
MIT OpenCourseWare 
http://ocw.mit.edu 

6.080 / 6.089 Great Ideas in Theoretical Computer Science 
Spring 2008 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


� � 

� � 

6.080/6.089 Problem Set 4 
Assigned: Thursday, April 10, 2008 / Due: Thursday, April 24, 2008 

1. Let X be a random variable that takes nonnegative integer values. Show that E [X ] = 
�

∞ 
Pr [X ≥ i]. i=1 

[Hint: First convince yourself that this is true by trying special cases.] 

2. Suppose a ZPP algorithm succeeds with probability p, and outputs “don’t know” with probability 1−p. 
Calculate the expected number of times we need to run the algorithm, until it succeeds. 

3. Let Y be an n-bit string chosen randomly among all strings with an even number of 1’s, and let YA be 
the substring of Y consisting only of bits in positions A ⊆ {1, . . . , n}. 

(a) Show that if A and B intersect, then YA and YB are not independent. 

(b) Show that if A and B are disjoint and A ∪ B 6= {1, . . . , n}, then YA and YB are independent. 

(c) Show that if A and B are disjoint (and nonempty) and A ∪ B = {1, . . . , n}, then YA and YB are 
not independent. 

4. Suppose we have n balls and n buckets, and suppose each ball is thrown into one of the buckets 
completely at random (independently of all the other balls). 

(a) Let pn be the probability that at least one ball lands in the first bucket. What is limn→∞ pn? 

(b) Let qn be the probability that every ball lands in a separate bucket. Show that qn decreases 
exponentially with n. 

(c) [Extra credit] Let m be the maximum number of balls that land in any one bucket. Show that 
there’s a positive constant c such that m ≤ c log n with high probability. [Hint: Use the union 
bound, combined with the following version of the Chernoff bound. Let X1, . . . , Xn be any inde
pendent, {0, 1}-valued random variables and let X = X1+· · ·+Xn. Then Pr [X > (1 + δ) E [X ]] < 
� �E[X]

eδ/ (1 + δ)

1+δ 
for all δ > 0.]


5. Show that, if there’s a two-sided-error randomized algorithm that solves NP-complete problems in 
polynomial time, then there’s also a one-sided-error randomized algorithm. Or more concisely, if 
NP ⊆ BPP then NP ⊆ RP, and hence NP = RP. [Hint: Use the equivalence of search and decision 
problems from Pset3. Amplification and the union bound could also come in handy.] 

6. In many cryptographic applications (for example, digital signature schemes), it’s important to have a 
function f : {0, 1}m → {0, 1}n for which it’s computationally infeasible to find a collision: that is, two 
distinct inputs x and y such that f (x) = f (y). Such an f is called a collision-resistant hash function. 
Here you should think of m as much larger than n. 

(a) Suppose f is chosen uniformly at random, and suppose the only way an algorithm can learn about 
f is by calling a subroutine that evaluates f (x) on any given input x. Show that, on average, 
the algorithm will need to call the subroutine Ω 2n/2 times before it finds a collision. [Hint: 
Use the union bound.] 

(b) [Extra credit] Show that for any such function f , after evaluating f on only O 2n/2 randomly-
chosen values, with high probability we will have found a collision. 

7. Show that there is no one-way function where every bit of the output depends on only two bits of the 
input. [Hint: Use the fact that 2SAT is in P.] 




