Massachusetts institute of Technology Department of Nuclear Science and Engineering Department of Electrical Engineering and Computer Science

22.071/6.071 - Introduction to Electronics, Signals and Measurement Spring 2006

Homework 6
Due 3/22/06

Problem 1.
Calculate the currents $i 1(t)$ and $i 2(t)$ as shown on the following circuit

Problem 2.

Determine the voltage Vo for the following circuit. (Hint: superposition)

Problem 3.

For the circuit below, determine the Thevenin equivalent circuit seen by capacitor C . (Hint: it helps if you work out the problem symbolically and then substitute for the element values.)

Problem 4.

Tau finds a black box with 3 terminals labeled X, Y, Z. Tau, who took 6.071 last year, decides to make resistance measurements across the terminals at $\mathrm{DC}(\omega=0 \mathrm{~Hz})$ and at high frequency (ω large). She observes the following results:

	Resistance (Ω) at	
Measure resistance across	DC	High-Freq.
$\mathrm{X}-\mathrm{Y}$	∞	40
$\mathrm{Y}-\mathrm{Z}$	0	∞
$\mathrm{X}-\mathrm{Z}$	∞	∞

Which of the following equivalent circuits is inside Tau's black box?

Circuit A

Circuit C

Circuit B

Circuit D

Problem 5.

A motor is made up of a coil which has a resistance R and an inductance L. We will set up an experiment to measure the values of R and L. The circuit is shown below.

The motor runs with 60 Hz power and all measurements will be performed with the real source power connected to it and operating at a constant load (steady state). Using a voltmeter set in AC mode (i.e measure the RMS value of a sinusoidal voltage) we perform the following measurements.

Vs $=220$ Volts , Va $=75$ Volts , Vm $=110$ Volts

Use these measurements to determine R and L

