
Operational Amplifiers 

Introduction 

The operational amplifier (op-amp) is a voltage controlled voltage source with very high 
gain. It is a five terminal four port active element. The symbol of the op-amp with the 
associated terminals and ports is shown on Figure 1(a) and (b).  
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Figure 1. Symbol and associated notation of op-amp 

The power supply voltages VCC and VEE power the operational amplifier and in general 
define the output voltage range of the amplifier. The terminals labeled with the “+” and 
the “-” signs are called non-inverting and inverting respectively. The input voltage Vp 
and Vn and the output voltage Vo are referenced to ground. 

The five terminals of the op-amp form one (complicated) node and if the currents are 
defined as shown on Figure 1(a) the KCL requires that 

In + Ip + Ic + Ic− + Io = 0  (1.1)+ 

Therefore for current balance we must include all currents. This is what defines an active 
element. If we just consider the signal terminals then there is no relationship between 
their currents. In particular, 

In + Ip + Io ≠ 0  (1.2) 

The equivalent circuit model of an op-amp is shown on Figure 2. The voltage Vi is the 
differential input voltage Vi = Vp −Vn . Ri is the input resistance of the device and Ro is 
the output resistance. The gain parameter A is called the open loop gain. The open loop 
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configuration of an op-amp is defined as an op-amp circuit without any circuit loops that 
connect the output to any of the inputs. inputs. 
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Figure 2. Equivalent circuit model of op-amp device 

In the absence of any load at the output, the output voltage is 

(Vo = AVi = A Vp −Vn)  (1.3) 

Which indicates that the output voltage Vo is a function of the difference between the 
input voltages Vp and Vn. For this reason op-amps are difference amplifiers. 

For most practical op-amps the open loop DC gain A is extremely high. For example, the 
popular 741 has a typical open loop gain A of 200000 Vo/Vi. Some op-amps have open 
loop gain values as high as 108 Vo/Vi. 

The graph that relates the output voltage to the input voltage is called the voltage transfer 
curve and is fundamental in designing and understanding amplifier circuits. The voltage 
transfer curve of the op-amp is shown on Figure 3. 
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Figure 3. Op-amp voltage transfer characteristics. 
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Note the two distinct regions of operation: one around Vi=0V, the linear region where the 
output changes linearly with respect to input, and the other at which changes in Vi has 
little affect on Vo, the saturation region (non-linear behavior). 

Circuits with operational amplifiers can be designed to operate in both of these regions. 
In the linear region the slope of the line relating Vo to Vi is very large, indeed it is equal 
to the open loop gain A. For a 741 op-amp powered with VCC= +10V and VEE= -10V, 
Vo will saturate (reach the maximum output voltage range) at about ±10 V. With an 
A=200,000V/V saturation occurs with an input differential voltage of 10/200,000 = 50µV, 
a very small voltage. 
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The ideal op-amp model 

From a practical point of view, an ideal op-amp is a device which acts as an ideal voltage 
controlled voltage source. Referring to Figure 2, this implies that the device will have the 
following characteristics: 

1.	 No current flows into the input terminals of the device. This is equivalent to 
having an infinite input resistance Ri=∞. In practical terms this implies that the 
amplifier device will make no power demands on the input signal source. 

2.	 Have a zero output resistance (Ro=0). This implies that the output voltage is 
independent of the load connected to the output. 

In addition the ideal op-amp model will have infinite open loop gain ( A →∞ ). The ideal 
op-amp model is shown schematically on Figure 4. 
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Figure 4. Ideal op-amp model. 

In summary, the ideal op-amp conditions are: 

I p = I = 0 No current into the input terminals ⎫n 
⎪Ri →∞  Infinite input resistance ⎪
⎬  (1.4)

R0 = 0 Zero output resistance ⎪ 
⎪A →∞  Infinite open loop gain ⎭

Even though real op-amps deviate from these ideal conditions, the ideal op-amp rules are 
very useful and are used extensively in circuit design and analysis. In the following 
sections we will see how to use these rules and the typical errors associated with these 
assumptions. 

Note that when using the ideal op-amp rules we should remember that they are limits and 
so we must perform our analysis by considering them as limits. For example if we 
consider the equation 

V0 = AVi ⇒Vi =
V0	  (1.5)
A 

Which in turn implies that Vi → 0 as  A  →∞ . However, this does not mean that V0 → 0 
but rather that as A →∞ , Vi → 0 in such a way that their product AVi =V0 ≠ 0 . 
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Negative Feedback and Fundamental Op-Amp Configurations. 

By connecting the output terminal of the op-amp with the inverting terminal of the device 
we construct a configuration called the negative feedback configuration as shown on 
Figure 5. The presence of the biasing voltages of the op-amp, VCC and VEE, is assumed 
and will not be shown explicitly in the following circuits. The operational amplifier is 
assumed to be in the linear region (see Figure 3.) 

feedback path 

Vo 
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Vn 

Vi 

Figure 5. Basic negative feedback configuration. 

The closed loop gain of this device is now given by the ratio: 

G ≡ V0  (1.6)
Vi 

In negative feedback, a certain fraction of the output signal, voltage Vo, is fed back into 
the inverting terminal via the feedback path.  

The block diagram configuration of the negative feedback amplifier is shown on Figure 
6. This fundamental feedback circuit contains a basic amplifier with an open-loop gain A 
and a feedback circuit described by the parameter β. 
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Figure 6. Block diagram of an ideal negative feedback amplifier 

The feedback circuit provides a fraction of the output signal, βVo, which is subtracted 
from the input source signal, Vs. The resulting signal, Vi, which is also called the error 
signal, is the input to the amplifier which in turn produces the output signal Vo = AVi. It 
is the subtraction of the feedback signal from the source signal that results in the negative 
feedback. 

The gain Vo/Vs of the inverting amplifier is given by 
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Vo AG ≡ =  (1.7)
Vs 1+ βΑ

The feedback gain, or closed-loop gain, depends on the open-loop gain, A, of the basic 
amplifier and the feedback parameter β. The feedback parameter β depends only on the 
characteristics of the feedback network. For practical operational amplifiers the open-
loop gain A is very large. Therefore, in the limit where A →∞ , Equation (1.7) gives 

1G ≅  (1.8)
β 

and so the gain becomes independent of A and it is only a function of the parameter β. 
The value and “quality” of β depend on the design of the feedback network as well as on 
the “quality” of the elements used. Therefore, the designer of the feedback amplifier has 
control over the operational characteristics of the circuit. 
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Building Negative Feedback Amplifiers. 

With two resistors we can construct the fundamental feedback network of a negative 
feedback amplifier. Depending on the terminal at which the signal is applied, the 
fundamental negative feedback configuration can be in the inverting amplifier 
arrangement, where the input signal, Vin, is applied to the inverting terminal, Figure 
7(a), or in the non-inverting amplifier arrangement, where the input signal, Vin, is 
applied to the non-inverting terminal, Figure 7(b). 
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Vin
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(a) Inverting amplifier (b) Non-inverting amplifier 

Figure 7. Basic feedback amplifier configurations: (a) inverting, (b) non-inverting 

We will perform the analysis by considering both the effect of finite open loop gain (A is 
finite) and the ideal op-amp model for which A →∞ . 
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Inverting Amplifier 

The basic inverting amplifier configuration is shown on Figure 8. The input signal, Vin , is 
applied to the inverting terminal and the balance of the circuit consists of resistors R1 and 
R2. 
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Figure 8. Inverting amplifier circuit 

Let’s analyze this circuit, i.e determine the output voltage Vo as a function of the input 
voltage Vin and the circuit parameters, by assuming infinite input resistance at the 
inverting and non-inverting terminals, zero output resistance and finite open loop gain A. 
The equivalent circuit of this model is shown on Figure 9. 
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Figure 9. Inverting amplifier circuit model 

Since our circuit is linear, the voltage at node 1 can be found by considering the principle 
of superposition. 

Vn is the sum of voltages Vn and Vnin as shown on the circuits of Figure 10. o

Vn  is the contribution of Vo acting alone and Vnin  is the contribution of Vin acting alone. o
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Figure 10. Inverting amplifier equivalent circuits considering the property of linearity. 

Vn is thus given by 

Vn = Vno 
+ V = V R1 +Vin  

R2  (1.9)onin  R1 + R2 R1 + R2 

The term V R1  corresponds to the output voltage that is fed back into the inverting o R1 + R2 

input by the feedback resistor network. 

Vo( We also know that Vo = A Vp Vn ) and since Vp = 0 , V = - . Equation (1.9) becomes n A 
Vo- = V R1 +Vin  

R2 (1.10)oA R R2 R R2+1 + 1 

By rearranging Equation (1.10) we obtain the voltage gain of the inverting amplifier 

A 
V

G ≡ V0 = −  
in 1 + 

R1 (1+ A)
R2 (1.11)R2 1

= −  
1 ⎛ R2 ⎞R1 1 + ⎜1+ 

R1 ⎠⎟A ⎝ 

Recall that for an ideal operational amplifier the open loop gain A is infinite. By taking 
the limit of Equation (1.11) as A →∞ , the “ideal” gain of the inverting amplifier 
becomes 

V 
Gideal = V0 = −

R2 (1.12) 
in R1  
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By comparing Equation (1.12) to Equation (1.8) we see that the feedback parameter for 
R1this amplifier circuit is β = .
R2 

Note that the ideal gain depends only on the ratio of resistors R1 and R2. This is a great 
result. We are now able to design an amplifier with any desirable gain by simply 
selecting the appropriate ratio of R1 and R2. However, this design flexibility requires a 
very large value of A, the open loop gain of the op-amp. In practice this is not a very 
difficult requirement to achieve. Op-amp devices have been designed and manufactured 
with very low cost and are characterized by very high values of A. 

The negative sign for the gain indicates that the polarity of Vo is opposite to the polarity 
of Vin. For example if the input signal Vin is a sinusoid of phase 0 degrees, the output 
signal will also be a sinusoid with a phase shift of 180 degrees. Figure 11 shows the 
voltages Vin and Vo for an inverting amplifier with R2/R1=2. 

Figure 11. Input and output signals of an inverting amplifier with gain of 2. 
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It is instructive at this point to investigate the difference between the ideal model 
represented by Equation (1.12) and the finite open loop gain model represented by 
Equation (1.11).  Let’s consider an inverting amplifier design with R1=10kΩ and 
R2=100kΩ. In this case, the ideal voltage gain is -10 as given by Equation (1.12). By 
assuming that A ranges in values from 1,000 V/V to 10,000,000V/V, Table I shows the 
results from Equation (1.11) and the resulting deviation in % from the ideal case. 

Table I. The effect of finite A on op-amp gain 

A G Deviation % 

1000 -9.9810 1.088 

10000 -9.9890 0.109 

100000 -9.9989 0.011 

200000 -9.9998 0.0055 

1000000 -9.9999 0.0011 

10000000 -9.99999 0.00011 

The widely used 741 op-amp has a typical open loop gain of 200,000 V/V. With the 741 
used in an inverting amplifier circuit, the error introduced in the analysis by considering 
the ideal gain is less than 0.0055% (55 ppm), a very good value for many applications. 
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Inverting Amplifier. Ideal op-amp circuit analysis 

The ideal op-amp rules are: 

1.	 The differential input voltage is zero. Vi = 0 → Vn = Vp 

2.	 No current flowing into the input terminals. In = Ip = 0

This is equivalent to infinite input resistance 

for the op-amp Ri = ∞


3.	 Infinite open loop gain. A →∞  

4.	 Output resistance is zero Ro = 0 

By using these rules we can analyze the inverting amplifier op-amp circuit.  From Figure 
12 we see that Vp is at ground potential (Vp=0V). According to the second rule the 
voltage Vn must also be at zero Volts. This does not mean that the inverting terminal is 
grounded. It simply implies that the inverting terminal is at ground potential (zero volts) 
but it does not provide a current path to ground. This terminal is said to be at “virtual 
ground”. 
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Figure 12. Ideal op-amp inverting amplifier circuit. 

Since In=Ip=0 (rule 2), KCL at node 1 tells us that current I1 must be equal to current I2. 

I1 	= 
Vin −V1 

= 
Vin = I 2 (1.13)

R1 R1 

The current I2, flowing through R2, is related to the voltage drop across R2 
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Vn - Vo	 R2I 2 	= ⇒ Vo  = - I 2 R2 = - Vin  (1.14)
R2	 R1 

And so the gain of the ideal inverting amplifier is 

V 
Gideal ≡ 

V0 = −
R2 (1.15) 

in R1 

Note that the gain given by Equation (1.15) is the same as that obtained in the general 
case as given by Equation (1.11) as A →∞ . 

In order to obtain additional intuition on the operation of this circuit let’s consider the 
two cases for Vin. 

1.	 For Vin >0 the current I1 will be flowing as indicated on Figure 12. Since In = 0, 
I2 must also flow as indicated. In order for this to happen, the voltage Vo must be 
at a lower potential than the voltage Vn. But since Vn=0, this can happen only if 
Vo < 0. 

2.	 For Vin <0 the direction of the currents will be reversed and the argument follows 
in a similar way, resulting in Vo > 0. 
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Non-Inverting Amplifier 

Figure 13 shows the basic non-inverting amplifier configuration. The negative feedback 
is maintained and the input signal is now applied to the non-inverting terminal. 
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Figure 13. Non-inverting amplifier 

The equivalent circuit of the Non-Inverting amplifier with a finite open-loop gain is 
shown on Figure 14. Here we have assumed an infinite input resistance and a zero output 
resistance for the op-amp. 

R2 

+ 

+ 

_ 

Vp 

Vn 
Vi 

AVi 

Ip 

InR1 

inV 

1 

I2 

I1 in Vo 

Figure 14. Equivalent circuit of Non-inverting amplifier with finite open loop gain. 

Since In = Ip=0, we have I1=I2 and therefore: 

−Vn Vn −Vo Vo ⎛ 1 1 ⎞ = ⇒ + (1.16)
R1 R2 R2 

= Vn ⎜
⎝ R1 R2 ⎠⎟ 

Since the voltage Vi = Vp-Vn = Vin-Vn, the output voltage is given by: 
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(Vo = A Vin −Vn) (1.17) 

Combining Equations (1.16) and (1.17), the resulting expression for the closed loop gain, 
VoG ≡ , becomes: 
Vin 

Vo 1+ R2 / R1 (1.18)G ≡ = 
Vin 1 (1  + + R2 / R1) / A

The gain is positive and unlike the inverting amplifier, the output voltage Vo is in phase 
with the input Vin and the gain is always greater than 1. 

From Equation (1.18)we see that as A →∞ , the closed loop gain is 

R21G = +  (1.19)
A→∞ R1 

The open-loop gain, A, of an op-amp is a parameter with considerable variability. It 
depends on the characteristics of the various components inside the operational amplifier 
(transistors, resistors, capacitors, diodes) and so it may be a function of environmental 
conditions (temperature, humidity) and manufacturing processes. As A changes by a 

dA dGcertain fraction, 
A 

, the closed loop gain, G, will also change by an amount 
G 

. By 

dGtaking the derivative 
dA

 of Equation (1.18) and simplifying we obtain: 

⎡ R2 ⎤ 
⎢ 1+

R1 ⎥ 
dG dA ⎢ A ⎥

⎥ 
= 

dA ⎛ ⎞G 
= ⎢ ⎜ ⎟  (1.20)

AG A ⎢ 1+ R2 ⎥ A ⎝ ⎠  
R1 ⎥⎢1+⎢⎣ A ⎦⎥ 

From Equation (1.20) we see that the change in G due to a change in A is modulated by 
Gthe factor .
A 

As an example let’s consider the 741 op-amp with a nominal open loop gain of 200 
V/mV, which is arranged in a non-inverting amplifier configuration with a closed loop 
gain of 10. If the open loop gain A changes by 20%, the change in the closed loop gain as 
given by Equation (14) is 
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dG ⎛ 10 ⎞ 
G

= 20 ⎜
⎝ 2.0 × 105 ⎟⎠ 

% = 0.001% (1.21) 

The advantage of having an op-amp with a large value of A is apparent. Of course by 
“large” value we mean that the open-loop gain is much larger than the closed loop gain 
( A >> G ) . 

We have been able, by using a component that is characterized by large uncertainty in its 
performance, to construct a devise with very high performance. This however can happen 
only if the open-loop gain A is very large, which can be easily achieved with standard 
integrated circuit technology. 
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Non-inverting amplifier: Ideal model 

Referring to Figure 13, the ideal model implies the voltages at nodes 1 and 2 are equal: 
Vn = Vin. Also, since no current flows into the terminals of the op-amp, KCL at node 1 
gives, 

⎫
⎪
I
1 
I
2
=

⎪
⎪
⎬
⎪
⎪


Vin Vin Vin - Vo I1 (1.22)=
 -
 ⇒
-
 =

R1 R1 R2

Vin - Vo I 2 =
 ⎪⎭
R2 

Solving for the gain (Vo/Vin) we have, 

Vo R2G ≡
 =
1 (1.23)+

Vin R1 ideal 

Note that Equation (1.23) is the same as Equation (1.19) which was obtained in the limit 
as A →∞ . 
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Voltage Follower. Buffer. 

VoBy letting R1→∞  and R2 = 0 , Equation (1.23) gives G = =1.  Figure 15 shows 
Vin 

the resulting circuit. 

inV 

Vo 

Figure 15. Voltage follower op-amp circuit 

The voltage gain of this configuration is 1. The output voltage follows the input. 

So what is the usefulness of this op-amp circuit? 

Let’s look at the input and output resistance characteristics of the circuit. As we have 
discussed, the resistance at the input terminals of the op-amp is very large. Indeed, for our 
ideal model we have taken the value of that resistance to be infinite. Therefore the signal 
Vin sees a very large resistance which eliminates any loading of the signal source. 
Similarly, since the output resistance of the op-amp is very small (zero ideally), the 
loading is also eliminated at the output of the device. In effect this is a resistance 
transformer. 

In order to see the importance of this buffer circuit let’s consider the case where the input 
signal is a source with an output resistance Rs and is connected to a load with resistance 
RL. In Figure 16(a) the signal source is connected directly to the load RL. 
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Figure 16. (a) Source and load connected directly. (b) Source and load connected via a voltage 

follower. 

From Figure 16(a), the voltage divider formed by Rs and RL gives a value for VL which 
is a fraction of Vin given by 

RLVL = Vin (1.24)
RL Rs  +

For example, if RL = 1kΩ and Rs = 10 kΩ, then VL ≈ 0.1 Vin which represents a 
considerable attenuation (loading) of the signal source. 

If we now connect the signal source to the load with a buffer amplifier as shown on 
Figure 16(b). Since the input resistance of the amplifier is very large (no current flows 
into the terminal), the voltage at the non-inverting terminal, Vp, is equal to Vin. In 
addition, since the output resistance of the op-amp is zero, the voltage across the load 
resistor VL = Vo = Vin. The load now sees the input voltage signal but it places no 
demands on the signal source since it is “buffered” by the operational amplifier circuit. 
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Example: Non-Inverting amplifier design 

Design an amplifier with a gain of 20dB by using standard 5% tolerance resistors. The 
input signal is in the range -1V to +1V. The amplifier is to drive a resistive load.  For 
your design you may use an op-amp with the ability to deliver a maximum current of 
100mA. 

Standard 5% resistors are available with values from 10Ω to 10ΜΩ. The decade values 
can be found from the following table. 

Table I. Standard 5% resistor values 

10 11 12 13 15 16 18 20 22 

24 27 30 33 36 39 43 47 51 

56 62 68 75 82 91 

For example, if we consider the multiplier 11, the possible 5% resistor values 
corresponding to it are  11Ω, 110Ω, 1.1kΩ, 11kΩ, 110kΩ, 1.1MΩ. For other multipliers, 
the values may be found by following this example. 

Solution: 

The non-inverting amplifier circuit is 

R2 

t 

Vin 

I2 
R1 

It 

LI 

LR 

Vou

Figure 17. Amplifier circuit. 

Vout From the definition of dB we have: 20dB = 20 log 
V 

 and so Vout =10 . 
in Vin 

The closed loop gain is given by Equation (1.23) and thus for our design 

R210 = +  (1.25)1 
R1 
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Our task is now to determine the values for R1 and R2 that satisfy the design constraints. 
We need two resistors whose ratio is 9 (R2/R1 = 9). From the values listed on the 5% 
table we have a few options. Some of our options are: 

R2=180Ω and R1=20Ω 
R2=1.8kΩ and R1=0.2kΩ 
R2=18kΩ and R1=2kΩ 
R2=180kΩ and R1=20kΩ 
R2=1.8MΩ and R1=200kΩ 

The power constraint will now guide us in determining the actual value of resistors R1 
and R2. With an input voltage of +1V the output voltage Vo=10V and thus the current It 
delivered by the op-amp must be less than 100mA.  

If all the current is passing through resistor RL then RL  is limited to 1kΩ. 

Besides the path through RL current may also flow to ground through R2 and R1. Since 
no current flows into the terminals of the op-amp, the fraction of the current that flows 
through R2 and R1 is 

⎛ R1+ R2 ⎞ (1.26)I 2 = It  
⎝
⎜ RL + R1+ R2 ⎠⎟ 

Note that if the resistance value of RL  is comparable to that of R1+R2, then a large 
fraction of the current provided by the op-amp flows through the feedback loop. 

Therefore in order to tightly satisfy the current constraint of the op-amp we must also 
consider the amount of current that flows through the feedback loop. The table below 
shows some of the many design possibilities. 

Table II. Possible designs 
RL R1 R2 IL I2 It 

0.1kΩ 20Ω 180Ω 100mA 50mA 150mA 
0.1kΩ 0.2kΩ 1.8kΩ 100mA 5mA 105mA 

Ω 2kΩ Ω
Ω 2kΩ 18kΩ
Ω 20kΩ Ω 
Ω Ω ΜΩ

0.1k  18k  100mA 0.5mA 100.5mA 
110  90.9mA 0.5mA 91.4mA 
110  180k 90.9mA 0.05mA 90.95mA 
110  200k  1.80  90.9mA 0.005mA 90.905mA 

If we consider the 5% tolerance of the resistors we conclude that we are limited to the 
following resistor values: 
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RL > 100 Ω ⎫ 
⎪R1 ≥ 2kΩ ⎬ (1.27) 
⎪R2 ≥ 18k Ω⎭

Any set of the values in the enclosed dotted box on Table II may be used in this design. 
In practice we should however avoid extremely large resistance values in the feedback 
circuit. 

Problem: 

Consider a signal source with a source output resistance Rs connected to the inverting 
amplifier as shown on Figure P2. Calculate the gain of the amplifier, assuming that the 
load cannot be ignored. Define the conditions for which the loading can be ignored. 

R2 
R1 

Vs 

Rs 

RL 
Load 

Source 

Figure P2 
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Input and Output Resistance of negative feedback circuits. 

(Inverting and Non-Inverting Amplifiers) 

As we saw in the example of the buffer amplifier, op-amp amplifier circuits may, besides 
voltage amplification, provide impedance transformation. It is thus important to be able 
to determine the input and the output resistance seen by a source or a load connected to 
an op-amp circuit. 

The input impedance of an op-amp circuit with negative feedback may in general be very 
different from the open loop input/output resistance of an op-amp. 

Input resistance 

Inverting amplifier 

Vo 

Rf 

Vin 

Rin 

21 

LR 

R2 

R1 

Figure 18. Inverting amplifier showing input resistance. 

The input resistance of the inverting amplifier, or equivalently the resistance seen by the 
source Vin, is Rin as shown on Figure 18. By designating as Rf, the resistance to the right 
of point 2, we have Rin = R1 + Rf. Determining Rf and then adding R1 for the total input 
resistance is an easier process than performing the calculation together.  

The equivalent resistance Rf may be determined by considering the circuit shown on 
Figure 19(a). Here we apply a test current It and calculate the resulting voltage Vt. The 
resistance Rf is then given by Rf=Vt/It. 
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Figure 19. (a) Circuit for the calculation of the input resistance. (b) equivalent circuit for the 
calculation of input resistance Rf. 

By considering the op-amp model with open loop gain A, input resistance Ri and output 
resistance Ro, the equivalent circuit of interest is shown on Figure 19(b). By applying 
KCl at the input and output nodes (Ni and No) we have: 

KCL at node Ni gives: 

It = 
Vt +

Vt -Vo  (1.28)
Ri R2 

KCL at node No gives: 
Vo 

+ 
Vo - (A(-Vt )) +Vo - Vt = 0 (1.29)

RL Ro R2 

The ratio Vt/It may be obtained from Equations (1.28) and (1.29) by eliminating Vo. The 
input resistance of the inverting amplifier is, 

⎡ Ro ⎤A
1 

≡ 
It 
= 

1 
+ 

1 ⎢
⎢ 1+ +  

RL ⎥
⎥ 

(1.30)
Rf Vt Ri 

Ro + 
Ro ⎥R2 ⎢1+

⎢ RL R2 ⎦⎥⎣ 

In the ideal case where A →∞ , the resistance Rf → 0 , implying that Vt → 0 and 
It → 0 : the ideal op-amp rules. 

For simplicity let’s assume that Ro=0. Then,  
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1 1 1+ A 
= + (1.31)

Rf Ri R2 

For all practical situations R2 << Ri  and Equation 16 gives: 
1Rf ≅ R2 (1.32)

1+ A 

Which shows that the input resistance Rf is a very strong function of the open loop gain 
and the input resistance of the op-amp, Ri, has a negligible effect on the resistance Rf. 

For the 741 op-amp which has A=200 V/mV, Ri = 2 MΩ and Ro = 100Ω an inverting 
amplifier with R2=10 kΩ, is characterized by Rf = 0.5 mΩ. This is a negligible value for 
all applications of interest. 

Therefore, the effective resistance seen by the source is ≈ R1. 
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Non-inverting amplifier 

Figure 20 shows the equivalent non-inverting amplifier circuit for the calculation of the 
input resistance Rin. We apply a test voltage Vt and calculate the resulting current It. The 
input resistance is then Rin=Vt/It. 

R2 

It 

Vn 

+ 

_ 

Vi Vo+ 
Rin 

Ni 

No 

Vt 
LR 

Ro 
Ri 

R1 

AVi 

Figure 20. Non-inverting amplifier equivalent circuit for the calculation of the input resistance. 

We proceed by applying KCL at nodes Ni and No. 

KCL at node Ni gives: 
Vn Vn −VoIt − − = 0	 (1.33)
R1 R2 

KCL at node No gives: 
(Vo 

+ 
Vo - (A Vi ))

+
Vo - Vn 

= 0	 (1.34)
RL Ro R2 

Since Vi = Vt – Vn = I Ri, Equations (1.33) and (1.34) after some algebraic manipulations 
give 

Ro Ro ⎡⎛ 1 1 ⎞⎛  Ro Ro ⎞ Ro A ⎤1+ + + ⎟⎜  1+ + ⎟ − + ⎥ Ri2Vt RL R2 
+ 
⎣
⎢⎝
⎜ R1 R2 ⎠⎝  RL R2 ⎠ R2 R2 ⎦ (1.35)= Rin = 

It	 ⎛ 1 1 ⎞⎛  Ro Ro ⎞ Ro


⎝ R1 R2 ⎠⎝ 

⎜ + ⎟⎜  1+ 

RL  
+ 

R2 ⎠⎟
− 

R22 

For a simplification of the above expression let’s neglect Ro which is anyway small 
compared to other values. Equation (1.35) now becomes 
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⎛R2 1+ 
Ri ⎞

⎟ + Ri  (1+ A)) 
Rin = ⎝

⎜ R1 ⎠ (1.36)R21+ 
R1 

In the limit A →∞ , Rin →∞ . Similarly, in the limit Ri →∞ , Rin →∞ . 

Output Resistance 

The equivalent circuit for the calculation of the output resistance is shown on Figure 17. 
Note that this equivalent circuit, which is obtained by suppressing the input sources, is 
common for both the inverting and the non-inverting amplifiers. We apply a rest voltage 
V at the output and calculate the resulting current I. The output resistance is Rout=V/I. 

R2 

It 

Vn 

Ro 
Ri 

+ 

_ 

Vi 
AVi 

+ 

R
Ni 

No 

R1 

Vt 
out 

Figure 21. Model for the calculation of output resistance 

KCL at node No gives: 
-AVn -Vt Vn - Vt I + + = 0 (1.37)

Ro R2 

By noting that resistors R1 and Ri are in parallel, the voltage Vn at node Ni is 
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1R Ri  

Vn = Vt	 R1+ Ri  (1.38)1R Ri  
+ R2

R1+ Ri  

By substituting Equation (1.38) into Equation (1.37) the ratio Vt/It becomes 

⎛ R2	 R2 ⎞ 
Vt 

= Rout = 
Ro 

⎝
⎜1+ 

R1 
+ 

Ri  ⎠
⎟	

(1.39)R2 R2 Ro  Ro  It 1+ + + A + +
R1 Ri  R1 Ri  

In typical circuits R2<<Ri, Ro ≅ 100Ω  and A>>1. Therefore the output resistance is very 
small. For our typical 741 op-amp, with Ro = 100 Ω , Ri = 2M Ω , and A=200V/mV,  
arranged as an inverting amplifier of gain -10 the output resistance is 5.5mΩ. 

Table III summarizes the results for the input and output resistance of the ideal inverting 
and non inverting amplifiers. These general results are sufficient for the design of most 
amplifiers of interest. The non inverting amplifier is the most useful configuration in 
terms of its ideal coupling characteristics with the signal source. The signal source sees 
an infinite input resistance and thus the non-inverting amplifier places no loading 
demands on the source. Furthermore, the input resistance seen by the source does not 
change as the gain of the amplifier changes. By contrast, when a source is connected to 
an inverting amplifier, the source sees the resistor R1 as the input resistance of the 
amplifier. 
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Table III. Summary of ideal amplifier characteristics. 

R R 

inV 
V 

R2 
R1 

R 

R 

inV 

outV 

R2 
R1 

Vout⎛ ⎞ 
⎜ ⎟
⎝ ⎠ 

2 
1 

R 
R

− 
21 
1 

R 
R

+ 

R1 ∞ 

0 0 

Inverting amplifier 

input output 

out 

Non inverting amplifier 

input 

output 

Gain: 
Vin 

Rinput 

Routput 
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Practical op-amp considerations 

Input Offset and Input Bias currents 

For an ideal op amp no current flows into its input terminals. However, for real op amps 
there is a small amount of current that flows into the inverting and non inverting 
terminals as shown on Figure 22. 

IB

IB+ 

Figure 22. Op-amp symbol with input currents. 

The electrical characteristics table of op-amp device data sheets give the values for Input 
offset current (IIO) and the Input Bias current (IIB), where IIO and IIB are defined by 

IOI = BI + − -BI (1.40) 

IBI = BI + 

2 
+ -BI (1.41) 

In order to quantify the effect of the currents IB+ and IB- lets consider the amplifier 
configuration of Figure 23 for which all inputs have been set to zero. 

R2 

outV 

nV 

pV 

BI 

B+I 

R1 

Figure 23. Amplifier for the evaluation of the effect of the input bias currents. 

If IB+ and IB- are zero then the output voltage Vout will also be zero. 

The voltage error due to the bias currents IB+ and IB- is generated by the flow of these 
currents through resistor R2. For the 741 op amp, the typical room temperature values for 
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IIO and IIB are: IIO=20 nA and IIB=80 nA. For an amplifier with R2=100kΩ, the resulting 
output voltage is V = IB- R2 = (90 nA  ) (100 kΩ) = 9 mV  . In some application this out 

might be an unacceptable value. 

This “error” voltage may be reduced by simply selecting a smaller resistor R2. In some 
cases this might be sufficient assuming that other circuit characteristics like power 
consumption is not violated. 

In general however the effect of the bias currents may be reduced by employing the 
appropriate “compensation technique.” Such an arrangement is shown on Figure 24, 
where we have used resistor Rp at the non inverting terminal. 

R2 

outV 

nV 

pV 

BI 

B+I 

R1 

Rp 

Figure 24. Amplifier circuit with bias current compensating resistor. 

Since we have a linear system the effect of the bias currents on Vout can be estimated by 
using the principle of superposition. We have two cases: 

1. IB+ = 0 which gives Vout ( )  = IB−R2n 

(12. IB- = 0 which gives Vout ( )  = + R 2 )Vp  = - (1+ R 2 ) I R3p R1 R1 B+ 

And superposition gives 

⎛ R2 ⎞Vout = IB-R2 - ⎜1+ ⎟ IB+R3 (1.42)
⎝ R1 ⎠

Before we proceed with further algebraic manipulation of Equation (1.42) let’s look at 
the operation of the circuit. 

The equivalent resistance of the feedback network seen at node Vn is the parallel 
combination of R1 and R2. By further assuming that IB+ = IB-, the desired system 
symmetry can be maintained if the resistance seen at node Vp is the same as that seen at 
node Vn. Therefore if Rp has a value that is equal to the parallel combination of R1 and 
R2 the differential voltage at the inputs of the op amp balances the effect of the input 
currents. 
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Now by manipulating Equation (1.42) for the general case when IB+ ≠ IB- we obtain 

⎡ ⎤ 
⎛ R2 ⎞  ⎛  R  R  ⎛ R  R  Vout = ⎜1+ 

⎢
⎢ 

1  2  
− Rp ⎟

⎞ IIB − ⎜ 
1  2  

+ Rp ⎞⎟ 
IIO 

⎥
⎥ (1.43)⎟  ⎜  

⎝  R1 ⎠  ⎝  R1+ R2 ⎠
 ����	���2 ⎥⎝ R1+ R2 ⎠ 
⎢����	���
⎢ Bias Term Offset Term ⎥⎦⎣ 

For IB+ = IB- , IIO=0 and the “Offset Term” of Equation (1.43) is zero. The “Bias Term” 
and thus Vout will then become zero when 

1 2R RRp = (1.44)
R1+ R2 

1 2R RWhen IB+ ≠ IB-  and Rp = R1// R2 = , the “Bias Term” becomes zero and Vout isR1+ R2 

⎛ R2 ⎞⎛  R  R  1  2Vout = −⎜1+ 
R1 ⎠⎝  R1+ R2 

+ Rp ⎞ IIO = −R2 IIO (1.45)
⎝  

⎟⎜  ⎟
⎠ 2 

I 

The output error is thus proportional to the input offset current which for most op-maps is 
about an order of magnitude less than the currents IB+  and  IB- . For the 741 op amp 

B+ = 90nA   and IIO=20nA. 
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R1R2Rp = 

R1 

R2 

V 

Rp 
inV 

R1 

R2 

V 

Rp
inV 

Design Practice (principle) 

Always use a resistor Rp from the non inverting input to ground. Make 

R1+R2 
Since we want the resistance seen by V- and V+ to be the same. 

out 
out 

Input Offset Voltage 

Besides the offset current at the inputs there also exists a nonzero difference voltage Vi at 
the input terminals even if we apply the same external voltage inputs.  For the circuit of 
Figure 25 the out put voltage is not zero even though the input pins are grounded. The 
presence of this error voltage is due to transistor matching issues in the internal op-amp 
circuit. 

R2 

outV 

R1 

Figure 25. Output offset voltage  

In the above figure, Vo = Voff·(R1+R2)/R1. 
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Common Mode Rejection Ratio (CMRR) 

As we have seen, the usefulness of the op amp is derived from its ability to amplify 
differential signals. In fact the ideal op amp has an infinite gain for differential voltage 
signals. It is desired that signals that are common to both inputs “Common Mode (CM) 
Signals” be rejected by the amplifier. An ideal op amp has the ability to completely reject 
those CM signals; thus having infinite Common Mode Rejection (CMR) ability. 

For an amplifier subjected to a differential voltage VD and a common mode voltage VCM, 
the output voltage is 

Vo = G VD + GCMVCM  (1.46)D 

Where GD is the differential gain and GCM is the common mode gain of the amplifier. In 
practice we would like to minimize GCM. The ability of an amplifier to reject the CM 
signal is expressed by a parameter called the Common Mode Rejection Ratio (CMRR) 
which is defined as the ratio of the differential gain to common mode gain as follows. 

Gain of Differential Signal GD (1.47)CMRR ≡  20 log = 20 log 10 10Gain of Common Mode Signal GCM 

In the open loop configuration, our standard 741 op amp is characterized by a CMRR of 
90dB for signal frequencies less than 100 Hz. At higher frequencies CMRR degrades 
considerably falling to 40dB at 100 kHz. 

In general CMRR is not of concern in the inverting amplifier configuration. Can you see 
why? explain 

Design Principle 

Signal frequency is a fundamental parameter that drives circuit design 

To see the effects of CMRR, drive a unity gain non-inverting 741 op-amp with a 10V 
step function; the output should be off 10V by a few hundred microvolts.  This error is 
partially due to the finite open-loop gain of the op-amp and partially due to the CMRR.  
The inverting configuration leads to minimal common mode error since the amplifier’s 
inputs are both at ground. 
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