
Circuit Analysis using the Node and Mesh Methods  
 
We have seen that using Kirchhoff’s laws and Ohm’s law we can analyze any circuit to 
determine the operating conditions (the currents and voltages).  The challenge of formal 
circuit analysis is to derive the smallest set of simultaneous equations that completely 
define the operating characteristics of a circuit. 
 
In this lecture we will develop two very powerful methods for analyzing any circuit: The 
node method and the mesh method. These methods are based on the systematic 
application of Kirchhoff’s laws. We will explain the steps required to obtain the solution 
by considering the circuit example shown on Figure 1. 
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Figure 1. A typical resistive circuit. 
 
The Node Method. 
 
A voltage is always defined as the potential difference between two points. When we talk 
about the voltage at a certain point of a circuit we imply that the measurement is 
performed between that point and some other point in the circuit. In most cases that other 
point is referred to as ground. 
 
The node method or the node voltage method, is a very powerful approach for circuit 
analysis and it is based on the application of KCL, KVL and Ohm’s law. The procedure 
for analyzing a circuit with the node method is based on the following steps. 
 

1. Clearly label all circuit parameters and distinguish the unknown parameters from 
the known. 

2. Identify all nodes of the circuit. 
3. Select a node as the reference node also called the ground and assign to it a 

potential of 0 Volts. All other voltages in the circuit are measured with respect to 
the reference node. 

4. Label the voltages at all other nodes. 
5. Assign and label polarities. 
6. Apply KCL at each node and express the branch currents in terms of the node 

voltages. 
7. Solve the resulting simultaneous equations for the node voltages. 
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8. Now that the node voltages are known, the branch currents may be obtained from 
Ohm’s law. 

 
We will use the circuit of Figure 1 for a step by step demonstration of the node method. 
 
Figure 2 shows the implementation of steps 1 and 2. We have labeled all elements and 
identified all relevant nodes in the circuit.  
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n4  
Figure 2. Circuit with labeled nodes. 

 
The third step is to select one of the identified nodes as the reference node. We have four 
different choices for the assignment. In principle any of these nodes may be selected as 
the reference node. However, some nodes are more useful than others. Useful nodes are 
the ones which make the problem easier to understand and solve. There are a few general 
guidelines that we need to remember as we make the selection of the reference node. 

1. A useful reference node is one which has the largest number of elements 
connected to it. 

2. A useful reference node is one which is connected to the maximum number of 
voltage sources. 

 
For our example circuit the selection of node n4 as the reference node is the best choice. 
(equivalently we could have selected node n1 as our reference node.) 
The next step is to label the voltages at the selected nodes. Figure 3 shows the circuit with 
the labeled nodal voltages. The reference node is assigned voltage 0 Volts indicated by 
the ground symbol. The remaining node voltages are labeled v1, v2, v3. 
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Figure 3. Circuit with assigned nodal voltages. 

 
 
For the next step we assign current flow and polarities, see Figure 4. 
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Figure 4. Example circuit with assigned node voltages and polarities. 
 

 
Before proceeding let’s look at the circuit shown on Figure 4 bit closer. Note that the 
problem is completely defined. Once we determine the values for the node voltages v1, 
v2, v3 we will be able to completely characterize this circuit. So let’s go on to calculate 
the node voltages by applying KCL at the designated nodes. 
 
For node n1 since the voltage of the voltage source is known  we may directly label the 
voltage v1  as 
 

v1 = Vs          (4.1) 
 
and as a result we have reduced the number of unknowns from 3 to 2. 
 
KCL at node n2 associated with voltage v2 gives: 
 

i1 = i 2 + i 3         (4.2) 
 
The currents i1, i2, i3 are expressed in terms of the voltages v1, v2, v3 as follows. 
 

Vs- v 2i1 =
R1

        (4.3) 

v 2i 2 =
R 2

        (4.4) 

v2 - v3i3 =
R3

        (4.5) 
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By combining Eqs. 4.2 – 4.5 we obtain 
  

Vs- v 2 v 2 v 2 - v 3- - =
R1 R 2 R 3

0       (4.6) 

 
Rewrite the above expression as a linear function of the unknown voltages v2 and v3 
gives.   

1 1 1 1 1v 2 + + - v 3 = Vs
R1 R 2 R 3 R 3 R1

⎛ ⎞
⎜ ⎟
⎝ ⎠

    (4.7) 

 
KCL at node n3 associated with voltage v3 gives: 
 

v 2 - v 3 v 3- =
R 3 R 4

0        (4.8) 

or 
 

1 1 1-v 2 + v 3 + = 0
R 3 R 3 R 4

⎛ ⎞
⎜ ⎟
⎝ ⎠

     (4.9) 

 
The next step is to solve the simultaneous equations 4.7 and 4.9 for the node voltages v2 
and v3. 
 
Although it is easy to solve Eqs. (4.8) and (4.9) directly it is useful to rewrite them in 
matrix form as follows. 
 
 

 

1 1 1 1 1v 2 + + -v 3 = Vs
R1 R 2 R 3 R 3 R1

1 1 1-v 2 +v 3 + = 0
R 3 R 3 R 4

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

   (4.10) 

 
Or  

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

i

R1 R1 R1 v V1+ + -
R 2 R 3 R 3

=
R1 R1 R1- + v 0R 3 R 3 R 4

2

3

s

    (4.11) 

 
or equivalently. 
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 iA v = V  (4.12) 
 
In defining the set of simultaneous equations we want to end up with a simple and 
consistent form. The simple rules to follow and check are: 

• Place all sources (current and voltage) on the right hand side of the equation, as 
inhomogeneous drive terms, 

• The terms comprising each element on the diagonal of matrix A  must have the 
same sign. For example, there is no combination 1

2
R R
R R

1
3− . If an element on the 

diagonal is comprised of both positive and negative terms there must be a sign 
error somewhere. 

• If you arrange so that all diagonal elements are positive, then the off-diagonal 
elements are negative and the matrix is symmetric: ij jiA A= . If the matrix does not 
have this property there is a mistake somewhere. 

 
Putting the circuit equations in the above form guarantees that there is a solution 
consisting of a real set of currents. 
 
Once we put the equations in matrix form and perform the checks detailed above the 
solutions then there is a solution if the det A = 0  The unknown voltage  are given 

by: 
kv

 

 
k

k

det A
v =

det A
 (4.13) 

Where kA  is the matrix A  with the kth column replaced by the vector V . 
 
For our example the voltages v2 and v3  are given by: 
 

R2(R3 + R4)Vsv2 =
R1R2 + R1R3 + R2R3 + R1R4 + R2R4

   (4.14) 

 
R2R4 VsV3 =

R1R2 + R1R3 + R2R3 + R1R4 + R2R4
   (4.15) 

 
 
We can express the above results compactly by introducing the quantity 
 
 

R 2(R 3 + R 4)Reff =
R 2 + R 3 + R 4

      (4.16) 
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This resistance arises naturally in the problem as you can see by redrawing the 
circuit as shown on Figure 5. 

Reff
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Figure 5. Circuit simplification 

 
In terms of Reff the solutions become: 
 

Reffv2=Vs
R1+Reff

       (4.17) 

 
R4v3=v2

R3+R4
       (4.18) 

 
The result for  v3  becomes clear if we consider the part of the circuit enclosed by the 
ellipse on Figure 5(a) 
 
Given the voltages at these nodes, we can then use Ohm’s law to calculate the currents. 
 

s
1

1 eff

vi =
R + R

        (4.19) 

 
b

2
2

vi =
R

        (4.20) 

and 
b

3
3 4

vi =
R + R

        (4.21) 
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So, the node voltage method provides an algorithm for calculating the voltages at the 
nodes of a circuit.  Provided one can specify the connectivity of elements between nodes, 
then one can write down a set of simultaneous equations for the voltages at the nodes.  
Once these voltages have been solved for, then the currents are calculated via Ohm’s law. 
 
 
Nodal analysis with floating voltage sources. The Supernode. 
 
If a voltage source is not connected to the reference node it is called a floating voltage 
source and special care must be taken when performing the analysis of the circuit.  
In the circuit of Figure 6 the voltage source V 2  is not connected to the reference node 
and thus it is a floating voltage source. 
 

R1

R2 R3V1
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+

_

+

+

+

__
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i1

i2 i3
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Figure 6. Circuit with a supernode. 
 

The part of the circuit enclosed by the dotted ellipse is called a supernode. Kirchhoff’s 
current law may be applied to a supernode in the same way that it is applied to any other 
regular node. This is not surprising considering that KCL describes charge conservation 
which holds in the case of the supernode as it does in the case of a regular node. 
 
In our example application of KCL at the supernode gives 
 
 i1 i2 i3= +  (4.22) 
 
In term of the node voltages Equation (4.22) becomes: 
 

 V1 v2 v2 v3
R1 R2 R3
−

= +  (4.23) 

 
The relationship between node voltages v1  and v2  is the constraint that is needed in 
order to completely define the problem. The constraint is provided by the voltage source 

. V 2
 
 V 2 v3 v2= −  (4.24) 
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Combining Equations (4.23) and (4.24) gives 
 

 

V1 V 2
R1 R3v2 1 1 1

R1 R2 R3

−
=

+ +
 (4.25) 

 

 

V1 V 2
R1 R3v3 V 21 1 1

R1 R2 R3

−
=

+ +
−  (4.26) 

 
Having determined the node voltages, the calculation of the branch currents follows from 
a simple application of Ohm’s law. 
 
Example 4.1 Nodal analysis with a supernode 
 
The circuit in Figure 7 contains two voltage sources and with our assignment of the 
reference node voltage source V 2  is a floating voltage source As indicated in the figure 
the supernode now encloses the voltage source as well as the resistor element R4  which 
is parallel with it. 
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Figure 7. Another supernode example 
 

First we notice that the current i4  through resistor R4  is given by  
 

 V 2i4
R4

= −  (4.27) 

Where the negative sign denotes that the current direction is opposite to the one 
indicated. 
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Applying KCL at the supernode we have 
 

 V1 v2 v2 v3i1 i2 i3
R1 R2 R3
−

= + ⇒ = +  (4.28) 

 
The floating voltage source provides a constraint between v2  and v3 , such that 

,and thus Equation (4.28) becomes V 2 v3 v2= −
 

 

V1 V 2
R1 R3v2 1 1 1

R1 R2 R3

−
=

+ +
 (4.29) 

 
And the node voltage v3  follows. 
 

 

V1 V 2
R1 R3v3 V 21 1 1

R1 R2 R3

−
=

+ +
+  (4.30) 

 
 
 
Example 4.1 Nodal analysis with current sources 
 
Determine the node voltages v1 , , and v3  of the circuit in Figure 8. v2
 

R1

R2 R3Vs

Is

i1

i2
i3

v1 v2 v3

n1 n2 n3

 
 

Figure 8. Circuit with voltage and current source. 
 
We have applied the first five steps of the nodal method and now we are ready to apply 
KCL to the designated nodes. In this example, the current source Is  constraints the 
current i3  such that i3 . Is=
 
KCL at node  gives n2
 
 i1 i2 Is= +  (4.31) 

6.071, Spring 2006. Chaniotakis and Cory 9 



 
And with the application of Ohm’s law 
 

 Vs v2 v2 v3
R1 R2 R3
−

= +  (4.32) 

 
Where we have used v1 at node . Vs= n1
 
The current source provides a constraint for the voltage v3  at node . n3
 
 v3 IsR3=  (4.33) 
 
Combining Equations (4.32) and (4.33) we obtain the unknown node voltage v2  
 

 

Vs IsR3
R1v2 1 1
R1 R2

−
=

+
 (4.34) 
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The Mesh Method 
 
The mesh method uses the mesh currents as the circuit variables. The procedure for 
obtaining the solution is similar to that followed in the Node method and the various 
steps are given below.  
 

1. Clearly label all circuit parameters and distinguish the unknown parameters from 
the known. 

2. Identify all meshes of the circuit. 
3. Assign mesh currents and label polarities. 
4. Apply KVL at each mesh and express the voltages in terms of the mesh currents. 
5. Solve the resulting simultaneous equations for the mesh currents. 
6. Now that the mesh currents are known, the voltages may be obtained from 

Ohm’s law. 
 
A mesh is defined as a loop which does not contain any other loops. Our circuit example  
has three loops but only two meshes as shown on Figure 9. Note that we have assigned a 
ground potential to a certain part of the circuit. Since the definition of ground potential is 
fundamental in understanding circuits this is a good practice and thus will continue to 
designate a reference (ground) potential as we continue to design and analyze circuits 
regardless of the method used in the analysis. 
 

R1

R2

R3

R4

Vs
+

_
mesh1 mesh2

loop

 
Figure 9. Identification of the meshes 

 
The meshes of interest are mesh1 and mesh2. 
 
For the next step we will assign mesh currents, define current direction and voltage 
polarities.  
The direction of the mesh currents I1  and  is defined in the clockwise direction as 
shown on Figure 10. This definition for the current direction is arbitrary but it helps if we 
maintain consistence in the way we define these current directions. Note that in certain 
parts of the mesh the branch current may be the same as the current in the mesh. The 
branch of the circuit containing resistor  is shared by the two meshes and thus the 
branch current (the current flowing through ) is the difference of the two mesh 
currents. (Note that in order to distinguish between the mesh currents and the branch 

I2

R2
R2
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currents by using the symbol  for the mesh currents and the symbol for the branch 
currents.) 

I i

R1

R2

R3

R4

Vs
+

_
I1 I2

mesh1 mesh2

 
 

Figure 10. labeling mesh current direction 
 
Now let’s turn our attention in labeling the voltages across the various branch elements. 
We choose to assign the voltage labels to be consistent with the direction of the indicated 
mesh currents. In the case where a certain branch is shared by two meshes as is the case 
in our example with the branch that contains resistor  the labeling of the voltage is 
done for each mesh consistent with the assigned direction of the mesh current.  

R2

 
In this, our first encounter with mesh analysis let’s consider the each mesh separately and 
apply KVL around the loop following the defined direction of the mesh current. 
 
Considering mesh1. 
For clarity we have separated mesh1 from the circuit on Figure 11. In doing this, care 
must be taken to carry all the information of the shared branches. Here we indicate the 
direction of mesh current  on the shared branch. I2
 

R1

R2Vs
+

_
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+
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Figure 11. Sub-circuit for mesh1 
 
 
Apply KVL to mesh1. 
Starting at the upper left corner and proceeding in a clock-wise direction the sum of 
voltages across all elements encountered is: 
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 ( )I1R1 I1 I2 R2 Vs 0+ − − =  (4.35) 
 
Similarly, consideration of mesh2 is shown on Figure 12. Note again that we have 
indicated the direction of the mesh current on the shared circuit branch. I1
 
 

R2
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+

+

_

_

_
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Figure 12. Sub-circuit for mesh2 
 

Apply KVL to mesh2 
Starting at the upper right corner and proceeding in a clock-wise direction the sum of 
voltages across all elements encountered is: 
 
 ( ) ( )I2 R3 R4 I2 I1 R2 0+ + − =  (4.36) 
 
 
Keeping in mind that the unknowns of the problem are the mesh currents  and I2  we 
rewrite the mesh equations (4.35) and (4.36) as 

I1

 
 ( )I1 R1 R2 I2R2 Vs+ − =  (4.37) 
 
 ( )I1R2 I2 R2 R3 R4 0− + + + =  (4.38) 
 
In matrix form equations (4.37) and (4.38) become, 
 

  (4.39) 
R1 R2 R2 I1 Vs

R2 R2 R3 R4 I2 0
+ −⎡ ⎤

=⎢ ⎥− + +⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 
Equation (4.39) may now be solved for the mesh currents  and . I1 I2
 
It is evident from Figure 13 that the branch currents are: 
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Figure 13. Branch and mesh currents 
 
 

 
i1 I1
i2 I1 I2
i3 I2

=
= −
=

 (4.40) 

 
 
 
Example 4.3 Mesh analysis with current sources 
 
Consider the circuit on Figure 14 which contains a current source. The application of the 
mesh analysis for this circuit does not present any difficulty once we realize that the mesh 
current of the mesh containing the current source is equal to the current of the current 
source: i.e. I2 . Is=
 

R1

R2

R3

Vs
+

_
I1

I2

mesh1 mesh2

i1

i2

i3

Is

 
 

Figure 14. Mesh analysis with a current source. 
 
In defining the direction of the mesh current we have used the direction of the current . 
We also note that the branch current 

Is
i3 Is= . 

 
Applying KVL around mesh1 we obtain 
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 ( )I1R1 I1 Is R2 Vs+ + =  (4.41) 
 
 
The above equation simply indicates that the presence of the current source in one of the 
meshes reduces the number of equations in the problem.  
 
The unknown mesh current is  
 

 Vs IsR2I1
R1 R2
−

=
+

 (4.42) 
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Practice problems with answers. 
 
Determine the currents in the following circuits with reference to the indicated direction. 

6 Ω 

4 Ω 

2 Ω 

12 V 6 V 

i1

i2

i3

 
 
Answer: , , =i1 2.180A =i2 0.270A =i3 2.450A  
 

6 Ω 

4 Ω 

2 Ω 

12 V 6 V 

i1

i2

i3

2 Ω  
Answer: , , =i1 1.877A = −i2 0.187A =i3 1.690A  
 

6 Ω 

4 Ω 10 V 

i1

i2

10 V 

2 Ω

i3

 
 
Answer: , , =i1 0.455A = −i2 1.820A = −i3 1.36A  
 

6 Ω 

4 Ω 10 V 

i1

i2

10 V 

2 Ω

i3

 
 
Answer: , , =i1 2.270A =i2 0.909A =i3 3.180A  
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6 Ω 

4 Ω 

2 Ω 

12 V 

i1

i2
i4

6 V 

2 V 2 Ω 

i3
i5

 
 
Answer: , , =i1 1.180A = −i2 1.240A = −i3 0.058A = −i4 0.529A ,  =i5 0.471A
 

6 Ω 

4 Ω 

2 Ω

12 V 

i2

3 Ω

2 Ω 

i1

v1 v2

 
 
Answer: , , =i1 3.690A = −i2 0.429A =v1 5.83V , =v2 6.69V  
 

2 Ω 

15 V 

1 A 

i1

i2
i3

v2 v3

5 Ω 4 Ω

3 Ω 
i4

 
 
 
Answer:   i1 3.31A,i2 1.68A,i3 1.63A,i4 0.627 A,v2 8.39V ,v3 6.51V= = = = = =
 
 
 

6.071, Spring 2006. Chaniotakis and Cory 17 



2 Ω 

12 V 

4 V 

6 Ω4 Ω 

8 Ω 

i1

i2

i3

i5
i4

 
 
Answer: , , =i1 3.09A =i2 1.45A = −i3 0.50A , =i 4 2.14A , =i5 1.64A  
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Problems: 
 
4.1. For the circuit on Figure P1: 
 

1. Set up the problem for analysis using the nodal method. Indicate the reference 
node that will make the problem easy to solve. 

2. Derive an expression of the voltage v1  and the current  i5
 

R1

R2

R3

V2

v1

i5V1

R4

R5

 
 

Figure P1 
 
 
4.2 For the circuit shown on Figure P2 derive the equations for the voltages v1 , v2 , v3  
using nodal analysis. 
 

R1

R2
R3

V2

Is

V1 R4

R5

v1

v2

v3  
 

Figure P2 
 
 
4.3 Repeat problem 4.2 using mesh analysis 
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4.4 Determine the currents i  for the circuit on Figure P4 with the reference node 
as indicated. 

1,i2,i3

R1 R2 R3Is

V1

i1 i2 i3

 
 

Figure P4 
 

4.5 Determine the currents i  for the circuit on Figure P5 with the reference node 
as indicated. 

1,i2,i3

R1 R2 R3Is1 i1 i2 i3

Is2

 
 

Figure P5 
 

4.6 For the circuit shown on Figure P6: 
1. Determine the current i5  through resistor R5  
2. Derive the condition for which i5

Is 0.01=  
3. Assume that is known with an error of Is sδ and the circuit resistors have a 

tolerance of Rδ . Calculate the uncertainty in i5  
4. If resistor R5  represents the internal resistance of a measuring device, estimate 

the relative value or  so that the measurement deviates a maximum of 1% 
from the ideal. 

R5

 

R1 R2

R3
i5

Is

R4

R5

 
 

Figure P6 
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