
 
Using the Impedance Method 

 
 
The impedance method allows us to completely eliminate the differential equation 
approach for the determination of the response of circuits. In fact the impedance method 
even eliminates the need for the derivation of the system differential equation. 
Knowledge of the impedance of the various elements in a circuit allows us to apply any 
of the circuits analysis methods (KVL, KCL, nodal, superposition Thevenin etc.) for the 
determination of the circuits characteristics: voltages across elements and current through 
elements. 
 
Before proceeding let’s review the impedance definitions and properties of the capacitor 
and the inductor. 
 
 

  Frequency ( )ω  limits 
Element Impedance Low  ( 0)ω →  High  ( )ω →∞  

Capacitor 
1

CZ
j Cω

=  CZ →∞  
OPEN 

0CZ →  
SHORT 

Inductor LZ j Lω=  0LZ →  
SHORT 

LZ →∞  
OPEN 

 
 
Let’s now continue with the analysis of the series RLC circuit shown on Figure 1. We 
would like to calculate the voltage  across the capacitor. CV
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Figure 1. Series RLC circuit 

er to gain a deeper perspective into the power of the impedance method we will 
erive the differential equation for V  and then solve it using the algebraic 
dure derived previously. 

C

n we will proceed with the application of the impedance method. 

quation for V  is obtained as follows: C

for the circuit mesh gives 
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 ( )cos( ) ( )o
di tv t i t R L
dt

ω CV= + +  (1.1) 

 
The current flowing in the circuit is 

 ( ) CdVi t C
dt

=  (1.2) 

And Equation (1.1) becomes 
 

 
2

2

1 cos( )C C o
C

d V dV vR V
dt L dt LC LC

tω+ + =  (1.3) 

 
Note that this is a second order differential equation. 
 
For a source term of the form  
 ( )j t

ov e ω  (1.4) 
The solution is 
 (( ) j t

CV t Ae )ω φ+=  (1.5) 
 
Substituting into Equation (1.3) we obtain 
 

 2 1 j ovR j e
L LC LC

φω ω⎛ ⎞Α − + + =⎜ ⎟
⎝ ⎠

 (1.6) 

 

 
2

2

1
1

1

j o

o

ve
R LCj
L LC
v

LC j RC

φ

ω ω

ω ω

Α =
⎛ ⎞− + +⎜
⎝

=
− +

⎟
⎠  (1.7) 

 
Which may be simplified as follows 

 
( ) ( )

1
2tan

1
2 221

RCj
j LCove

LC RC

ω
φ ω

ω ω

−⎛ ⎞⎛ ⎞
⎜ ⎜

−⎝⎝Α =
− +

e
⎟⎟
⎠⎠  (1.8) 

 
Therefore the amplitude A of  is CV

 
( ) ( )2 221

ov

LC RCω ω
Α =

− +
 (1.9) 

And the phase is 

 1
2tan

1
RC

LC
ωφ
ω

− ⎛= ⎜ −⎝ ⎠
⎞
⎟  (1.10) 
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Now we will calculate the voltage  by using the impedance method. CV
 
In terms of the impedance the RLC circuit is 
 

ZR=R ZL=jL
+

ω

1

 
This is now a repre
domain complex q
 
The voltage  maCV
 

 

 
 
Which is the same
differential equatio
 
We may now comp
again gives 
 

 

And  
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Figure 2 

sentation in the frequency domain since impedance is a frequency 
uantity 

y now be determined by applying the standard voltage divider relation 

2

1

1

1
1

C
C

C L R

ZV Vs
Z Z Z

j CVs
j L R

j C

Vs
LC j RC

ω

ω
ω

ω ω

=
+ +

=
+ +

=
− +

 (1.11) 

 as Equation (1.7). Note that we never had to write down the 
n. 

lete the solution by writing (j t
CV Ae )ω φ+=  and ( )j t

S oV v e ω=  which 

( ) ( )2 221

ov

LC RCω ω
Α =

− +
 (1.12) 

1
2tan

1
RC

LC
ωφ
ω

− ⎛= ⎜ −⎝ ⎠
⎞
⎟  (1.13) 
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Similarly we can calculate the voltage  across resistor R RV
 
 

ZR=R ZL=jL

jC
Vc
+

-

ω

ω
1Zc=

+     VR     -

Vs

 
 

The voltage divider relationship gives 
 

 

2

1

1

R
R

C L R

ZV Vs
Z Z Z

RVs
j L R

j C
j RCVs
LC j RC

ω
ω

ω
ω ω

=
+ +

=
+ +

=
− +

 (1.14) 

Upon simplification it becomes 
 

 
( ) ( )

1
2tan

2 1
2 221

RCj
LC

R
RCV Vs e

LC RC

π ω
ωω

ω ω

−⎛ ⎞⎛ ⎞−⎜ ⎜ ⎟
−⎝ ⎠⎝=

− +

⎟
⎠  (1.15) 

 
Note the π/2 phase difference between VR and Vc. 
 
 
Also, the voltage across the inductor becomes: 
 
 

 
( ) ( )

1
2

2 tan
1

2 221

RCj
LC

L
LCV Vs e

LC RC

ω
ωω

ω ω

−⎛ ⎞⎛ ⎞
⎜ ⎜ ⎟

−⎝ ⎠⎝=
− +

⎟
⎠  (1.16) 
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Example: A frequency independent voltage divider 
 
Consider the voltage divider shown below for which the load may be modeled as a 
parallel combination of resistor R2 and inductor L2. 
 

vo

R1

R2L2

vs

 
Figure 3 

 
In terms of the impedance the circuit becomes 
 
 

Vs VojL2ω R2 ZR2

ZR1

ZL2

R1

 
Figure 4 

 
The voltage Vo is given by 
 
 

 
( )

( )( )

( )

2 // 2
2 // 2 1

2 2
2 2 1 2 2

2 2
2 2 1 2 2

2 2
1 2 2 1 2

ZL ZRVo
ZL ZR ZR

ZL ZR
ZL ZR ZR ZL ZR

j L R
j L R R j L R

j L R
R R j L R R

ω
ω ω

ω
ω

=
+

=
+ +

=
+ +

=
+ +

 (1.17) 

 
Equation (1.17) may also be written in polar form as follows 
 

6.071/22.071 Spring 2006, Chaniotakis and Cory  5 



 ( )

1 2( 1 2)tan
2 1 2

22 2 2 2

2
2 2

2 2

1 2 2 1 2

2
1 2 1

L R Rj
R R

j

L RVo e
R R L R R

R e
R R

π ω

π φ

ω

ω

ωτ
ω τ

− +⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞−⎜ ⎟
⎝ ⎠

=
+ +

=
+ +

 (1.18) 

 
Where 
 

 2( 1 2)
1 2

L R R
R R

τ +
≡  (1.19) 

And 
 

 1 2( 1 2)tan tan ( )
1 2

L R R
R R

ω 1φ ωτ− +⎛ ⎞= =⎜ ⎟
⎝ ⎠

−  (1.20) 

 
 
The frequency dependence of the voltage divider is shown on Figure 5. Here we have 

plotted the amplitude of Vo
Vs

 as a function of ωτ  for R1=R2. Note the asymptotic value 

indicated by the dotted line. At high frequencies, for which the inductor acts like an open 
circuit, the divider ratio reduces to that of the two resistors which in this case is ½  since 
both resistors are equal. At low frequencies, the low impedance of the inductor reduces 
the output voltage. At dc ( 0ω = ) the inductor acts like a short circuit and so Vo=0. 
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Figure 5 

 
We would like to alter the design of the voltage divider so that it becomes independent of 
frequency for all frequencies. 
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One way to address this problem is to add a compensating inductor L1 as shown on the 
following schematic. 
 

vo

R1

R2L2

vs

L1

 
 
The equivalent circuit in terms of impedance is  
 
 

Z1

Z2Vs Vo

+

-
 

 
 
And the voltage divider ratio becomes 
 

 2
11 2 1
2

ZVo Vs Vs 1
ZZ Z
Z

= =
+ +

 (1.21) 

 

Frequency independence implies that the ratio of impedances 1
2

Z
Z

 must be independent 

of frequency. This ratio is given by 
 

 

1 1
1 1 1

2 22
2 2
1 1 2 2
2 2 1 1

j L R
Z R j L

j L RZ
R j L
L R R j L
L R R j L

ω
ω

ω
ω

ω
ω

+=

+
+

=
+

 (1.22) 

6.071/22.071 Spring 2006, Chaniotakis and Cory  7 



Equation (1.22) becomes independent of ω if 
 

 11
2

R 2L L
R

=  (1.23) 

 
Which results in a voltage divider ratio of 
 

 2
1 2

Vo R
Vs R R

=
+

 (1.24) 
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A close look at frequency response. (Frequency selection) 
 
As we have discussed previously, the frequency response of a circuit or a system refers to 
the change in the system characteristics with frequency.  
 
A convenient way to represent this response is to plot the ratio of the response signal to 
the source signal. For the generic representation shown on Figure 6, the response may be 
given as the ratio of the output Y(ω) to the input X(ω). This ratio is called the transfer 
function of the system and it is labeled H(ω) 
 

 ( )( )
( )

YH
X
ωω
ω

=  (1.25) 

 

Linear
system

 

( )X ω  ( )Y ω  

Figure 6 
 
The output and input (Y(ω) and X(ω) ) may represent the amplitude or the phase of the 
signals. As an example let’s consider the RC circuit shown on Figure 7. 
 
 

R

vs(t) C vc(t)

+

-

 

R

Vs jCω
1

Vc

+

-

 
 

Figure 7 
The transfer function for this circuit is 
 

 

1

( ) 1

1
1

ZC j CH
ZR ZC R

j C

j RC

ωω

ω

ω

= =
+ +

=
+

 (1.26) 

 
 
The magnitude and the phase of  H(ω) are 
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2

1( )
1 ( )

H
RC

ω
ω

=
+

 (1.27) 

 
 1tan ( )RCφ ω−=  (1.28) 
 
In practice the range of frequencies that is used in plotting ( )H ω  is very wide and thus a 

linear scale for the frequency axis is often not suitable. In practice ( )H ω  is plotted 
versus the logarithm of the frequency. 
In addition it is common to plot the transfer function in dB, where 
 
 10( ) 20log ( )

dB
H Hω ω=  (1.29) 

  
The plot of ( )

dB
H ω  versus log( )ω  is called the Bode plot. 

 
For our example RC circuit with R=10kΩ and C=47nF Figure 8(a) and (b) show the plot 
of ( )H ω  versus ω  and log( )ω  respectively. Note that the semi logarithmic plot 
presents the information in a more visual way. 

 
(a) 

 

 
(b) 

Figure 8 
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When ( )H ω  is calculated in dB the plot versus the logarithm of frequency is shown on 
Figure 9. 

 
Figure 9 

 
From the above plot we see the strong dependence of the magnitude of the output signal 
on the frequency. 
 
 
Figure 10 shows the plot of the phase as a function of frequency. 
 

 
Figure 10 

 
 
At low ω for which the capacitor acts like an open circuit the phase is zero. At high 
frequencies the capacitor acts like a short circuit ad the phase goes to -90o. 
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Now let’s continue by graphically exploring the response of RLC circuits. 
 

R L
+

 
The amplitude and
rewrite here for co
 

 

 

 

 
Figure 11 shows t
C=47nF (the valu
 

    

 
In the limit as ω →

which by inspectio
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 phase of Vc are given by Equations (1.12) and (1.13) which we 
nvenience. 

( ) ( )2 22

1( )
1

Vc H
Vs LC RC

ω
ω ω

= =
− +

 (1.30) 

1
2tan

1
RC

LC
ωφ
ω

− ⎛= ⎜ −⎝ ⎠
⎞
⎟  (1.31) 

he plot of ( )H ω  as a function of frequency for R=300Ω, L=47mH and 
es we also used in laboratory). 

 
Figure 11 

0 , ( ) 1H ω → . Note also that there is a peak at a certain frequency 

n of Equation (1.30) occurs when 1 02 . LCω− =
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By increasing the value of the resistor R the peak becomes less pronounced. Figure 12 
shows the transfer function for R=300Ω and R=1.5kΩ. 
 
 

 
Figure 12 

 
 
The phase plot is shown on Figure 13. Note that the transition happens again when 

 21 0LCω− =
 

 
Figure 13 
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The following Plots show the normalized transfer function for VR and the corresponding 
phase. 
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Similarly the normalized transfer function for VL is 
 

 
 

In the next two classes we will explore this behavior further and develop their physical 
significance with regard to their frequency selectivity characteristics. 
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