
 
 

Introduction to Digital: 

Combinational Logic and Systems Design 
 
So far we have been discussing the generation, transmission and processing of signals 
whose amplitude (voltage, current) varies continuously in time and can in principle take 
any value.  
At a certain instant of time we may represent a signal by displaying its amplitude in an 
analog form or in a digital format. The graphics below demonstrate the familiar 
representation of the two forms. Both displays are asked to display the number 4.7.  
 

 

 
 
   
 
In this case the digital display on the left has the required resolution to represent the 
number exactly. If we try to display the number 4.76, this digital display, with its ability to 
display only 2 digits will have to round off the number, representing it either as 4.7 or 4.8, 
depending on how the system processes the numerics. 
 
Our reading of the number off the analog display requires some interpolation of the value 
but in principle the resolution is only limited by our ability to identify the position of the 
measuring needle. 
 
In general the characteristics of the digital display correspond to the digital signal which is 
required to generate the digital display in the first place.  
 
If we now consider an analog signal which varies continuously in time, see Figure 2a, then 
if we sample the signal at discrete times (τ, 2τ, 3τ, κλπ) we will obtain the values indicated 
by the solid circles on Figure 2b. Furthermore, if we consider the quantization of the 
signal at these discrete sampling times we obtain the signal indicated on Figure 2c which is 
a digital signal. The analog signal is also shown on Figure 2c to emphasize the relationship 
between it and its digital representation. 
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Figure 2. Schematic representation of analog and digital signals. 

 
 
This review should have motivated us to ask a few questions about these signals and in 
particular about the digital signal shown on Figure 2c. 
 
 
Some of these questions are: 

1. How is the information embodied by the digital signal represented? 
2. How is the signal generated? 

a. How is the sampling frequency selected and how is it related to the “quality” 
of signal representation? 

b. How is the amplitude quantization achieved? 
3. What are the advantages and disadvantages of generating the digital signal? For 

example, how does it perform in 
a. Accuracy 
b. Transmission 
c. Noise immunity 
d. Information storage 
e. Computation 

 
In the next few classes we will answer these questions and explore the fundamental issues 
associated with the design of digital circuits. 
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Numbering Systems 
 

Binary  Code. 
 
In digital electronics the signals are formed with only two voltage values, HI and LOW, or 
level 1 and level 0 and it is called binary digital signal.1 Therefore, the information 
contained in the digital signal is represented by the numbers 1 and 0. In most digital 
systems the state 1 corresponds to a voltage range from 2V to 5V while the state 0 
corresponds to a voltage range from a fraction of a volt to 1 volts.  
 
Digital operations are performed by creating and operating on binary numbers. Binary 
numbers are comprised of the digits 0 and 1 and are based on powers of 2. 
 
Each digit of a binary number, 0 or 1, is called a bit, an abbreviation for binary digit. Four 
bits together is a nibble, 8 bits is called a byte. (8, 16, 32, 64 bit arrangements are also 
called words) The rightmost bit is called the Least Significant Bit (LSB) while the leftmost 
bit is called the Most Significant Bit (MSB). The schematic below illustrates the general 
structure of a binary number and the associated labels. 
 
 

1010  1101 0110 1010
nibble

byte

word

 

MSB LSB 
 
 

                                                 
1 In addition to binary digital systems and its associated binary logic, multivalued logic also exists but we will 
not consider it in our discussion. 
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Binary to Decimal Conversion. 
 
The conversion of a binary number to a decimal number may be accomplished by taking 
the successive powers of 2 and summing for the result. 
 
For example let’s consider the four bit binary number 0101. The conversion to a decimal 
number (base 10) is illustrated below. 

3 2 1 0

10

0 1 0 1

0x2 1x2 0x2 1x2

0 4 0 1 =
⇓ ⇓⇓ ⇓

↓ ↓ ↓ ↓
+ + +

+ + + 5

 

 
 
For this four bit binary number the range of powers of 2 goes from 0, corresponding to the 
LSB, to 3, corresponding to the MSB. The number 5 is shown as  to indicate that it is a 
decimal number (power of 10).  

105

 
The signal represented on Figure 2c has a value of 5 V at time=6τ. The binary 
representation of that value is 0101 and it is shown on Figure 3 replacing Level 4. We will 
see more of this later when we consider the fundamentals of the device which converts the 
analog signal to a digital signal. 
 

Signal (V)

Timeτ 2τ  3τ  4τ  5τ  6τ  7τ0
Level 1
Level 2
Level 3

0101
Level 5
Level 6
Level 7

 
 

Figure 3. 
 
In the next few examples we will use the subscript 2 to indicate a binary number but the 
subscripts will be omitted after that.
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Examples: 
 
Verify the Binary to Decimal conversion 
 

2 10

2 10

2 10

2 10

2 1

2 1

1111  = 15
1111 0000  = 240
1111 1111  = 255
1101 1011  = 219
0001 0101 1011  = 347
1001 0101 1011  = 2395

0

0

 

 

Decimal to Binary Conversion. 
 
The conversion of a decimal number to a binary number is accomplished by successively 
dividing the decimal number by 2 and recording the remainder as 0 or 1. Here is an 
example of the conversion of decimal number 125 to binary. 
 

125 62 1
2

62 31 0
2
31 15 1
2

15 7 1
           0111 11012

7 3 1
2
3 1 1
2
1 0 1
2

⎫= + ⎪
⎪
⎪= + ⎪
⎪
⎪= +
⎪
⎪

= + ⎪⎪ ⇒⎬
⎪

= + ⎪
⎪
⎪

= + ⎪
⎪
⎪= + ⎪
⎪
⎪⎭

 

LSB 

MSB 

 
Practice number conversion by verifying the conversions from decimal to binary: 
 
Decimal Binary 
69  0100 0101 
299  0001 0010 1011 
756  0010 1111 0100 
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Representation of fractions and signed numbers. 
 
A fractional number may be represented as a binary fraction by simply extending the 
procedure used in representing integer numbers. For example, 
 
13.7510 = 1101.11002
 
The procedure is clearly visualized by considering the following mapping 

 
 

 

3 2 1 0 1 2 3 42 2 2 2 2 2 2 2
8 4 2 1 0.5 0.25 0.125 0.0625
1 1 0 1 . 1 1 0 0

13 . 75

− − − −

 
Signed binary numbers may be represented by assigning the MSB to indicate the sign. A 0 
is used to indicate a positive number and a 1 is used to indicate a negative number. 
 
For example, an 8 bit signed binary number represents the decimal numbers from -128  to 
+127. 
 
Two’s complement is used to represent negative numbers. The use of 2’s complement 
simplifies the operation of subtraction since the circuit is only required to perform the 
operation of addition since X – Y = X + (-Y). 
 
The 2’s complement of a binary number is obtained by subtracting each digit of the binary 
number from digit 1. This is equivalent to replacing all 1’s by 0’s and all 0’s by 1’s. 
Negative numbers of 2’s compliment can then be found by adding 1 to the complement of a 
positive number. 
 
For example, the 2’s complement of the 8 bit binary number 0000 1110 is 
1111 0001 = 1010 
 
The negative number of this 2’s complement representation is 
1111 0110 = -1010 
 
The procedure is outlined in the following 
 

10

10

0 0 0 0 1 0 1 0 binary number (10 )
1 1 1 1 0 1 0 1 2's complement

+ 1
1 1 1 1 0 1 1 0 10−
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By adding the two numbers the result is zero as shown below. 
 
    0000 1110  (+10) 
+  1111 0110  (-10) 
    0000 0000  (0) 
 
The table below shows the 2’s complement representation of a few numbers. Fill in the 
empty spaces. 
 
 

Decimal 2’s complement 
0 0000 0000 
-1 1111 1111 
-2 1111 1110 
-3 1111 1101 
-4 1111 1100 
-10 1111 0110 
-15  
-27  
-80  
-110  

 

Binary Coded Decimal. BCD Code 
 
BCD is a code used to represent each digit of a decimal number (0 to 9) as a 4 bit binary. 
For example, the decimal number 260 corresponds to the BDC number 0010 0110 0000. 
 

2 6 0 Decimal

0010 0110 0000 BDC
⇓ ⇓ ⇓  

 
This code is used to drive the 7 segment led displays.  
 

a

b

c

d

e

f

g

 
 

For example, the BCD number 0010 corresponds to decimal 2 and is used to drive the 
segments a,b,d,e,g of the display. Similarly the number 0110 corresponds to number 6 and 
it is used to drive segments a,c,d,e,f,g. BCD 0000 corresponds to decimal 0 and it drives 
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segments a,b,c,d,e,f. Special logic ICs are available for driving the led segments from a 
BCD number. 
 
 

Numbers with other bases. 
 
The octal system, with base 8 and digits 0,1,2,3,4,5,6,7, and the hexadecimal system with 
base 16 and digits 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F are also used in digital electronics. Octal 
and Hex representation is more compact, consider the conversion of the decimal number 
1132 in binary, Octal and Hex shown below, and it is used in assembly language 
programming of microcontrollers. 
 
113210 = 0100 0110 11002 = 21548 = 46C16 
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Fundamental Digital Devices: The inverter. 
 
The fundamental digital circuit for performing binary operations is the one which will 
convert from a logic 1 to a logic 0 and vise-versa. In our discussions we will use the  
positive logic convention which implies that the logic level 1 will correspond to the higher 
voltage level and the logic level 0 will correspond to the lower voltage level. Such a 
fundamental is shown on Figure 4. 

R

3 terminal
device

VCC

Vi

Vo

 
 

Figure 4. Fundamental inverter circuit. 
 
 
 
 
 
 
The ideal voltage transfer characteristic of this circuit is shown on Figure 5. 
 

Vo

ViVtr

Vcc

0

 
 

Figure 5. Ideal inverter voltage transfer characteristic 
 
When the input voltage exceeds the transition value Vtr, the output switches.  
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It will become useful to familiarize ourselves with time evolution of digital signals. Such 
representation is called timing diagram which is used extensively in representing the 
operation of digital circuits. For our idealized inverter circuit, also called “inverter gate” a 
timing diagram would look like 
 
 

time

1

Vi

Vo 1 1 1

0 0 0 0

1 1 1 1

00 0 0

 
 

Figure 6. Ideal inverter timing diagram. 
 

 
We thus see that the inverter is a voltage controlled digital switch. In practice the behavior 
of the inverter is not ideal. The output could assume a low value which will be in a range of 
voltages and a high value which also encompasses a range of voltage values. In addition 
the transition occurs with a time delay. 
 
The inverter circuit may be constructed with active devices such as the Field Effect 
Transistor (FET) or the Bipolar Junction Transistor (BJT). The inverter circuit 
arrangements for these fundamental devices are shown on Figure 7. 
 
 

R

VC

Vo

Vi

Id

M

 
 

Inverter 
Implementation 

with a FET 

Q1

R

VC

Vo

Vi

Ic

 
Inverter 

Implementation 
with a BJT 

VC

VoVi

Mn

Mp

 
CMOS inverter2

Vi Vo

VC

 
Inverter symbol 

showing high (Vc) 
and low (ground) 

levels 
 
 

Vi Vo 
 

Inverter Symbol 
 

Figure 7. Inverter circuits and inverter symbol 
 
                                                 
2 The Complementary Metal-Oxide Semiconductor (CMOS) inverter incorporates an n-channel and a p-
channel MOSFET. 
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The output voltage is the inverse of the input and the switching from one state to another 
state happens when the input voltage crosses a certain value Vtr. An inverter with supply 
voltages Vc and Ve and the corresponding voltage transfer characteristic is, 
 

Vi Vo

VC

Ve   

Vo

Vi

VH

VL

Vtr Vc

Vc

Ve

Ve   
 
 
 

When Vi is less than the voltage Vtr (i.e when Vi is low) the output is VH (high). As the 
input voltage exceeds Vtr, (Vi is now high) the output switches to VL (low). Note that the 
values for VH and VL are not the same as the supply rails of the device. The actual values 
of VH and VL depend on the particular technology used in the construction of the inverter 
circuit. 
 
For each design and for the particular semiconductor technology used the supply voltages 
Vc and Ve are well defined. A familiar power supply for digital systems is the Vc=+5V 
and Ve=0V. Supply systems with, Vc, voltage levels ranging from 1.5V to 5V are 
available. 
 

Vo

Vi

VH

VL

Vtr Vc

Vc

Ve

Ve

Vi=low (0)  Vi=high (1)

 
In practical circuits the transition from one state to another does not happen abruptly. The 
transition is gradual and there is not a single value at which the transitions happen but 
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rather a range of values that correspond to the transition as well as to the high and low 
states. This is a desirable situation since it allows for the design of robust systems with 
considerable noise immunity. 
 
In addition there is a range of values which correspond to a certain logic level. Figure 8 
shows a generic representation of the logic levels. 

Logic Level 1

Logic Level 0

Indeterminate
Forbidden Region

VH(min)

VL(max)

 

 

 
Figure 8. Logic gate levels 

 
Any value less than VH(min) and greater than VL(max) falls in the forbidden region and its 
state is indeterminate. The values for VH(min) and VL(max) are different for the input and 
output of a gate. It is important to pay particular attention to these voltage levels since 
when one gate drives another, the input and output of each should fall within the specified 
level values. 
 
When one gate drives another as in the graphic shown on Figure 9, the various voltage 
levels are defined as follows: 
 

VHin(min):  The minimum voltage level required for a logic level 1 at the input 
of a gate. 

 
VLin(max):  The maximum voltage level required for a logic 0 at the input of a 

gate. 
 

VHout(min):  The minimum voltage level required for a logic level 1 at the output 
of a gate. 

 
VLout(max):  The maximum voltage level required for a logic 0 at the output of a 

gate. 
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VLout(max)

Logic Level 1

Logic Level 0

VHout(min) Logic Level 1

Logic Level 0

VHin(min)

VLin(max)

Noise margin HI(VNMH)

Noise margin LO(VNML)

Indeterminate Indeterminate

 
 

Figure 9. Logic gate input and output voltage levels 
 
As can be seen from Figure 9, the presence of noise at the output of a certain gate may 
result in a voltage level which may be recognized as an appropriate state at the input of the 
following gate. The maximum voltage deviations due to noise that can be accepted by the 
logic gate inputs are defined as the HI and LO voltage noise margins, 
 
VNMH = V1out(min) – V1in(min) 
 
VNML = V0in(max) – V0out(max) 
 
These voltage levels are summarized on Figure 10. 
 

VH in

Indeterminate
VLin

Noise margin H

Noise margin L

VH out

VLout

0
0

1
1

ReceiverSender

 
 

Figure 10. Voltage levels for sender and receiver. 
 
The actual values of the minimum and maximum voltage values at the input and output of 
the logic gates depend on the type of device used to construct the logic gate. Currently 
there are two dominant logic families. They are the Transistor to Transistor Logic (TTL) 
based on the BJT inverter shown on Figure 7 and the Complementary Metal-Oxide 
Semiconductor (CMOS), based on the MOS families. Besides differences in speed and 
power consumption, these logic families are also different in the acceptable logic voltage 
levels for the gates. These differences should be taken into consideration when the design 
involves interfacing between TTL and CMOS circuits.  
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Table I provides a general comparison of the two families.  
 

 TTL CMOS 
Supply voltage (V) 5 5 

V1in(min) 2 3.5 
V0in(max) 0.8 1.5 
V1out(min) 2.4 4.5 
V0out(max) 0.4 0.1 

VNMH 0.4 1.0 
VNML 0.4 1.4 

 
Table I. Comparison of TTL and CMOS logic family parameters. 

 
A few words on power consumption. 
 
Let’s consider the inverting gate, 
 

R

VC

Vi

Vo

C

   
 
The capacitor C represents the wiring capacitance as well as the capacitance of the gate-
source junction of the following gate. 
 
Let’s calculate the average power for an input signal Vi has the form 
 
Vi

time
T

T1 T2
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During time T1 the FET is on and the equivalent circuit is  
 

R

Ron CVc

0

Vo

 
 
Where Ron is the on resistance of the FET. The Thevenin equivalent circuit is 
 

RTH

CVTH

Vo

 
 
 

Where RonVTH = Vc
R+Ron

 and R (Ron)RTH = 
R+Ron

. By assuming that time T1>> (RTH C) 

the energy dissipated during T1 is (The details of the calculation are left as an exercise for 
the student) 
 

2 2 2 2

2

DynamicStatic Static Dynamic

Vc  T1 VTH C Vc  T1 Vc R CE1 = +
R+Ron 2 R+Ron 2(R+Ron)

= +
2

 

 
During time T2 the equivalent circuit is  

R

CVc

Vo

 
 
During this time interval the capacitor will discharge starting from the voltage VTH 
reached during time T1. The energy dissipated during T2 is then (assuming T2>>RC) 
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2 2

2

Dynamic

Vc R CE2 = 
2(R+Ron)

 

 
The total power dissipated during one period (T), assuming that T1 = T2 is 

2 2

2

Static Dynamic

Vc Vc R CP = +
2(R+Ron) (R+Ron) T

2

 

Since R>>Ron (usually) the total power is 
 

2 2 2
2

Dynamic
Static Dynamic Static

Vc Vc C VcP = + + Vc  f  C
2 R T 2 R

=  

 
 
The static power is independent of frequency (f=1/T). The dynamic power is proportional 
to frequency and the supply voltage Vc. 
 
Aw an example lets consider a digital device (chip) which incorporates 109 gates operating 
at a frequency of 1GHz. Typical values are: 
R = 10 kΩ 
C = 0.1 fF 
Vc = 5V 
 
Total power is, 
 

9 1

Static power Dynamic power

2510 25 x 10  x 10
20000

     = 1250 kW  + 2.5 kW

Pt −⎛ ⎞= +⎜ ⎟
⎝ ⎠

6 9

 

 
Well… something has to be done.  
 
Indeed the static power can be practically reduced to zero by the CMOS design which 
basically eliminates the path to ground through resistor Ron. 
 
The Dynamic power can be reduced by decreasing Vc. By going from Vc=5 V to Vc=1 V 
the dynamic power is reduced from 2500 W to 100 W. Not bad. 
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Signal Conversion. 
 
Analog to Digital Conversion 
 
The electrical signals (voltage or current) generated by a transducer is an analog signal. The 
amplitude of the signal corresponds to the value of the physical phenomenon that the 
transducer detects. The signal values are continuous in time. 
 
The processing of the signal by a digital system requires the conversion of the analog signal 
to a digital signal. The analog to digital conversion is not a continuous process but it 
happens at discrete time intervals. Furthermore the magnitude of the digital signal at the 
time of conversion should correspond to the magnitude of the analog signal. 
 
The analog to digital converter (ADC) is a device that receives as its input the analog signal 
along with instructions regarding the sampling rate (how often is a conversion going to be 
performed) and scaling parameters corresponding to the desired resolution of the system. 
The output of the ADC is a binary number at each sampling time. 
 
The following schematic shows the basic structure of an 8 bit ADC. 
 

2
4
6
8

Signal (V)
00

11
 0

01
1

01
01

 1
11

1

0 1
11

 1
00

0

10
10

 0
00

1

11
00

 1
01

0

11
00

 1
00

0

10
00

 0
01

0

01
0 1

 1
01

0

0 1
00

 1
0 0

0LSB

MSB

D0D1D2D3D4D5D6D7

8 Bit ADC

Analog Signal

Reference Voltage

Pulses 1 2 3 4 6 7 85 9

Sampling signal

 
 

The selection of an 8 bit ADC sets the resolution of our conversion and the selection of the 
scale for the analog signal determines the measurement resolution for our ADC. In our 
example the 8 bit ADC implies 28 = 256 different levels within the maximum signal range. 
 
Since we are measuring a voltage with possible values between 0V and 10V, our 8 bit ADC 

is not able to resolve voltages smaller than 8

10
2

mV = 39mV. 

If this ADC has a resolution of 16 bits, like the one that you have in your laboratory, the 

resolution, for the same measurement range, would be 16

10
2

mV=0.15mV. 
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The table below summarizes the conversion process 
 

Pulse Signal 
Value Level Binary number 

1 2 
2 256 51

10
=  0011 0011 

2 3.7 
3.7 256 95
10

=  0101 1111 

3 4.7 
4.7 256 120
10

= 0111 1000 

4 6.3 
6.3 256 161
10

=  1010 0001 

5 7.9 
7.9 256 202
10

= 1100 1010 

6 7.8 
7.8 256 200
10

= 1100 1000 

7 5.1 
5.1256 130
10

=  1000 0010 

8 3.5 
3.5 256 90
10

=  0101 1010 

 
 
The sampling frequency must be larger than the highest frequency of the analog signal to 
be converted. In fact as stated by the “Sampling Theorem” The sampling frequency must 
be at greater than 2 times the bandwidth of the input signal. 
 
Problem: 
You would like to design a thermistor based thermometer with a resolution of  0.1o Celcius 
in the range of 0 to 100 degrees Celsius. Let’s assume that your thermistor (RT) has an 
accuracy of 0.001 Degrees Celsius and that the analog signal is generated by the standard 
voltage divider network, 

 
Design your instrument by appropriately selecting resistor R1 and the resolution of the 
ADC. 
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Digital Logic: Boolean Algebra 
 
Boolean algebra is a special symbolic mathematical language used to carry out logic 
operations. Boolean algebra was developed in the mid 1800s by George Boole (1815-1864) 
an English mathematician, for the purpose of performing “Logic and Probability 
Calculations”. In Boolean algebra variables have only two possible values, 1 or 0 and it is 
the language used for performing binary logic operations. 
 
The basic logic operations and their corresponding Boolean representation and associated 
symbols are given on Table II. The variables A and B are the inputs to the functions 
(Gates) and can assume the value 0 or 1. The variable Y represents the output of the logic 
operation or equivalently the output of the logic gate and its value is also either 0 or 1. 
 
 

Logic Operation Boolean Representation Logic Symbol (Gates) 
NOT Y = A  A

Y
 

AND Y = A  B = AB•  
A

B

Y

 
OR Y = A + B  

A

B

Y

 
NAND Y = A B = AB•  

A

B

Y

 
NOR Y = A + B  

A

B

Y

 
 

Table II. Basic logic operations and their Boolean representation 
 
 
The NOT operation (inversion) is performed by the inverter discussed earlier and it has one 
input and one output. The number of inputs to the AND, OR, NOR, NAND logic gates can 
be greater than two. For example the Boolean representation of the 3 input NOR gate is 
Y = A + B + C  and the corresponding logic gate is, 
 

A
B

Y

C  
 

6.071/22.071 Spring 2006, Chaniotakis and Cory  19 



The rules associated with each logic operation (function) may be represented in a useful 
tabular form by the Truth Table. The Truth Tables for the basic logic operations listed on 
Table II are: 
 
 

NOT 
A

Y
 

A Y 
0 1 
1 0  

AND 
A

B

Y

 
A B Y 
0 0 0 
0 1 0 
1 0 0 
1 1 1  

OR 
A

B

Y

 
A B Y 
0 0 0 
0 1 1 
1 0 1 
1 1 1  

NAND 
A

B

Y

 
A B Y 
0 0 1 
0 1 1 
1 0 1 
1 1 0  

NOR 
A

B

Y

 
A B Y 
0 0 1 
0 1 0 
1 0 0 
1 1 0  

 
 
The designer of logic circuits and systems must optimize the design for maximum 
performance (i.e low power, speed, etc) and for the lowest cost. The simplification of logic 
expressions results in a simplified digital logic circuit. Logic expressions may be simplified 
by making use of the following Boolean identities. 
 
 

Boolean Identities 
A + 0 = A A 1=A•  

A + B = B + A AB=BA 
A + (B + C) = (A + B) + C A(BC) = (AB)C 
A + BC = (A +B)(A + C) A(B+C) = AB + AC 

A + A = A A  A  0• =  
A + 1 = 1 A A = A•  

A + A  1=  A 0=0•  
A + AB = A A(A +B)=A 

A + A B  A+B=  (A + B) (A + C) = A + B C 

AB A B= +  A+B A B= •  
 
 
The identities AB A B= +  and A+B A B= •  are also called DeMorgan’s Theorems and 
are of particular importance in logic analysis and design. The fundamental consequence of 
DeMorgan’s theorems is that: 
 

Any logic function may be implemented by using only 
OR and NOT gates or only AND and NOT gates. 
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A very important consequence of Boolean algebra is the sum of products or the product 
of sums representation of any Boolean expression. To illustrate the usefulness of the 
procedure let’s consider the logic function represented by the following truth table, 
 

A B Y 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

 
The information in this truth table might represent the logic associated with a certain digital 
process that we would like to model, or it might represent the operational characteristics of 
a certain digital circuit that we would like to construct. The Boolean representation of the 
logic function is the first step in achieving a robust and efficient design. 
 
In order to construct the sum of products we proceed as follows. 

1. Identify the rows for which the result (Y in our case) is 1 (TRUE). For our 
example these are rows 2 and 3. 
 

A B Y 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

 
 

2. Use these cases to construct the sum of products by using the uncomplemented 
representation of the variable that has the value of 1 and the complemented 
representation of the variable that has the value of 0 
 

A B Y   
0 0 0   
0 1 1 A B •  
 1 0 1 A B•   
1 1 0   

 
                  And by taking the “sum of the products” we obtain: ( ) ( )Y = A B  + A B• •  

 
3. The resulting Boolean function represents the entire logic sequence as can be 

verified by constructing the corresponding truth table. 
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The product of sums method may also be used in order to realize the Boolean 
representation of the logic presented by the previous truth table. 
 
The construction of products of sums proceeds as follows. 

1. Identify the rows for which the result (Y in our case) is 0 (FALSE). For our 
example these are rows 1 and 4. 
 

A B Y 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

 
 

2. Use these cases to construct the products of sums by using the uncomplemented 
representation of the variable that is 0 and the complemented representation of 
the variable that is 1 
 

A B Y   
0 0 0 A + B  
0 1 1   
 1 0 1   
1 1 0 A B+   

 
                                         ( ) ( )Y = A + B   A + B•  

3. The resulting Boolean function represents the entire logic sequence as can be 
verified by constructing the corresponding truth table. Also by manipulating the 
expression obtained from the application of the product of sums we obtain: 
( ) ( )

( ) ( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( ) ( ) ( )

A+ B  • A + B =      (product of sums)

AB • A + B =

AB •A + AB •B=

A+B •A + A+B •B=

A+B •A + A+B •B=

A•A+B•A + A•B+B•B =

0+B•A + A•B+0 =

B•A + A•B = A•B + A•B      sum of products

←

←
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The two methods are equivalent. The choice of which method to use is based on the details 
of the logic function to be implemented. For example, is we are considering a 3 input logic 
sequence for which the result is true (1) for 2 out of the eight (23) possible cases then the 
reduced algebraic complexity associated with the use of the sum of products approach will 
be advantageous. 
 

A B C Y1  
0 0 0 0  
0 0 1 1 A•B•C  
0 1 0 0  
0 1 1 0  
1 0 0 0  
1 0 1 1 A•B•C  
1 1 0 0  
1 1 1 0  
Work with Sum of Products  

( ) ( )Y1= A•B•C + A•B•C  

A B C Y2  
0 0 0 0 A+B+C  
0 0 1 1  
0 1 0 1  
0 1 1 1  
1 0 0 0 A+B+C  
1 0 1 1  
1 1 0 1  
1 1 1 1  
Work with Products of Sums 

( ) ( )Y2= A+B+C • A+B+C  

 
 
Two additional useful gates: XOR and XNOR 
 
The gate represented by the truth table 

A B Y 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

Is very useful and it is called Exclusive OR (XOR). The symbol of this gate is 

B

A
Y
   Another useful gate is the Exclusive NOR gate (XNOR). The truth table 

and the symbol for this gate are 
A B Y 
0 0 1 
0 1 0 
1 0 0 
1 1 1 

B

A
Y
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For the  laboratory 
 
As an example lets design an adder which is able to add two 1 bit digital numbers. This is 
called a 1 bit adder and schematically has the form 
 

1 bit
adder

B ci

Ci+1 S

A

 
 
A and B are the digits to be added. Ci is the carry from the previous addition and Ci+1 is 
the carry after the addition. The basic rules for binary addition are: 
 
1 + 1 = 0, Carry = 1 
1 + 0 = 1, Carry = 0 
0 + 1 = 1, Carry = 0 
0 + 0 = 0, Carry = 0 
 
The first thing to do is construct the truth table for this procedure. 
 
 

A B Ci S Ci+1 
0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 
1 1 1 1 1 

 
 
As part of your laboratory you will design and then built this 1 bit full adder circuit using 
fundamental gates. 
 
Download the instrument called adder.vi from the class web site. Take a minute to 
familiarize yourself with the instrument. Your goal is to construct the circuit by using the 
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gates provided and then run it to see the results. You may also view the results on the 
ELVIS leds by wiring DO0 - DO4 to LED0 - LED4. 
 
Try simplifying your circuit by using the XOR or the XNOR gates.
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With this as your basic 1 bit adder circuit you will then built and test an adder circuit for 
two 4 bit binary numbers. The structure of the circuit is 
 
 

B3 A2 B2 A1 B1 A0 B0

S3 S2 S1 S0

A3

C0C1C2
C3

1 bit
adder

1 bit
adder

1 bit
adder

1 bit
adder

 
 
This circuit will add numbers A0A1A2A3 and  B0B1B2B3 by propagating the carry bit 
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