
6.087 Lecture 9 – January 22, 2010

Review

Using External Libraries
Symbols and Linkage
Static vs. Dynamic Linkage
Linking External Libraries
Symbol Resolution Issues

Creating Libraries

Data Structures
B-trees
Priority Queues

1

Review: Void pointers

•	 Void pointer – points to any data type:
int x; void ∗ px = &x; /∗ implicit cast to (void ∗) ∗/
float f ; void ∗ pf = &f;

•	 Cannot be dereferenced directly; void pointers must be
cast prior to dereferencing:

p r i n t f ("%d %f\n" , ∗ (i n t ∗) px , ∗ (f l o a t ∗) p f) ;

1

Review: Function pointers

•	 Functions not variables, but also reside in memory (i.e.
have an address) – we can take a pointer to a function

•	 Function pointer declaration:
int (∗cmp)(void ∗, void ∗);

•	 Can be treated like any other pointer
•	 No need to use & operator (but you can)
•	 Similarly, no need to use * operator (but you can)

2

Review: Function pointers

i n t strcmp_wrapper (void pa , void pb) {∗ ∗
return strcmp ((const char ∗) pa , (const char ∗) pb) ;

}

•	 Can assign to a function pointer:

int (∗fp)(void ∗, void ∗) = strcmp_wrapper; or

int (∗fp)(void ∗, void ∗) = &strcmp_wrapper;

•	 Can call from function pointer: (str1 and str2 are
strings)
int ret = fp(str1 , str2); or
int ret = (∗fp)(str1 , str2);

3

Review: Hash tables

•	 Hash table (or hash map): array of linked lists for storing
and accessing data efficiently

•	 Each element associated with a key (can be an integer,
string, or other type)

•	 Hash function computes hash value from key (and table
size); hash value represents index into array

•	 Multiple elements can have same hash value – results in
collision; elements are chained in linked list

4

6.087 Lecture 9 – January 22, 2010

Review

Using External Libraries
Symbols and Linkage
Static vs. Dynamic Linkage
Linking External Libraries
Symbol Resolution Issues

Creating Libraries

Data Structures
B-trees
Priority Queues

5

Symbols and libraries

•	 External libraries provide a wealth of functionality –
example: C standard library

•	 Programs access libraries’ functions and variables via
identifiers known as symbols

•	 Header file declarations/prototypes mapped to symbols at
compile time

•	 Symbols linked to definitions in external libraries during
linking

•	 Our own program produces symbols, too

5

msg, main(), puts(), others in stdio.h

Functions and variables as symbols

• Consider the simple hello world program written below:

#include < s t d i o . h>

const char msg [] = "Hello, world." ;

i n t main (void) {

puts (msg) ;

return 0;

}

• What variables and functions are declared globally?

6

Functions and variables as symbols

•	 Consider the simple hello world program written below:

#include < s t d i o . h>

const char msg [] = "Hello, world." ;

i n t main (void) {

puts (msg) ;

return 0;

}

•	 What variables and functions are declared globally?
msg, main(), puts(), others in stdio.h

6

Functions and variables as symbols

•	 Let’s compile, but not link, the file hello.c to create hello.o:
athena% gcc -Wall -c hello.c -o hello.o

•	 -c: compile, but do not link hello.c; result will compile the
code into machine instructions but not make the program
executable

•	 addresses for lines of code and static and global variables
not yet assigned

•	 need to perform link step on hello.o (using gcc or ld) to
assign memory to each symbol

•	 linking resolves symbols defined elsewhere (like the C
standard library) and makes the code executable

7

1

Athena is MIT's UNIX-based computing environment. OCW does not provide access to it.
1

Functions and variables as symbols

•	 Let’s look at the symbols in the compiled file hello.o:
athena% nm hello.o

•	 Output:
0000000000000000 T main

0000000000000000 R msg

U puts

•	 ’T’ – (text) code; ’R’ – read-only memory; ’U’ - undefined
symbol

•	 Addresses all zero before linking; symbols not allocated
memory yet

•	 Undefined symbols are defined externally, resolved during
linking

8

Athena is MIT's UNIX-based computing environment. OCW does not provide access to it..

1

1

Functions and variables as symbols

•	 Why aren’t symbols listed for other declarations in
stdio.h?

•	 Compiler doesn’t bother creating symbols for unused
function prototypes (saves space)

•	 What happens when we link?
athena% gcc -Wall hello.o -o hello

•	 Memory allocated for defined symbols
•	 Undefined symbols located in external libraries (like libc

for C standard library)

9

Athena is MIT's UNIX-based computing environment. OCW does not provide access to it.

1

1

Functions and variables as symbols

•	 Let’s look at the symbols now:
athena% nm hello

•	 Output:
(other default symbols)

.
. .
0000000000400524 T main
000000000040062c R msg

U	 puts@@GLIBC_2.2.5

•	 Addresses for static (allocated at compile time) symbols
•	 Symbol puts located in shared library GLIBC_2.2.5 (GNU

C standard library)
•	 Shared symbol puts not assigned memory until run time

10

Athena is MIT's UNIX-based computing environment. OCW does not provide access to it.

1

1

mailto:puts@@GLIBC_2.2.5

Static and dynamic linkage

•	 Functions, global variables must be allocated memory
before use

•	 Can allocate at compile time (static) or at run time (shared)
•	 Advantages/disadvantages to both
•	 Symbols in same file, other .o files, or static libraries

(archives, .a files) – static linkage
•	 Symbols in shared libraries (.so files) – dynamic linkage
•	 gcc links against shared libraries by default, can force

static linkage using -static flag

11

Static linkage

•	 What happens if we statically link against the library?
athena% gcc -Wall -static hello.o -o hello

•	 Our executable now contains the symbol puts:
. . .
00000000004014c0 W puts
. . .
0000000000400304 T main
. . .
000000000046cd04 R msg
. . .

•	 ’W’: linked to another defined symbol

12

Athena is MIT's UNIX-based computing environment. OCW does not provide access to it.

1

1

Static linkage

•	 At link time, statically linked symbols added to executable
•	 Results in much larger executable file (static – 688K,

dynamic – 10K)
•	 Resulting executable does not depend on locating external

library files at run time
•	 To use newer version of library, have to recompile

13

Dynamic linkage

•	 Dynamic linkage occurs at run-time
•	 During compile, linker just looks for symbol in external

shared libraries
•	 Shared library symbols loaded as part of program startup

(before main())
•	 Requires external library to define symbol exactly as

expected from header file declaration
•	 changing function in shared library can break your program
•	 version information used to minimize this problem
•	 reason why common libraries like libc rarely modify or

remove functions, even broken ones like gets()

14

Linking external libraries

•	 Programs linked against C standard library by default
•	 To link against library libnamespec.so or
libnamespec.a, use compiler flag -lnamespec to link
against library

•	 Library must be in library path (standard library directories
+ directories specified using -L directory compiler flag

•	 Use -static for force static linkage
•	 This is enough for static linkage; library code will be added

to resulting executable

15

Loading shared libraries

•	 Shared library located during compile-time linkage, but
needs to be located again during run-time loading

•	 Shared libraries located at run-time using linker library
ld.so

•	 Whenever shared libraries on system change, need to run
ldconfig to update links seen by ld.so

•	 During loading, symbols in dynamic library are allocated
memory and loaded from shared library file

16

Loading shared libraries on demand

•	 In Linux, can load symbols from shared libraries on
demand using functions in dlfcn.h

•	 Open a shared library for loading:
void ∗ dlopen(const char ∗file, int mode);
values for mode: combination of RTLD_LAZY (lazy loading
of library), RTLD_NOW (load now), RTLD_GLOBAL (make
symbols in library available to other libraries yet to be
loaded), RTLD_LOCAL (symbols loaded are accessible
only to your code)

17

Loading shared libraries on demand

•	 Get the address of a symbol loaded from the library:
void ∗ dlsym(void ∗ handle, const char ∗ symbol_name);
handle from call to dlopen; returned address is pointer to
variable or function identified by symbol_name

•	 Need to close shared library file handle after done with
symbols in library:
int dlclose(void ∗ handle);

•	 These functions are not part of C standard library; need to
link against library libdl: -ldl compiler flag

18

• Our puts() gets used since ours is static, and puts() in
C standard library not resolved until run-time

• If statically linked against C standard library, linker finds
two puts() definitions and aborts (multiple definitions not
allowed)

Symbol resolution issues

• Symbols can be defined in multiple places
• Suppose we define our own puts() function
• But, puts() defined in C standard library
• When we call puts(), which one gets used?

19

Symbol resolution issues

•	 Symbols can be defined in multiple places
•	 Suppose we define our own puts() function
•	 But, puts() defined in C standard library
•	 When we call puts(), which one gets used?
•	 Our puts() gets used since ours is static, and puts() in

C standard library not resolved until run-time
•	 If statically linked against C standard library, linker finds

two puts() definitions and aborts (multiple definitions not
allowed)

19

Symbol resolution issues

•	 How about if we define puts() in a shared library and
attempt to use it within our programs?

•	 Symbols resolved in order they are loaded
•	 Suppose our library containing puts() is libhello.so,

located in a standard library directory (like /usr/lib),
and we compile our hello.c code against this library:
athena% gcc -g -Wall hello.c -lhello -o
hello.o

•	 Libraries specified using -l flag are loaded in order
specified, and before C standard library

•	 Which puts() gets used here?
athena% gcc -g -Wall hello.c -lc -lhello -o
hello.o

20

Athena is MIT's UNIX-based computing environment. OCW does not provide access to it.

1

1

http:libhello.so

6.087 Lecture 9 – January 22, 2010

Review

Using External Libraries
Symbols and Linkage
Static vs. Dynamic Linkage
Linking External Libraries
Symbol Resolution Issues

Creating Libraries

Data Structures
B-trees
Priority Queues

21

Creating libraries

•	 Libraries contain C code like any other program
•	 Static or shared libraries compiled from (un-linked) object

files created using gcc
•	 Compiling a static library:

•	 compile, but do not link source files:
athena% gcc -g -Wall -c infile.c -o
outfile.o

•	 collect compiled (unlinked) files into an archive:
athena% ar -rcs libname.a outfile1.o
outfile2.o ...

21

Athena is MIT's UNIX-based computing environment. OCW does not provide access to it.

1

1

Creating shared libraries

•	 Compile and do not link files using gcc:
athena% gcc -g -Wall -fPIC -c infile.c -o
outfile.o

•	 -fPIC option: create position-independent code, since
code will be repositioned during loading

•	 Link files using ld to create a shared object (.so) file:
athena% ld -shared -soname libname.so -o
libname.so.version -lc outfile1.o
outfile2.o ...

•	 If necessary, add directory to LD_LIBRARY_PATH
environment variable, so ld.so can find file when loading
at run-time

•	 Configure ld.so for new (or changed) library:
athena% ldconfig -v

22

Athena is MIT's UNIX-based computing environment. OCW does not provide access to it.

1

1

6.087 Lecture 9 – January 22, 2010

Review

Using External Libraries
Symbols and Linkage
Static vs. Dynamic Linkage
Linking External Libraries
Symbol Resolution Issues

Creating Libraries

Data Structures
B-trees
Priority Queues

23

Data structures

•	 Many data structures designed to support certain
algorithms

•	 B-tree - generalized binary search tree, used for databases
and file systems

•	 Priority queue - ordering data by “priority,” used for sorting,
event simulation, and many other algorithms

23

B-tree structure

•	 Binary search tree with variable number of children (at
least t, up to 2t)
Tree is balanced – all leaves at same level •

•	 Node contains list of “keys” – divide range of elements in
children

[Cormen, Leiserson, Rivest, and Stein. Introduction to Algorithms, 2nd ed.
MIT Press, 2001.]	 Courtesy of MIT Press. Used with permission.

24

Initializing a B-tree

•	 Initially, B-tree contains root node with no children (leaf
node), no keys

•	 Note: root node exempt from minimum children
requirement

25

Inserting elements

•	 Insertion complicated due to maximum number of keys
•	 At high level:

1. traverse tree down to leaf node
2. if leaf already full, split into two leaves:

(a)	 move median key element into parent (splitting parent
already full)

(b) split remaining keys into two leaves (one with lower, one with
higher elements)

3. add element to sorted list of keys

•	 Can accomplish in one pass, splitting full parent nodes
during traversal in step 1

26

Inserting elements

B-tree with t = 3 (nodes may have 2–5 keys):

[Cormen, Leiserson, Rivest, and Stein. Introduction to Algorithms, 2nd ed.
MIT Press, 2001.] Courtesy of MIT Press. Used with permission.

27

Inserting elements

More insertion examples:

[Cormen, Leiserson, Rivest, and Stein. Introduction to Algorithms, 2nd ed.
MIT Press, 2001.] Courtesy of MIT Press. Used with permission.

28

Searching a B-tree

• Search like searching a binary search tree:
1. start at root.
2. if node empty, element not in tree
3. search list of keys for element (using linear or binary

search)
4. if element in list, return element
5. otherwise, element between keys, and repeat search on

child node for that range

• Tree is balanced – search takes O(log n) time

29

Deletion

•	 Deletion complicated by minimum children restriction
•	 When traversing tree to find element, need to ensure child

nodes to be traversed have enough keys
•	 if adjacent child node has at least t keys, move separating

key from parent to child and closest key in adjacent child to
parent

•	 if no adjacent child nodes have extra keys, merge child
node with adjacent child

•	 When removing a key from a node with children, need to
rearrange keys again

•	 if child before or after removed key has enough keys, move
closest key from child to parent

•	 if neither child has enough keys, merge both children
•	 if child not a leaf, have to repeat this process

30

Deletion examples

[Cormen, Leiserson, Rivest, and Stein. Introduction to Algorithms, 2nd ed.
MIT Press, 2001.]

Courtesy of MIT Press. Used with permission.

31

Deletion examples

[Cormen, Leiserson, Rivest, and Stein. Introduction to Algorithms, 2nd ed.
MIT Press, 2001.]

Courtesy of MIT Press. Used with permission.

32

Deletion examples

[Cormen, Leiserson, Rivest, and Stein. Introduction to Algorithms, 2nd ed.
MIT Press, 2001.] Courtesy of MIT Press. Used with permission.

33

Priority queue

•	 Abstract data structure ordering elements by priority
•	 Elements enqueued with priority, dequeued in order of

highest priority
•	 Common implementations: heap or binary search tree
•	 Operations: insertion, peek/extract max-priority element,

increase element priority

34

Heaps

•	 Heap - tree with heap-ordering property: priority(child) ≤
priority(parent)

•	 More sophisticated heaps exist – e.g. binomial heap,
Fibonacci heap

•	 We’ll focus on simple binary heaps
•	 Usually implemented as an array with top element at

beginning
•	 Can sort data using a heap – O(n log n) worst case

in-place sort!

35

Extracting data

Heap-ordering property maximum priority element at •	 ⇒
top of heap

•	 Can peek by looking at top element
•	 Can remove top element, move last element to top, and

swap top element down with its children until it satisfies
heap-ordering property:

1. start at top
2. find largest of element and left and right child; if element is

largest, we are done
3. otherwise, swap element with largest child and repeat with

element in new position

36

Inserting data/increasing priority

• Insert element at end of heap, set to lowest priority −∞
• Increase priority of element to real priority:

1. start at element
2. if new priority less than parent’s, we are done
3. otherwise, swap element with parent and repeat

37

Example of inserting data

[Cormen, Leiserson, Rivest, and Stein. Introduction to Algorithms, 2nd ed.
MIT Press, 2001.]

Courtesy of MIT Press. Used with permission.

38

Summary

Topics covered:
• Using external libraries

•	 symbols and linkage
•	 static vs. dynamic linkage
•	 linking to your code
•	 symbol clashing

•	 Creating libraries

Data structures
•

B-tree•
•	 priority queue

39

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MIT OpenCourseWare
http://ocw.mit.edu

6.087 Practical Programming in C
January (IAP) 2010

For information about citing these materials or our Terms of Use,visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Review
	Using External Libraries
	Symbols and Linkage
	Static vs. Dynamic Linkage
	Linking External Libraries
	Symbol Resolution Issues

	Creating Libraries
	Data Structures
	B-trees
	Priority Queues

