
 
 
Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits 

 
 

So far we have explored time-independent (resistive) elements that are also linear.   
 
A time-independent elements is one for which we can plot an i/v curve.  The current is 
only a function of the voltage, it does not depend on the rate of change of the voltage.  
We will see latter that capacitors and inductors are not time-independent elements.  Time-
independent elements are often called resistive elements. 
 
Note that we often have a time dependent signal applied to time independent elements.  
This is fine, we only need to analyze the circuit characteristics at each instance in time.  
We will explore this further in a few classes from now. 
 
Linearity  
A function f  is linear if for any two inputs x1 and x2  
 

f x1 + x2( )= f x1( )+ f x2( ) 
 

Resistive circuits are linear.  That is if we take the set {xi} as the inputs to a circuit and 
f({xi}) as the response of the circuit, then the above linear relationship holds. The 
response may be for example the voltage at any node of the circuit or the current through 
any element. 
 
Let’s explore the following example. 
 

R

Vs1

Vs2

i

 
KVL for this circuit gives 
 
 1 2Vs Vs iR 0+ − =  (1.1) 
Or 

 1Vs Vsi 2
R
+

=  (1.2) 
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And as we see the response of the circuit depends linearly on the voltages  and .  
A useful way of viewing linearity is to consider suppressing sources.  A voltage source is 
suppressed by setting the voltage to zero: that is by short circuiting the voltage source.   

1Vs 2Vs

 
Consider again the simple circuit above.  We could view it as the linear superposition of 
two circuits, each of which has only one voltage source. 
 

R

Vs1
i1

 

R

i2

Vs2

 
 

  
The total current is the sum of the currents in each circuit. 
 

 

1 2
1

1 2

i i i
Vs Vs2
R R

Vs Vs
R

= +

= +

+
=

 (1.3) 

Which is the same result obtained by the application of KVL around of the original 
circuit. 
 
If the circuit we are interested in is linear, then we can use superposition to simplify the 
analysis.  For a linear circuit with multiple sources, suppress all but one source and 
analyze the circuit.  Repeat for all sources and add the results to find the total response 
for the full circuit. 
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Independent sources may be suppressed as follows: 
 
 
Voltage sources: 
 
 

Vs

+

-
v=Vs

suppress
+

-
v=0short

 
 
 
Current sources: 
 
 

i=Is suppressIs
i=0

open
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An example: 
 
Consider the following example of a linear circuit with two sources.  Let’s analyze the 
circuit using superposition. 
 
 

R1

Vs

R2

Is

i1 i2
+

-

 
 
First let’s suppress the current source and analyze the circuit with the voltage source 
acting alone. 
 

R1

Vs

R2

i1v i2v
+

-

 
 
 
So, based on just the voltage source the currents through the resistors are: 
 
 1i v 0=  (1.4) 

 2
2

Vsi v
R

=  (1.5) 

 
Next we calculate the contribution of the current source acting alone 
 

R1 R2

i1i i2i+ -

Is

v1

 
 
Notice that R2 is shorted out (there is no voltage across R2), and therefore there is no 
current through it.  The current through R1 is Is, and so the voltage drop across R1 is, 
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 1v IsR1=  (1.6) 
 
And so 
 
 1i Is=  (1.7) 

 2
2

Vsi
R

=  (1.8) 

How much current is going through the voltage source Vs? 
 
 
Another example: 
 
For the following circuit let’s calculate the node voltage v. 
 

R1

R2Vs Is

v

 
 
Nodal analysis gives: 
 

 0
1 2

Vs v vIs
R R
−

+ − =  (1.9) 

or 
 
 

 2 1 2
1 2 1 2
R R Rv Vs Is

R R R R
= +

+ +
 (1.10) 

 
We notice that the answer given by Eq. (1.10) is the sum of two terms: one due to the 
voltage and the other due to the current. 
 
Now we will solve the same problem using superposition 
 
The voltage v will have a contribution v1 from the voltage source Vs and a contribution 
v2 from the current source Is. 
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R1

R2Vs

v1

   

R1

R2 Is

v2

 
 

 21
1 2
Rv Vs

R R
=

+
 (1.11) 

And 

 1 22
1 2
R Rv Is

R R
=

+
 (1.12) 

 
Adding voltages v1 and v2 we obtain the result given by Eq. (1.10). 
 
More on the i-v characteristics of circuits. 
 
As discussed during the last lecture, the i-v characteristic curve is a very good way to 
represent a given circuit. 
 
A circuit may contain a large number of elements and in many cases knowing the i-v 
characteristics of the circuit is sufficient in order to understand its behavior and be able to 
interconnect it with other circuits. 
 
The following figure illustrates the general concept where a circuit is represented by the 
box as indicated. Our communication with the circuit is via the port A-B. This is a single 
port network regardless of its internal complexity. 
 

i
Vn

In
R3

R4 A

B

v
+

-

 
 
If we apply a voltage v across the terminals A-B as indicated we can in turn measure the 
resulting current i . If we do this for a number of different voltages and then plot them on 
the i-v space we obtain the i-v characteristic curve of the circuit. 
 
For a general linear network the i-v characteristic curve is a linear function  
 
 i m v b= +  (1.13) 
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Here are some examples of i-v characteristics 

R v
+

-

i

  

i

v

 
 
 
In general the i-v characteristic does not pass through the origin. This is shown by the 
next circuit for which the current i and the voltage v are related by 
 
 0iR Vs v+ − =  (1.14) 
or 

 v Vsi
R
−

=  (1.15) 

 

v
+

-

i

Vs
R

  

i

v

Vs

-Vs/R

 
 
 
Similarly, when a current source is connected in parallel with a resistor the i-v 
relationship is  

 vi Is
R

= − +  (1.16) 

R v
+

-

i

Is

  

i

vRIs-Is

open circuit
voltage

short circuit
current  
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Thevenin Equivalent Circuits. 
 
For linear systems the i-v curve is a straight line. In  order to define it we need to identify 
only two pints on it. Any two points would do, but perhaps the simplest are where the 
line crosses the i and v axes. 
 
These two points may be obtained by performing two simple measurements (or make two 
simple calculations). With these two measurements we are able to replace the complex 
network by a simple equivalent circuit. 
 
This circuit is known as the Thevenin Equivalent Circuit. 
 
Since we are dealing with linear circuits, application of the principle of superposition 
results in the following expression for the current i and voltage v relation. 
 
 0 j j

j j
i m v m V b I= + + j j∑ ∑  (1.17) 

Where jV  and jI  are voltage and current sources in the circuit under investigation and 
the coefficients jm  and jb  are functions of other circuit parameters such as resistances. 
 
And so for a general network we can write 
 
 i m v b= +  (1.18) 
Where 
 0m m=  (1.19) 
And 
 j j j

j j
b m V b= + jI∑ ∑  (1.20) 

 
Thevenin’s Theorem is stated as follows: 
 
A linear one port network can be replaced by an equivalent circuit consisting of a voltage 
source VTh in series with a resistor Rth. The voltage VTh is equal to the open circuit 
voltage across the terminals of the port and the resistance RTh is equal to the open circuit 
voltage VTh divided by the short circuit current Isc 
 
The procedure to calculate the Thevenin Equivalent Circuit is as follows: 
 

1. Calculate the equivalent resistance of the circuit (RTh) by setting all voltage and 
current sources to zero 

2. Calculate the open circuit voltage Voc also called the Thevenin voltage VTh 
 
 
 
 

6.071/22.071 Spring 2006. Chaniotakis and Cory 8 



The equivalent circuit is now 
 

 

i
Vn

In
R3

R4 A

B

v
+

-

 
Original circuit 

v
+

-

i

Voc

RTh A

B
 

Equivalent circuit 

 
If we short terminals A-B, the short circuit current Isc is 
 

 VThIsc
RTh

=  (1.21) 

Example: 
 
Find vo using Thevenin’s theorem 
 

6k Ω 

2k Ω 6k Ω 

1k Ω 12 V vo
+

-
 

 
 
The 1kΩ resistor is the load. Remove it and compute the open circuit voltage Voc or 
VTh. 
 

6k Ω 

2k Ω 6k Ω 

12 V Voc
+

-
 

 
Voc is 6V. Do you see why? 
 
Now let’s find the Thevenin equivalent resistance RTh. 
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6k Ω 

2k Ω 6k Ω 

RTh

 
 
 6 // 6 2 5RTh k k k k= Ω Ω + Ω = Ω  
And the Thevenin circuit is  
 

5k Ω 

6 V 1k Ω 

  

5k Ω 

6 V 1k Ω vo

+

-
 

And vo=1 Volt. 
 
Another example: 
Determine the Thevenin equivalent circuit seen by the resistor RL. 
 
 

+

-

R1 R2

R3 R4

RL
Vs

 
 
Resistor RL is the load resistor and the balance of the system is interface with it. 
Therefore in order to characterize the network we must look the network characteristics 
in the absence of RL. 
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+

-

R1 R2

R3 R4

Vs A B

 
 
First lets calculate the equivalent resistance RTh. To do this we short the voltage source 
resulting in the circuit. 
 

R1 R2

R3 R4

A B

 

≡
R1 R2

R3 R4
A B

 
The resistance seen by looking into port A-B is the parallel combination of 
 

 1 313
1 3
R RR

R R
=

+
 (1.22) 

In series with the parallel combination 

 2 424
2 4
R RR

R R
=

+
 (1.23) 

 
 
 13 24RTh R R= +  (1.24) 
 
The open circuit voltage across terminals A-B is equal to 
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+

-

R1 R2

R3 R4

Vs A B
vA vB

 
 
 

 3 4
1 3 2 4

VTh vA vB
R RVs

R R R R

= −

⎛= −⎜ ⎟+ +⎝ ⎠
⎞  (1.25) 

 
And we have obtained the equivalent circuit with the Thevenin resistance given by Eq. 
(1.24) and the Thevenin voltage given by Eq. (1.25). 
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The Wheatstone Bridge Circuit as a measuring instrument. 
 
Measuring small changes in large quantities – is one of the most common challenges in 
measurement.  If the quantity you are measuring has a maximum value, Vmax, and the 
measurement device is set to have a dynamic range that covers 0 -  Vmax, then the errors 
will be a fraction of  Vmax.  However, many measurable quantities only vary slightly, and 
so it would be advantageous to make a difference measurement over the limited range , 
Vmax- Vmin.  The Wheatstone bridge circuit accomplishes this. 
 

+

-

R1 R2

R3 Ru

Vs A B
+ -vu

 
 
The Wheatstone bridge is composed of three known resistors and one unknown, Ru,  by 
measuring either the voltage or the current across the center of the bridge the unknown 
resistor can be determined.  We will focus on the measurement of the voltage vu as 
indicated in the above circuit. 
 
The analysis can proceed by considering the two voltage dividers formed by resistor pairs 
R1, R3 and R2, R4. 
 

+

-

R1 R2

R3 Ru

Vs A B

vA vB
++

--
 

 
 
The voltage vu is given by 
 
 vu vA vB= −  (1.26) 
 
Where, 
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 3
1 3
RvA Vs

R R
=

+
 (1.27) 

And 

 
2
RuvB Vs

R Ru
=

+
 (1.28) 

And vu becomes: 
 

 3
1 3 2
R Ruvu Vs

R R R Ru
⎛= −⎜ + +⎝ ⎠

⎞
⎟  (1.29) 

 
 
A typical use of the Wheatstone bridge is to have R1=R2 and R3 ~ Ru.  So let’s take  
 
 3Ru R ε= +  (1.30) 
 
Under these simplifications, 
 

 

3
1 3 2

3 3
1 3 1 3

R Ruvu Vs
R R R Ru

R RVs
R R R R

ε
ε

⎛ ⎞= −⎜ ⎟+ +⎝
+⎛ ⎞= −⎜ ⎟+ + +⎝ ⎠

⎠

3

 (1.31) 

 
 
As discussed above we are interested in the case where the variation in Ru is small, that is 
in the case where 1R Rε + .  Then the above expression may be approximated as, 
 
 
 

 
1 3

vu Vs
R R

ε
+

 (1.32) 
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The Norton equivalent circuit 
 
 
 
A linear one port network can be replaced by an equivalent circuit consisting of a current 
source In in parallel with a resistor Rn. The current In is equal to the short circuit current 
through the terminals of the port and the resistance Rn is equal to the open circuit voltage 
Voc divided by the short circuit current In. 
 
 
The Norton equivalent circuit model is shown below: 
  

i

In Rn v

+

-

 
 
By using KCL we derive the  i-v relationship for this circuit. 
 

 0vi In
Rn

+ − =  (1.33) 

or 

 vi In
Rn

= −  (1.34) 

 
For  (open circuit) the open circuit voltage is 0i =
 
 Voc InRn=  (1.35) 
 
And the short circuit current is 
 
 Isc In=  (1.36) 
 

If we choose  and Rn RTh= VocIn
RTh

=  the Thevenin and Norton circuits are equivalent 
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v
+

-

i

Voc

RTh A

B
 

Thevenin Circuit
 

RTh v
+

-
In

i

 

Norton Circuit
 

 

 
We may use this equivalence to analyze circuits by performing the so called source 
transformations (voltage to current or current to voltage). 
 
For example let’s consider the following circuit for which we would like to calculate the 
current i as indicated by using the source transformation method. 

6 Ω 

3 Ω 

3 Ω 6 Ω 

3 V 

2 A 

i

 
By performing the source transformations we will be able to obtain the solution by 
simplifying the circuit. 
 
First, let’s perform the transformation of the part of the circuit contained within the 
dotted rectangle indicated below: 
 

6 Ω 

3 Ω 

3 Ω 6 Ω 2 A 

i3 V 

 
 
The transformation from the Thevenin circuit indicated above to its Norton equivalent 
gives 

0.5 A 

6 Ω 

3 Ω 

3 Ω 6 Ω 2 A 

i
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Next let’s consider the Norton equivalent on the right side as indicated below: 

6 Ω 

3 Ω 

3 Ω 6 Ω 2 A 

i0.5 A 

 
The transformation from the Norton circuit indicated above to a Thevenin equivalent 
gives 

 

6 Ω 

3 Ω 3 Ω 

6 Ω 

i0.5 A 

6 V 

 
 

Which is the same as 

6 Ω 

6 Ω 

6 Ω 

i0.5 A 

6 V 

 
 
By transforming the Thevenin circuit on the right with its Norton equivalent we have 
  
 

6 Ω 6 Ω 1 A 

i

0.5 A 6 Ω 

 
 
 
And so from current division we obtain 
 

 1 3 1
3 2 2

i ⎛ ⎞= =⎜ ⎟
⎝ ⎠

A (1.37) 
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Another example: Find the Norton equivalent circuit at terminals X-Y. 
 

R1

R2

R3

X

Y

R4
Vs

Is

 
 
First we calculate the equivalent resistance across terminals X-Y by setting all sources to 
zero. The corresponding circuit is 
 

R1

R2

R3

X

Y

Rn

R4

 
And Rn is 
 

 2( 1 3 4)
1 2 3 4

R R R RRn
R R R R

+ +
=

+ + +
 (1.38) 

 
Next we calculate the short circuit current 

R1

R2

R3

X

Y

Isc

R4
Vs

Is
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Resistor R2 does not affect the calculation and so the corresponding circuit is 
 

R1

R3

X

Y

Isc

R4
Vs

Is

 
By applying the mesh method we have 
 

 3
1 3 4
Vs IsRIsc In

R R R
−

= =
+ +

 (1.39) 

 
With the values for Rn and Isc given by Equations (1.38) and  (1.39) the Norton 
equivalent circuit is defined 
 
 

X

Y

In Rn
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Power Transfer. 
 
In many cases an electronic system is designed to provide power to a load. The general 
problem is depicted on Figure 1 where the load is represented by resistor RL. 
 

RL
linear
electronic
system

 
 

Figure 1. 
 
By considering the Thevenin equivalent circuit of the system seen by the load resistor we 
can represent the problem by the circuit shown on Figure 2. 
 

RLVTh

RTh i

vL

+

-

 
 

Figure 2 
 

The power delivered to the load resistor RL is 
 
  (1.40) 2P i RL=
The current i is given by 

 VThi
RTh RL

=
+

 (1.41) 

And the power becomes 
 

 
2VThP

RTh RL
⎛ ⎞= ⎜ ⎟+⎝ ⎠

RL  (1.42) 

 
For our electronic system, the voltage VTh and resistance RTh are known. Therefore if we 
vary RL and plot the power delivered to it as a function of RL we obtain the general 
behavior shown on the plot of Figure 3. 
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Figure 3. 
 
The curve has a maximum which occurs at RL=RTh. 
 
In order to show that the maximum occurs at RL=RTh we differentiate Eq. (1.42) with 
respect to RL and then set the result equal to zero. 
 

 
2

2
4

( ) 2 (
( )

dP RTh RL RL RTh RLVTh
dRL RTh RL

)⎡ ⎤+ − +
= ⎢ ⎥+⎣ ⎦

 (1.43) 

 
and  

 0dP RL RTh
dRL

0= → − =  (1.44) 

 
and so the maximum power occurs when the load resistance RL is equal to the Thevenin 
equivalent resistance RTh.1
 

Condition for maximum power transfer: 
 RL RTh=  (1.45)
 
 
The maximum power transferred from the source to the load is 
 

 
2

max
4
VThP

RTh
=  (1.46) 

                                                 
1 By taking the second derivative 

2

2

d P
dRL

 and setting RL=RTh we can easily show that 
2

2 0d P
dRL

< , thereby 

the point RL=RTh corresponds to a maximum. 

6.071/22.071 Spring 2006. Chaniotakis and Cory 21 



Example: 
 
For the Wheatstone bridge circuit below, calculate the maximum power delivered to 
resistor RL. 
 

+

-

R1 R2

R3 R4

RL
Vs

 
 
Previously we calculated the Thevenin equivalent circuit seen by resistor RL. The 
Thevenin resistance is given by Equation (1.24) and the Thevenin voltage is given by 
Equation (1.25). Therefore the system reduces to the following equivalent circuit 
connected to resistor RL. 
 

RLVTh

RTh i

vL

+

-

 
 

For convenience we repeat here the values for RTh and VTh. 
 
 

 3 4
1 3 2 4
R RVTh Vs

R R R R
⎛= −⎜ + +⎝ ⎠

⎞
⎟  (1.47) 

 

 1 3 2 4
1 3 2 4
R R R RRTh

R R R R
= +

+ +
 (1.48) 

 
The maximum power delivered to RL is 
 

 

2
2

2
3 4

1 3 2 4max
1 3 2 44 4

1 3 2 4

R RVs
VTh R R R RP

R R R RRTh
R R R R

⎛ ⎞−⎜ ⎟+ +⎝= =
⎛ ⎞+⎜ ⎟+ +⎝ ⎠

⎠  (1.49) 
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In various applications we are interested in decreasing the voltage across a load resistor 
by without changing the output resistance of the circuit seen by the load. In such a 
situation the power delivered to the load continues to have a maximum at the same 
resistance. This circuit is called an attenuator and we will investigate a simple example to 
illustrate the principle. 
 
Consider the circuit shown of the following Figure. 
 

VTh

RTh

Rp

+

-

vo RL

Rs
attenuator

a

b
 

 
The network contained in the dotted rectangle is the attenuator circuit.  
The constraints are as follows: 
 

1. The equivalent resistance seen trough the port a-b is RTh 
2. The voltage vo  kVTh=

 
Determine the requirements on resistors Rs and Rp. 
 
First let’s calculate the expression of the equivalent resistance seen across terminals a-b. 
By shorting the voltage source the circuit for the calculation of the equivalent resistance 
is 

RTh

Rp

Rs
attenuator

a

b

Reff

 
The effective resistance is the parallel combination of Rp with Rs+RTh. 
 

 
( ) //
( )

Reff RTh Rs Rp
RTh Rs Rp

RTh Rs Rp

= +
+

=
+ +

 (1.50) 
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Which is constrained to be equal to RTh. 
 

 ( )RTh Rs RpRTh
RTh Rs Rp

+
=

+ +
 (1.51) 

 
The second constraint gives 
 

 RpkVTh VTh
Rp RTh Rs

=
+ +

 (1.52) 

 
And so the constant k becomes: 
 

 Rpk
Rp RTh Rs

=
+ +

 (1.53) 

 
By combining Equations (1.51) and (1.53) we obtain 
 

 1 kRs R
k

Th−
=  (1.54) 

And 
 

 1
1

Rp R
k

=
−

Th  (1.55) 

 
 
The maximum power delivered to the load occurs at RTh and is equal to 
 

 
2 2

4
k VThPmax

RTh
=  (1.56) 
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Representative Problems: 
 
P1. Find the voltage vo using superposition. 

(Ans. 4.44 Volts) 
 

1 Ω 

4 Ω 

vo

6 V 

2 Ω 3 Ω 

2 V 

 
 
P2. Calculate io and vo for the circuit below using superposition 
 (Ans. io=1.6 A, vo=3.3 V) 
 

1 Ω 

3 Ω 

3 Ω 
4 Ω 

2 A 

io12 V 1 A 

2 Ω 4 Ω 

 
 
P3. using superposition calculate vo and io as indicated in the circuit below 
 (Ans. io=1.35 A, vo=10 V) 
 

1 Ω 

3 Ω 

3 Ω 

io

24 V 

3 Ω 4 Ω 

+   vo   -

12 V 2 A 
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P4.  Find the Norton and the Thevenin equivalent circuit across terminals A-B of the 
circuit. (Ans. 1.25In A= , 1.7Rn = Ω , 2.12VTh V= ) 

1 Ω 3 Ω 

3 Ω 4 Ω 

5 A 

A

B  
P5. Calculate the value of the resistor R so that the maximum power is transferred to 

the 5Ω resistor. (Ans. 10Ω) 

5 Ω 
10 Ω 

R

12 V 

24 V 

 
 
P6. Determine the value of resistor R so that maximum power is delivered to it from 

the circuit connected to it. 
 

R

Vs

R1 R2

R3 R4

+ -

 
 
P7 The box in the following circuit represents a general electronic element. 

Determine the relationship between the voltage across the element to the current 
flowing through it as indicated. 

Vs

R1 R2

R3

+

-

i

v
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