MIT OpenCourseWare
http://ocw.mit.edu

6.080 / 6.089 Great Ideas in Theoretical Computer Science

 Spring 2008For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

6.080/6.089 Problem Set 5

Assigned: April 29, 2008
Due: May 13, 2008

1. Let a puzzle generator be a polynomial-time algorithm that maps a random string r to a pair $\left(\varphi_{r}, x_{r}\right)$, where φ_{r} is a 3SAT instance and x_{r} is a satisfying assignment for φ_{r}, such that for all polynomial-time algorithms A,

$$
\operatorname{Pr}_{r}\left[A \text { finds a satisfying assignment for } \varphi_{r}\right]
$$

is negligible (less than $\frac{1}{\operatorname{poly}(n)}$). Show that puzzle generators exist if and only if one-way functions exist.
2. The following questions concern the RSA cryptosystem.
(a) Recall that, having chosen primes p and q such that $p-1$ and $q-1$ are not divisible by 3 , a key step in RSA is to find an integer k such that $3 k \equiv 1 \bmod (p-1)(q-1)$. Give a simple procedure to find such a k given p and q, which requires only $O(1)$ arithmetic operations.
(b) Given a product of two primes, $N=p q$, show that if an eavesdropper can efficiently determine $(p-1)(q-1)$ (the order of the multiplicative group $\bmod N)$, then she can also efficiently determine p and q themselves.
3. Recall that the $V C$-dimension of a concept class \mathcal{C}, or $\operatorname{VCdim}(\mathcal{C})$, is the largest m for which there exist points x_{1}, \ldots, x_{m} such that for all 2^{m} possible Boolean values of $c\left(x_{1}\right), \ldots, c\left(x_{m}\right)$, there exists a concept $c \in \mathcal{C}$ that realizes those values. If such x_{1}, \ldots, x_{m} exist for arbitrarily large finite m, then $\operatorname{VCdim}(\mathcal{C})=\infty$.
(a) Let \mathcal{C} be the concept class consisting of all filled-in rectangles in the plane, whose sides are aligned with the x and y axes. Show that $\operatorname{VCdim}(\mathcal{C})=4$.
(b) Show that if \mathcal{C} is finite, then $\operatorname{VCdim}(\mathcal{C}) \leq \log _{2}|\mathcal{C}|$.
(c) Show that there is a class \mathcal{C} with countably many concepts such that VCdim $(\mathcal{C})=\infty$.
4. Show that if you apply Hadamard gates to qubits A and B, followed by a CNOT gate from A to B, followed by Hadamard gates to A and B again, the end result is the same as if you had applied a CNOT gate from B to A. Pictorially:

This illustrates a principle of quantum mechanics you may have heard about: that any physical interaction by which A influences B can also cause B to influence A (so for example, it is impossible to measure a particle's state without affecting it).
5. Consider the following game played by Alice and Bob. Alice receives a bit x and Bob receives a bit y, with both bits uniformly random and independent. The players win if Alice outputs a bit a and Bob outputs a bit b such that $a+b=x y(\bmod 2)$. (Alice and Bob are cooperating in this game, not competing.) The players can agree on a strategy in advance, but once they receive x and y no further communication between them is allowed.
(a) Give a deterministic strategy by which Alice and Bob can win this game with $3 / 4$ probability.
(b) Show that no deterministic strategy lets them win with more than $3 / 4$ probability.
(c) [Extra credit] Show that no probabilistic strategy lets them win with more than $3 / 4$ probability.

Now suppose Alice and Bob share the entangled state $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$, with Alice holding one qubit and Bob holding the other qubit. Suppose they use the following strategy: if $x=1$, then Alice applies the unitary matrix

$$
\left(\begin{array}{cc}
\cos \frac{\pi}{8} & -\sin \frac{\pi}{8} \\
\sin \frac{\pi}{8} & \cos \frac{\pi}{8}
\end{array}\right)
$$

to her qubit, otherwise she doesn't. She then measures her qubit in the standard basis and outputs the result. If $y=1$, then Bob applies the unitary matrix

$$
\left(\begin{array}{cc}
\cos \frac{\pi}{8} & \sin \frac{\pi}{8} \\
-\sin \frac{\pi}{8} & \cos \frac{\pi}{8}
\end{array}\right)
$$

to his qubit, otherwise he doesn't. He then measures his qubit in the standard basis and outputs the result.
d. Show that if $x=y=0$, then Alice and Bob win the game with probability 1 using this strategy.
e. Show that if $x=1$ and $y=0$ (or vice versa), then Alice and Bob win with probability $\cos ^{2} \frac{\pi}{8}=$ $\frac{1+\sqrt{1 / 2}}{2}$.
f. Show that if $x=y=1$, then Alice and Bob win with probability $1 / 2$.
g. Combining parts d-f, conclude that Alice and Bob win with greater overall probability than would be possible in a classical universe.

You have just proved the $\mathrm{CHSH} /$ Bell Inequality - one of the most famous results of quantum mechanicswhich showed the impossibility of Einstein's dream of removing "spooky action at a distance" from quantum mechanics. Alice and Bob's ability to win the above game more than $3 / 4$ of the time using quantum entanglement was experimentally confirmed in the 1980's.

