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Lecture 4 
Lecturer: Scott Aaronson Scribe: Aseem Kishore 

1 Previously in 6.089... 

Last lecture, we talked about two different models of computation, finite automata and circuits. 
Finite automata allowed us to recognize many properties of an arbitrarily long input, while circuits 
allowed us to represent any Boolean function. 

However, both models had significant limitations. Circuits were limited in hardware–we have 
to know how big an input is before we can make a circuit for it–while finite automata were limited 
by their memory–which also had to be known in advance of a problem. 

2 Turing Machines 

How can we generalize finite automata to overcome their limitations? A first idea is to let them 
move backwards on the tape as well as forwards. This is a good start, but by itself it actually 
provides no extra power. To see why, suppose a two-way finite automaton is in some state a, going 
forward at some point x on the tape. At this point, if it goes backwards on the tape and then 
returns to x, that simply induces some function a ⇒ f(a), where f depends on the earlier part of 
the tape. But this means that we can simulate the two-way machine by a one-way machine, which 
simply keeps track of the whole function f instead of just the state a. 1 Thus, being able to move 
in two directions provides no additional power on its own. 

What we really need is a machine that can not only move backwards and forwards, but also 
write to the tape and halt at any time of its choosing. And that’s what a Turing machine is. The 
ability to write essentially gives Turing machines an unlimited memory, since any information that 
can’t fit in the machine’s internal state can always be written to the tape. The ability to halt at 
discretion means that Turing machines aren’t ”tied to the input” the way finite automata are, but 
can do as much auxiliary computation as they need. 

So at any given point on the tape, a Turing machine faces three questions: 

1. Change state? 

2. Write to the tape? 

3. Move left, move right, or halt? 

The machine’s answer to these questions is a function of its current state and the current input 
on the tape. 

A clear example of these features overcoming the limitations of finite automata is a Turing 
machine’s ability to solve the palindrome problem. By using a simple back-and-forth process, a 

1Note that the number of functions f(a) mapping states to states grows exponentially with the number of states 
in the original machine. 
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Turing machine can repeatedly check that a letter at one end exists at the opposite end, and by 
marking letters that it has seen, the machine ensures it continuously narrows its scope. (Here we’re 
assuming that additional symbols are available besides just 0 and 1.) This algorithm takes O(n2) 
time (interestingly, there is a proof that argues that this is the best a Turing machine can do). 

Likewise, addition of integers is also possible, as are multiplying and some other mathematical 
operations. (We won’t prove that!) Searching for non-regular patterns also becomes possible. But 
perhaps the most interesting thing a Turing machine can do is to emulate another Turing machine! 

3 Universal Turing Machines 

In his 1936 paper “On Computable Numbers” (in some sense, the founding document of computer 
science), Turing proved that we can build a Turing machine U that acts as an interpreter for other 
Turing machines. In other words, U ’s input tape can contain a description of another Turing 
machine, which is then simulated step by step. Such a machine U is called a Universal Turing 

machine. If a universal machine didn’t exist, then in general we would need to build new hardware 
every time we wanted to solve a new problem: there wouldn’t even be the concept of software. This 
is why Professor Aaronson refers to Turing’s universality result as the “existence of the software 
industry lemma”! 

A question was brought up in class as to how this can be, if the machine being interpreted may 
require more states than the interpreting Turing machine has. It turns out that universal Turing 
machines aren’t limited by their states, because they can always keep extra state on blank sections 
of the tape. They can thus emulate a machine with any number of states, but themselves requiring 
only a few states. (In fact, there is a popular parlor-type competition to find a universal Turing 
machine that uses as few states and symbols as possible. Recently, one student actually came up 
with such a machine that uses only two states and a three-symbol alphabet. To be fair, however, 
the machine required the inputs in a special format, which required some pre-computation, so a 
question arises as to how much of the work is being done by the machine versus beforehand by the 
pre-computation.) 

4 The Church-Turing Thesis 

Related to the idea of universal machines is the so-called Church-Turing thesis, which claims that 
anything we would naturally regard as “computable” is actually computable by a Turing machine. 
Intuitively, given any “reasonable” model of computation you like (RAM machines, cellular au
tomata, etc.), you can write compilers and interpreters that translate programs back and forth 
between that model and the Turing machine model. It’s never been completely clear how to inter
pret this thesis: is it a claim about the laws of physics? about human reasoning powers? about 
the computers that we actually build? about math or philosophy? 

Regardless of its status, the Church-Turing Thesis was such a powerful idea that Gödel declared, 
”one has for the first time succeeded in giving an absolute definition to an interesting epistemological 
notion.” 

But as we’ll see, even Turing machines have their limitations. 
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5 Halting is a problem 

Suppose we have a Turing machine that never halts. Can we make a Turing machine that can 
detect this? In other words, can we make an infinite loop detector? This is called the Halting 

problem. 
The benefits of such a machine would be widespread. For example, we could then prove or 

disprove Goldbach’s Conjecture, which says that all even numbers 4 or greater are the sum of two 
primes. We could do this by writing a machine that iterated over all even numbers to test this 
conjecture: 

for i = 2 to infinity:

if 2*i is not a sum of two primes


then HALT


We would then simply plug this program into our infinite-loop-detecting Turing machine. If the 
machine detected a halt, we’d know the program must eventually encounter a number for which 
Goldbach’s conjecture is false. But if it detected no halt, then we’d know the conjecture was true. 

It turns out that such an infinite loop detector can’t exist. This was also proved in Turing’s 
paper, by an amazingly simple proof that’s now part of the intellectual heritage of computer 
science.2: 

We argue by contradiction. Let P be a Turing machine that solves the halting problem. In 
other words, given an input machine M , P (M) accepts if M(0) halts, and rejects if M(0) instead 
runs forever. Here P (M) means P run with an encoding of M on its input tape, and M(0) means 
M run with all 0’s on its input tape. Then we can easily modify P to produce a new Turing 
machine Q, such that Q(M) runs forever if M(M) halts, or halts if M(M) runs forever. 

Then the question becomes: what happens with Q(Q)? If Q(Q) halts, then Q(Q) runs forever, 
and if Q(Q) runs forever, then Q(Q) halts. The only possible conclusion is that the machine P 
can’t have existed in the first place. 

In other words, we’ve shown that the halting problem is undecidable–that is, whether another 
machine halts or not is not something that is computable by Turing machine. We can also prove 
general uncomputability in other ways. Before we do so, we need to lay some groundwork. 

6 There are multiple infinities 

In the 1880’s, Georg Cantor discovered the extraordinary fact that there are different degrees of 
infinity. In particular, the infinity of real numbers is greater than the infinity of integers. 

For simplicity, let’s only talk about positive integers, and real numbers in the interval [0, 1]. We 
can associate every such real number with an infinite binary string: for example, 0.0011101001.... 
A technicality is that some real numbers can be represented in two ways: for example, 0.1000 is 
equivalent to 0.0111. But we can easily handle this, for example by disallowing an infinity of trailing 
1’s. 

To prove that there are more real numbers than integers, we’ll argue by contradiction: suppose 
the two infinities are the same. If this is true, then we must be able to create a one-to-one 
association, pairing off every positive integer with a real number x ∈ [0, 1]. We can arrange this 
association like so: 

2This proof also exists as a poem by Geoffrey K. Pullum entitled “Scooping the Loop Snooper”: 
http://www.ncc.up.pt/∼rvr/MC02/halting.pdf 
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1: 0.0000... (rational)

2: 0.1000...

3: 0.0100...

4: 0.101001000100001... (irrational)

5: 0.110010110001001...


We can imagine doing this for all positive integers. However, we note that we can construct 
another real number whose nth digit is the opposite of the nth digit of the nth number. For example, 
using the above association, we would get 0.11110... 

This means that, contrary to assumption, there were additional real numbers in [0, 1] not in 
our original list. Since every mapping will leave real numbers left over, we conclude that there are 
more real numbers than integers. 

If we try to apply the same proof with rational numbers instead of real numbers, we fail. This 
is because the rational numbers are countable; that is, each rational number can be represented 
by a finite-length string, so we actually can create a one-to-one association of integers to rational 
numbers. 

Infinitely many unsolvable problems 

We can use the existence of these multiple infinities to prove that there are uncomputable problems. 
We’ll begin by showing that the number of possible Turing machines is the smallest infinity, the 
infinity of integers. 

We can define a Turing machine as a set of states and a set of transitions from each state to 
another state (where the transitions are based on the symbol being read). A crucial aspect of this 
definition is that both sets are finite. 

Because of this, the number of Turing machines is countable. That is, we can “flatten” each 
machine into one finite-length string that describes it, and we can place these strings into a one-
to-one association with integers, just as we can with rational numbers. 

The number of problems, on the other hand, is a greater infinity: namely, the infinity of real 
numbers. This is because we can define a problem as a function that maps every input x ∈ 0, 1∗ to 
an output (0 or 1). But since there are infinitely many inputs, to specify such a function requires an 
infinite number of bits. So just like with Cantor’s proof, we can show that the infinity of problems 
is greater than the infinity of Turing machines. 

The upshot is that there are far more problems than there are Turing machines to solve them. 
From this perspective, the set of computable problems is just a tiny island in a huge sea of unsolv
ability. Admittedly, most of the unsolvable problems are not things that human beings will ever 
care about, or even be able to define. On the other hand, Turing’s proof of the unsolvability of the 
halting problem shows that at least some problems we care about are unsolvable. 
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