -1<x < 2

fminsearch: unconstrained interval
» x=fminsearch('myfun', .5)
> finds the local minimum of myfun starting at x=0.5

Maximize g(x) by minimizing f(x)=-g(x)

Solutions may be local!

15

e You do not have to make a separate function file
» x=fzero (@myfun,1)
> What if myfun is really simple?

e Instead, you can make an anonymous function
» x=fzero (@ (x) (cos(exp(x))+x.%2-1), 1);
input function to evaluate
» x=fminbnd (@ (x) (cos(exp(x))+x.%2-1),-1,2);
e Can also store the function handle

» func=Q@(x) (cos(exp(x))+x.%2-1);
» func(1:10) ;

16

If you are familiar with optimization methods, use the
optimization toolbox

Useful for larger, more structured optimization problems

Sample functions (see help for more info)
» linprog

> linear programming using interior point methods
» quadprog

> quadratic programming solver

» fmincon
> constrained nonlinear optimization

17

Exercise: Min-Finding

b

Find the minimum of the function f(X)=COS(4x)sin(10x)e"
over the range -1 to 1. Use £minbnd.

Plot the function on this range to check that this is the
minimum.

18

Digression: Numerical Issues

e Many techniques in this lecture use floating point numbers
e This is an approximation!

e Examples:
» sin(pi) = ?
» sin(2 * pi) = ?
» sin(10el6 * pi) = ?
> Both sin and pi are approximations!

» A = (10el3)*ones(10) + rand(10)

> A is nearly singular, poorly conditioned (see cond (2))

» inv(A)*A = ?

19

MATLAB knows no fear!

Give it a function, it optimizes / differentiates / integrates
> That's great! It's so powerful!

Numerical techniques are powerful but not magic

Beware of overtrusting the solution!
> You will get an answer, but it may not be what you want

Analytical forms may give more intuition
> Symbolic Math Toolbox

20

(4) Differentiation/Integration

Numerical Differentiation

MATLAB can 'differentiate' numericallysl

» x=0:0.01:2*pi;/u-6
» y=sin(x); il
» dydx=diff (y)./diff (x) ; '

> diff computes the first dlfm_

-0.4r

Can also operate on matrices il
» mat=[1 3 5;4 8 6], 0.8t 1
» dm=diff (mat,1,2) L o o B b

> first difference of mat along the 2" dlmensmn dm=[2 2;4 -2]
> The opposite of diff is the cumulative sum cumsum

2D gradient
» [dx,dy]l=gradient (mat) ;

Higher derivatives / complicated problems: Fit spline (see help)

22

e MATLAB contains common integration methods

e Adaptive Simpson's quadrature (input is a function)
» g=quad('myFun',0,10)
> q is the integral of the function myFun from O to 10
» g2=quad (@ (x) sin(x).*x,0,pi)
> (2 is the integral of sin (x) . *x from 0 to pi
e Trapezoidal rule (input is a vector)
» x=0:0.01:p1;
» z=trapz(x,sin(x))
> z is the integral of sin(x) from 0 to pi
» z2=trapz (x,sqrt(exp(x)) ./x)
> z2 is the integral of \/e_x/x from O to pi

23

(5) Differential Equations

ODE Solvers: Method

e Given a differential equation, the solution can be found by
integration:

>

> Evaluate the derivative at a point and approximate by straight line
> Errors accumulate!
> Variable timestep can decrease the number of iterations

25

e MATLAB contains implementations of common ODE solvers

e Using the correct ODE solver can save you lots of time and
give more accurate results
» ode23

> Low-order solver. Use when integrating over small intervals
or when accuracy is less important than speed

» oded5

> High order (Runge-Kutta) solver. High accuracy and
reasonable speed. Most commonly used.

» odelbs

> Stiff ODE solver (Gear's algorithm), use when the diff eq's
have time constants that vary by orders of magnitude

26

e To use standard options and variable time step
» [t,y]=0ded5('myODE"', [0,10],[1,0])

ODE integrator: \ Initial conditions

23,45, 15s . '
ODE function Tlme range

e Inputs:

> ODE function name (or anonymous function). This function
should take inputs (t,y), and returns dy/dt

> Time interval: 2-element vector with initial and final time

> Initial conditions: column vector with an initial condition for
each ODE. This is the first input to the ODE function

> Make sure all inputs are in the same (variable) order
e Qutputs:

> t contains the time points

> Yy contains the corresponding values of the variables

27

ODE Function

e The ODE function must return the value of the derivative at
a given time and function value

e Example: chemical reaction 10

> Two equations N

dA A B
T ——104+50B N~ —

dt 50

d—B=10A—SOB

dt

% C:\MATLAB6p5\work\chem.m

File Edit View Text Debug Breakpoints Web Window Help

> ODE file: D | sE2Ro> | S AF | BB ERERE Stadk: |
\ 1 % chem: chemical reaction ode function
-y has [A,B] 2 function dydt=chem(t, v)
- det has 3|-| dydt=zeros(2,1);
4-| dydt(1l)=-10*v(1)+50*v(2);

[dA/dt,dB/dt] 57| dydt(2)=10*y(1)-50*y(2);

28 < stats.m temp.m getScores.m buggyCode.m myfun.m chem.m
chem Lhs Col 25

MATLAB version 6.5. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

ODE Function: viewing results

e To solve and plot the ODEs on the previous slide:

» [t,y]=0ded45('chem', [0 0.5],[0 17)
> assumes that only chemical B exists initially

» plot(t,y(:,1),'k', 'LineWidth',1.5);
» hold on;

» plot(t,y(:,2),'r', 'LineWidth',1.5);
» legend('A','B');

» xlabel ('Time (s)');

» ylabel ('Amount of chemical (g)');

» title('Chem reaction');

29

ODE Function: viewing results

e The code on the previous slide produces this figure

1

0.9 [— B |-

08

0.7

0.6

0.5F

04F

0.3

0.2

0.1

0 L L 1 | | 1 | | |
0 005 01 015 02 025 03 035 04 045 05

30

31

Higher Order Equations

Must make into a system of first-order equations to use

ODE solvers
Nonlinear is OK!

* C:\MATLAB6p5\work\pendulum.m

=]}

File Edit View Text Debug Breakpoints Web Window Help
Pendulum example: D@ B0~ | & Af | 8| 50 EIRE | ey
1 % pendulum
§+£3fﬂ(ﬂ)=ﬂ 2 function dxdt = pendulum{t, x)
L 3l L= 1;
. g 4-| theta = x{1);
H=——3iﬂ(ﬂ) 5~ gamma = x{2);
L ///
let =y 7 / dtheta = gamma;
P 8 -9 dgamma = -(9.8/L)*sin{theta);
'=——3in(ﬂ) 9
L 10|-| dxdt = zeros(2,1);
H/ 11
¥ =) 12;' dxdt {1)=dtheta;
:p'/ /1’5"dxdt(2)=dgamma;
r /,///
dx
—_— = E ’/ < temp.m getScores.m huggyCode.m myfun.m chem.m pendulum.m
dt ?'/ ‘pendulum Ln13 cCaol5

MATLAB version 6.5. Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

www.mathworks.com/trademarks

Plotting the Output

e We can solve for the position and velocity of the pendulum:
» [t,x]=0ded5('pendulum', [0 10],[0.9*pi 0]) ;
> assume pendulum is almost horizontal

)

v

» hold on;
)

v

plot(t,x(:,1));

plot(t,x(:,2),'r");

» legend('Position', 'Velocity') ;

8

6+

Position in terms of al

angle (rad) —

i
32 0 1

Velocity (m/s)

Plotting the Output

e Or we can plotin
» plot(x(:,1),

the phase plane:
x(:,2));

» xlabel ('Position');

» yLabel ('Velocity') ;
e The phase plane is just a plot of one variable versus the

other:

8

6
4t
2k

0_

Velocity=0 when 4

theta is the greatest &

-8

7

ke i 1 L 1
-3 -2 -1 0 1 2 3

Velocity is greatest
when theta=0

e MATLAB's ODE solvers use a variable timestep
e Sometimes a fixed timestep is desirable

»

[t,y]=0de4d45('chem',[0:0.001:0.5],[0 1]);
> Specify timestep by giving a vector of (increasing) times
> The function value will be returned at the specified points

e You can customize the error tolerances using
» options=odeset('RelTol’',le-6, 'AbsTol',le-10) ;

»

[t,y]l]=0ded45('chem', [0 0.5],[0 1],options);

> This guarantees that the error at each step is less than
RelTol times the value at that step, and less than AbsTol

> Decreasing error tolerance can considerably slow the solver
> See for a list of options you can customize

34

Exercise: ODE

e Use ode45 to solve for y(t) on the range t=[0 10], with
initial condition y(0)=10 and dy/dt=—-ty/10
e Plot the result.

35

36

Use ode45 to solve for ¥(f) on the range t=[0 10], with
initial condition y(0)=10 and dy/dt=—ty/10
Plot the result.

Make the following function

» function dydt=odefun(t,y)

» dydt=-t*y/10;

Integrate the ODE function and plot the result
» [t,y]=0ded5 (‘odefun’, [0 10],10);

Alternatively, use an anonymous function
» [t,yl=oded5(@(t,y) —-t*y/10,[0 10],10);

Plot the result
» plot(t,y) ;xlabel('Time') ;ylabel('y(t)"');

Exercise: ODE

The integrated function looks like this:

Function y(t), integrated by oded5
T T T T

10

yit)
o

37

10

MIT OpenCourseWare
https://ocw.mit.edu

6.057 Introduction to MATLAB
IAP 2019

Forinformation about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

