Massachusetts institute of Technology Department of Nuclear Science and Engineering Department of Electrical Engineering and Computer Science

22.071/6.071 - Introduction to Electronics, Signals and Measurement Spring 2006

Homework 9
Due 4/26/06

Problem 1.

Determine the value of β for the transistor such that the small signal voltage gain ($A_{v}=\frac{v_{o}}{v_{i}} \cong-\frac{R_{C}}{R_{E}}$) is within 10% of the actual value.

Use $\begin{aligned} & R_{C}=4 \mathrm{k} \Omega, R_{\mathrm{E}}=1 \mathrm{k} \Omega, \\ & R_{1}=50 \mathrm{k} \Omega, R_{2}=10 \mathrm{k} \Omega,\end{aligned}$

Problem 2

Draw the small signal equivalent AC circuit.

Calculate the small signal gain of this circuit.

Problem 3.

The transistor in this circuit has $\beta=100$. and Vcc=5 Volts.

- Determine the DC voltages VB and VE
- Find R_{C} so than $\mathrm{V}_{\mathrm{CEQ}}=3$ Volts.
- Calculate the small signal voltage
 gain. (assume that C 1 and C 2 are large)

