
MIT OpenCourseWare 
http://ocw.mit.edu 

6.080 / 6.089 Great Ideas in Theoretical Computer Science 
Spring 2008 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


� � 

6.080/6.089 Problem Set 2 
Assigned: Thursday, Feb. 28, 2008 / Due: Thursday, March 13, 2008 

1. In 1962, Tibor Rado defined S (n), or the nth “Busy Beaver shift number,” to be the maximum number 
of steps made by any n-state Turing machine that eventually halts. Here a Turing machine has a 
two-way infinite tape with either 0 or 1 on each square, and all tape squares are initially set to 0. A 
“step” consists of writing a 0 or 1 to the current square, moving either left or right by one square, and 
either transitioning to a new state or halting (with all of these decisions determined by the current 
state together with the symbol on the current square). 

(a) Show that S (1) = 1. 

(b) Show that S (2) ≥ 6. [Hint: Try various 2-state Turing machines until you find one that runs for 
6 steps before halting.] 

(c) Show that S (n) grows faster than any computable function. In other words, there is no com
putable function C such that C (n) ≥ S (n) for all n. 

(d) Show that there is not even a computable function C such that C (n) ≥ S (n) for infinitely many 
n. 

2. Given a set of strings L ⊆ {0, 1} ∗ 
, we say L is computable if there exists a Turing machine that, given 

as input a string x, decides whether x ∈ L. We say L is c.e. (for “computably enumerable”) if there 
exists a Turing machine M that, when started on a blank tape, lists all and only the strings in L. (Of 
course, if L is infinite, then M will take an infinite amount of time.) 

(a) Let HALT be the set of all Turing machines that halt when started on a blank tape. (Here each 
Turing machine is encoded as a binary string in some reasonable way.) Show that HALT is c.e. 
[Note: In this and the following problems, you do not need to construct any Turing machines; 
just give a convincing argument.] 

(b) Let L be any c.e. set. Show that L is computable given an oracle that, for any string x, decides 
whether x ∈ HALT . 

(c) Show that a set L is computable if and only if L and L are both c.e. (Here L is the complement 
of L: that is, the set of all x ∈ {0, 1} ∗ 

such that x /∈ L.) 

3. Given a formal system F , recall that Con (F ) is a mathematical encoding of the claim that F is 
consistent: in other words, that F never proves both that a statement is true and that it’s false. 
Consider the “self-hating system” F +� Con(F ): that is, F plus the assertion of its own inconsistency. 
Show that if F is consistent, then F +� Con(F ) is an example of a formal system that is consistent but 
not sound. [Note: You can assume the Incompleteness Theorem.] 

4. Let a XOR-circuit of size n be a circuit built entirely out of two-input XOR gates, which maps n input 
bits to n output bits. Also, call two circuits equivalent if they produce the same output whenever 
they’re given the same input. 

(a) Show that, for every XOR-circuit of size n, there’s an equivalent XOR-circuit with at most 
n (n − 1) gates. 

(b) Show that for every n, there’s some XOR-circuit of size n such that every equivalent XOR-circuit 
has Ω n2/ log n gates. 

5. Suppose a Turing machine M has s internal states, and visits at most n different tape squares. Prove 
an upper bound (in terms of n and s) on the number of steps until M halts (assuming it does halt). 




