Homework 4 additional problems

- 1. Simple portfolio optimization. We consider a portfolio optimization problem as described on pages 155 and 185–186 of *Convex Optimization*, with data that can be found in the file simple_portfolio_data.m.
 - (a) Find minimum-risk portfolios with the same expected return as the uniform portfolio $(x = (1/n)\mathbf{1})$, with risk measured by portfolio return variance, and the following portfolio constraints (in addition to $\mathbf{1}^T x = 1$):
 - No (additional) constraints.
 - Long-only: $x \succeq 0$.
 - Limit on total short position: $\mathbf{1}^T(x_-) \leq 0.5$, where $(x_-)_i = \max\{-x_i, 0\}$.

Compare the optimal risk in these portfolios with each other and the uniform portfolio.

- (b) Plot the optimal risk-return trade-off curves for the long-only portfolio, and for total short-position limited to 0.5, in the same figure. Follow the style of figure 4.12 (top), with horizontal axis showing standard deviation of portfolio return, and vertical axis showing mean return.
- 2. *Minimum fuel optimal control.* Solve the minimum fuel optimal control problem described in exercise 4.16 of *Convex Optimization*, for the instance with problem data

$$A = \begin{bmatrix} -1 & 0.4 & 0.8 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 0 \\ 0.3 \end{bmatrix}, \quad x_{\text{des}} = \begin{bmatrix} 7 \\ 2 \\ -6 \end{bmatrix}, \quad N = 30.$$

You can do this by forming the LP you found in your solution of exercise 4.16, or more directly using cvx. Plot the actuator signal u(t) as a function of time t.

3. Numerical perturbation analysis example. Consider the quadratic program

minimize
$$x_1^2 + 2x_2^2 - x_1x_2 - x_1$$

subject to $x_1 + 2x_2 \le u_1$
 $x_1 - 4x_2 \le u_2$,
 $5x_1 + 76x_2 \le 1$,

with variables x_1 , x_2 , and parameters u_1 , u_2 .

(a) Solve this QP, for parameter values $u_1 = -2$, $u_2 = -3$, to find optimal primal variable values x_1^* and x_2^* , and optimal dual variable values λ_1^* , λ_2^* and λ_3^* . Let p^* denote the optimal objective value. Verify that the KKT conditions hold for

the optimal primal and dual variables you found (within reasonable numerical accuracy).

Hint: See §3.6 of the CVX users' guide to find out how to retrieve optimal dual variables. To specify the quadratic objective, use quad_form().

(b) We will now solve some perturbed versions of the QP, with

$$u_1 = -2 + \delta_1, \qquad u_2 = -3 + \delta_2,$$

where δ_1 and δ_2 each take values from $\{-0.1, 0, 0.1\}$. (There are a total of nine such combinations, including the original problem with $\delta_1 = \delta_2 = 0$.) For each combination of δ_1 and δ_2 , make a prediction p_{pred}^{\star} of the optimal value of the perturbed QP, and compare it to p_{exact}^{\star} , the exact optimal value of the perturbed QP (obtained by solving the perturbed QP). Put your results in the two righthand columns in a table with the form shown below. Check that the inequality $p_{\text{pred}}^{\star} \leq p_{\text{exact}}^{\star}$ holds.

δ_1	δ_2	$p_{\rm pred}^{\star}$	p_{exact}^{\star}
0	0		
0	-0.1		
0	0.1		
-0.1	0		
-0.1	-0.1		
-0.1	0.1		
0.1	0		
0.1	-0.1		
0.1	0.1		

6.079 / 6.975 Introduction to Convex Optimization Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.