MIT OpenCourseWare
http://ocw.mit.edu

6.080 / 6.089 Great Ideas in Theoretical Computer Science

 Spring 2008For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

6.080/6.089 Problem Set 3

Assigned: Thursday, March 13, 2008 / Due: Thursday, March 20, 2008

1. Consider the following problem:

- Given a positive integer M, as well as a list of positive integers x_{1}, \ldots, x_{n}, find the closest you can get to M by adding a subset of x_{i} 's without exceeding M. In other words, find the maximum of $\sum_{i \in S} x_{i}$ over all subsets $S \subseteq\{1, \ldots, n\}$ such that $\sum_{i \in S} x_{i} \leq M$.

In the general case - where M could be much larger than n-it is known that the above problem is NP-complete. On the other hand, describe an algorithm to solve this problem whose running time is a polynomial function of M and n. [Hint: Use dynamic programming, the same basic technique we used in class to solve the Longest Increasing Subsequence problem. In other words, show how a solution to the whole problem can be built recursively out of solutions to a reasonable number of subproblems.]
2. "The Equivalence of Search and Decision Problems." Suppose there's a polynomial-time algorithm to decide whether a given Boolean formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ has a satisfying truth assignment. (In other words, suppose $\mathrm{P}=\mathrm{NP}$.) Show that this implies that we can actually find a satisfying assignment for any Boolean formula φ in polynomial time, whenever one exists. [Hint: Give an algorithm that constructs a satisfying assignment for φ, one variable at a time, repeatedly calling the decision algorithm as an oracle]
3. Suppose problem X is proved NP-complete, by a polynomial-time reduction that maps size- n instances of $S A T$ to size- n^{3} instances of problem X. And suppose that someday, some genius manages to prove that $S A T$ requires $\Omega\left(c^{n}\right)$ time, for some constant $\dot{c}>1$. Then what can you conclude about the time complexity of problem X ?
4. Let $E X A C T 4 S A T$ be the following problem:

- Given a Boolean formula φ, consisting of an AND of clauses involving exactly 4 distinct literals each (such as $\left.\left.\left(x_{2} \vee\right\urcorner x_{3} \vee\right\urcorner x_{5} \vee x_{6}\right)$), decide whether φ is satisfiable.

Show that $E X A C T 4 S A T$ is NP-complete. You can use the fact, which we proved in class, that $3 S A T$ is NP-complete.

