
MIT OpenCourseWare 
http://ocw.mit.edu 

6.080 / 6.089   Great Ideas in Theoretical Computer Science 
Spring 2008 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


� 

6.080/6.089 GITCS March 6, 2008 

Lecture 9 
Lecturer: Scott Aaronson Scribe: Ben Howell 

1 Administrivia 

1.1 Problem Set 1 

Overall, people did really well. If you’re not happy with how you did, or there’s something you 
don’t understand, come to office hours on Monday. No one got the challenge problem to prove the 
completeness of resolution, but many people got the problem with the cannonballs. The solution 
to the cannonball problem involves defining a function on the state of the system that is strictly 
monotonic. Here are two possible ways to construct that proof: 

Solution 1: Let Si be the number of cannonballs in stack i, and define a function that describes 
the state of the system: f = i(Si)2 . Each time a stack is exploded, the function f increases 
by two. Since explosion is the only defined operation and it always increases the value of f , 
the system can never return to a previous state. 

Solution 2: Let p be the rightmost stack that has been exploded so far. Then stack p + 1 has 
more cannonballs than it had at the beginning. The only way for that to go back down is 
to explode stack p + 1, which will cause stack p + 2 to have more cannonballs than it had at 
the beginning. This leads to an infinite regress, implying that there is no finite sequence of 
moves that returns to the starting configuration. 

2 Review 

The central question of theoretical computer science is: “Which problems have an efficient algorithm 
to solve them?” In computer science, the term “efficient” equates to “polynomial time”. 

Here are a few examples of problems that can be solved efficiently: 

Arithmetic, sorting, spellcheck, shortest path • 

Solving linear systems (and inverting matrices) • 

Linear programming • 

Dynamic programming • 

Stable marriage, maximum matching • 

Primality testing • 

Finding roots of polynomials • 

2-coloring a graph • 
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And then there are other problems that have no known polynomial-time algorithm, for example: 

•	 3-Coloring a map 

•	 Max Clique: Given a set of people, find the largest set who are all friends with each other. 

•	 Packing: Given boxes of various dimensions, find the largest set you can pack in your truck. 

•	 Traveling Salesman: Given a set of cities and costs of travel between cities, find the least 
expensive route that goes through every city. 

3 General Problems 

The problems listed above seem like puzzles. Let’s consider some other problems that seem “deeper” 
or more “general”: 

•	 The “DUH” Problem: Given n, k, and a Turing machine M , is there an input y of size n 
such that M(y) accepts in fewer than nk steps? 

•	 The Theorem Problem: Given a mathematical statement and an integer n, is there a 
proof in ZF set theory with at most n symbols? 

All of these problems have a few things in common: 

•	 They are all computable, but the computation might take an exponential amount of time. 

•	 Given a proposed solution, it is possible to check whether that solution is correct in a poly­
nomial amount of time. 

3.1 The Theorem Problem 

Let’s take a closer look at the Theorem problem. Without the “at most n symbols” constraint, 
would this problem even be computable? 

Claim: If you could solve this problem without that constraint, then you could solve the halting 
problem. 

Proof: Given a Turing machine M , use your algorithm to find the answers to the following ques­
tions: 

•	 Is there a proof that M halts? If so, then M halts. 

•	 Is there a proof that M does not halt? If so, then M does not halt. 

If neither proof exists, then we can still conclude that M does not halt. If it did halt, then 
there must be a proof that it does; the most straightforward one being to simulate M until 
it halts. 

Therefore, we can conclude that without the “at most n symbols” constraint, this problem is 
not computable. 
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However, this problem computable with the “at most n symbols” constraint. In the worst case, 
the algorithm could simply search through all possible proofs with at most n symbols. 

Is there a better way to solve the problem that doesn’t involve a brute-force search? Exactly 
this question was asked in one of the most remarkable documents in the history of theoretical 
computer science: a letter that Kurt Gödel sent to John von Neumann in 1956. (The full text of 
this letter is in the appendix.) In this letter, Gödel concludes that if there were some general way to 
avoid brute-force search, mathematicians would be out of a job! You could just ask your computer 
whether there’s a proof of Goldbach, the Riemann Hypothesis, etc. with at most a billion symbols. 

4 P and NP 

After 52 years, we still don’t know the answer to Gödel’s question. But there’s something remarkable 
that we do know. Look again at all of these problems. A priori, one might think brute-force search 
is avoidable for problem X, not for problem Y, etc. But in the 1970s, people realized that in a 
very precise sense, they’re all the same problem. A polynomial-time algorithm for any one of them 
would imply a polynomial-time algorithm for all the rest. And if you could prove that there was 
no polynomial-time algorithm for one of them, that would imply that there is no polynomial-time 
algorithm for all the rest. 

That is the upshot of the theory of NP-completeness, which was invented by Stephen Cook 
and Richard Karp in the US around 1971, and independently Leonid Levin in the USSR. (During 
the Cold War, there were a lot of such independent discoveries.) 

4.1 P and NP 

P is (informally) the class of all problems that have polynomial-time algorithms. For simplicity, 
we focus on decision problems (those having a yes-or-no answer). 

Formally: P is the class of all sets L ⊆ {0, 1}n for which there exists a polynomial-time algorithm 
A such that A(x) = 1 iif x ∈ L. 

NP (Nondeterministic Polynomial-Time) is (informally) the class of all problems for which a so­
lution can be verified in polynomial time. 

Formally: NP is the class of all sets L ⊆ {0, 1}n for which there exists a polynomial-time Turing 
machine M , and polynomial p, such that ∀x ∈ {0, 1}n : x ∈ L iff ∃y ∈ {0, 1}p(n) s.t. M(x, y) 
accepts (here, x is the instance of the problem and y is some solution to the problem). 

Why is it called “nondeterministic polynomial-time”? It’s a somewhat archaic name, but we’re 
stuck with it now. The original idea was that you would have a polynomial-time Turing machine 
that can make nondeterministic transitions between states, and that accepts if and only if there 
exists a path in the computation tree that causes it to accept. (Nondeterministic Turing machines 
are just like the nondeterministic finite automata we saw before.) This definition is equivalent to 
the formal one above. First have the machine guess the solution y, and then check whether y works. 
Since it is a nondeterministic Turing machine, it can try all of the possible y’s at once and find the 
answer in polynomial time. 

Question: is P ⊆ NP ? Yes! If someone gives you a solution to a P problem, you can ignore it 
and solve it yourself in NP time. 
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4.2 NP-hard and NP-complete 

NP-hard is the class of problems that are “at least as hard as any NP problem.” Formally, L is 
NP-hard if given an oracle for L, you could solve every NP problem in polynomial time. In 
other words, L is NP-hard if NP ⊆ P L . 

NP-complete is the class of problems that are both NP-hard and in NP. Informally, NP-complete 
problems are the “hardest problems in NP” — NP problems that somehow capture the 
difficulty of all other NP problems. 

NP-Hard 

NP-Complete 

 

NP 

P 

Figure 1: Relationship between P, NP, NP-Hard, and NP-Complete. 

Claim: If any NP-complete problem is in P, then all are, and P = NP. 
If any NP-complete problem is not in P, then none are, and P = NP. �

4.3 NP-complete problems 

How can we prove that NP-complete problems even exists? Can we find an example of one? 
Consider the “DUH” problem from above: “Given a polynomial-time Turing machine M , find 

an input y that causes M(y) to accept.” This problem is NP-complete almost by the definition of 
NP-complete. 

•	 DUH is in NP: Given a solution y, it is possible to check it in polynomial time simply by 
running M(y) to see if it accepts. 

•	 DUH is NP-hard: Suppose we have an oracle to solve “DUH”. Then given any NP problem, 
by the definition of NP, there must be some polynomial-time Turing machine M �(x, y) for 
verifying a claimed solution y. So just ask the oracle whether there exists a y that causes M 
to accept (having hardwired the input x into the description of M). 

So the real achievement of Cook, Karp, and Levin was not to show that NP-complete problems 
exist. That is almost tautological. Their real achievement was to show that many natural problems 
are NP-complete. 
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4.4 Proving a problem is NP-complete 

To show a given problem L is NP-complete, you only have to do two things: 

1. Show L ∈ NP. 

2. Show some problem K already known to be NP-complete reduces to L. This implies that L 
is NP-hard, since it must be at least as hard as K for K to reduce to L. 

5 The Cook-Levin Theorem 

Consider another problem: SAT (for Satisfiability). Given an arbitrary Boolean formula (in propo­
sitional logic), is there any way of setting the variables so that the formula evaluates to TRUE? 

Theorem. SAT is a NP-complete problem. 

Proof. First, show SAT is in NP. (This is almost always the easiest part.) Given a proposed set 
of arguments, plug them into the equation and see if it evaluates to TRUE. 

Next, show that some known NP-complete problem reduces to SAT to show that SAT is NP-
hard. We know DUH is NP-complete, so let’s reduce DUH to SAT. In other words: given some 
arbitrary polynomial-time Turing machine M , we need to create a Boolean formula F , which will 
be satisfiable if and only if theres an input y that causes M to accept. And the translation process 
itself will have to run in polynomial time. 

The way to do this is very simple in concept, but the execution is unbelievably complicated, so 
we’ll focus more on the concept. 

Remember that a Turing machine consists of this tape of 0s and 1s, together with a tape head 
that moves back and forth, reading and writing. Given a Turing machine M , and given the input 
y = y1, . . . , yr that’s written on its tape, the entire future history of the machine is determined. 
That means we can draw what is called a tableau, which shows the entire history of M ’s computation 
at a single glance. Each row of a tableau indicates the state of the Turing machine, the value of 
the tape, and the position of the Turing machine on the tape. 

Time State Tape 

6 H 0 1 1 1 1 0 
5 B 0 1 1 1 1 0 
4 A 0 0 1 1 1 0 
3 B 0 0 0 1 1 0 
2 A 0 0 0 1 1 0 
1 B 0 0 0 1 0 0 
0 A 0 0 0 0 0 0 

Figure 2: Example tableau for a Turing machine that halts after 6 steps. 

The tableau for SAT will have T time steps, where T is some polynomial in n, and because it 
only has T time steps, we only ever need to worry about T tape squares from side to side. This 
means that the whole tableau is of polynomial size. And let’s say that the machine accepts if and 
only if at the very last step some tape square Ti has a 1. 
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The question that interests us is whether there’s some setting of the “solution bits” y = 
y1, . . . , yr that causes M to accept. 

How can we create a formula that’s satisfiable if and only if such a setting exists? We should 
certainly include y = y1, . . . , yr as variables of the formula. But we’re going to need a whole bunch 
of additional variables. Basically, for every yes-or-no question you could possibly ask about this 
tableau, we’re going to define a Boolean variable representing the answer to that question. Then 
we’re going to use a slew of Boolean connectives to force those variables to relate to each other in 
a way that mimics the actions of the Turing machine. 

•	 For all i, t, let xt,i = 1 iif at step t, the ith tape square is set to 1. 

•	 Let pt,j = 1 iif at step t the Turing machine head is at the ith square. 

•	 Let st,k = 1 iif at step t the Turing machine is in state k. 

Next, look at each “window” in the tableau, and write propositional clauses to make sure the 
right thing is happening in that window. 

•	 First, x1,j = yj for all j from 1 to r, and x1,j = 0 for all j > r. 

•	 pt,j = 0 ⇒ xt+1,j = xt,j . This says that if the tape head is somewhere else, then the jth 

square is unchanged. We need such a clause for every t and j. 

•	 st,k = 1 ∧ pt,j = 1 ∧ xt,j = 1 ⇒ st+1,k� = 1. This says that if, at time t, the machine is in state 
k and at tape square j, and 1 is written on that tape square, then at the next time step, it 
will be in state k�. We’ll also need clauses to make sure that ∀l �= k� : st+1,l = 0 

. . . and so on. • 

We need one final clause to make sure that the machine actually accepts. 

•	 xT,0 = 1 

Finally, we string all of these clauses together to produce a humongous—but still polynomial-
size!—Boolean formula F , which is consistent (i.e., satisfiable) if and only if there’s some y = 
y1, . . . , yr that causes M to accept. 

So, supposing we had a polynomial-time algorithm to decide whether a Boolean formula is 
satisfiable, we could use that algorithm to decide in polynomial time whether there is an input that 
causes the Turing machine M to accept. In fact, the two problems are equivalent. Or to put it 
another way, SAT is NP-complete. That is the Cook-Levin Theorem. 

5.1 Special-case: 2SAT 

The above proof doesn’t preclude that special cases of the SAT problem could be solved efficiently. 
In particular, consider the problem from Lecture 2 where you have clauses consisting of only two 
literals each. This problem is called 2SAT, and as we showed in back in Lecture 2, 2SAT is in 
P. If your Boolean formula has this special form, then there is a way to decide satisfiability in 
polynomial time. 
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5.2 Special-case: 3SAT 

In contrast to 2SAT, let’s consider the problem where each clause has three literals, or 3SAT. It 
turns out that 3SAT is NP-complete; in other words, this special case of SAT encodes the entire 
difficulty of the SAT problem itself. We’ll go over the proof for this in Lecture 10. 

Appendix 

Kurt Gödel’s letter to John von Neumann 

To set the stage: Gödel is now a recluse in Princeton. Since Einstein died the year before, Gödel 
barely has anyone to talk to. Later he’ll starve himself because he thinks his wife is trying to poison 
him. Von Neumann, having previously formalized quantum mechanics, invented game theory, told 
the US government how to fight the Cold War, created some of the first general-purpose computers, 
and other great accomplishments, is now dying of cancer in the hospital. Despite von Neumann’s 
brilliance, he did not solve the problem that Gödel presented in this letter, and to this day it 
remains one of the hallmark unsolved problems in theoretical computer science. 

Text of Godel's letter removed due to copyright restrictions 
See: http://weblog.fortnow.com/2006/04/kurt-gdel-1906-1978.html
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