
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.087: Practical Programming in C

IAP 2010

Lab 1: Game of Life

In-Lab: Wednesday, January 13, 2010 Due: Tuesday, January 19, 2010

Overview

The Game of Life, invented by John Conway in 1970, is an example of a zero-player “game” known
as a cellular automaton. The game consists of a two-dimensional world extending infinitely in all
directions, divided into “cells.” Each cell is either “dead” or “alive” at a given “generation.” The
game consists of a set of rules that describe how the cells evolve from generation to generation.
These rules calculate the state of a cell in the next generation as a function of the states of its
neighboring cells in the current generation. In a 2-D world, a cell’s neighbors are those 8 cells
vertically, horizontally, or diagonally adjacent to that cell. Conway’s set of rules are summarized
as:

1. A live cell with fewer than two live neighbors dies.

2. A live cell with more than three live neighbors also dies.

3. A live cell with exactly two or three live neighbors lives.

4. A dead cell with exactly three live neighbors becomes alive.

In this lab, we will be implementing Conway’s Game of Life, with the minor restriction that
our 2-D world is finite. The neighbors of a cell on the edge of the world that would be beyond
the edge are assumed dead. You can read more about Conway’s Game of Life on Wikipedia at
http://en.wikipedia.org/wiki/Conway’s_Game_of_Life.

Example (the so-called “glider”):

			*		
	*		*		
		*	*		

−→

		*			
			*	*	
		*	*		

Legend: * = alive, = dead

Part A: Implementing Evolution (In-Lab)

In this part, we will focus on implementing the rules needed to evolve the world from one generation
to the next. To assist you, we provide several functions you should use to access and modify the
current and next state of the world. These functions are described in the header file lifegame.h
and implemented in the file lifegame.c. Also, we have provided a skeleton describing what you
need to do for this part in lab1a.c.

1

http://en.wikipedia.org/wiki/Conway's_Game_of_Life

Before getting started, you should copy all these files from the locker (/mit/6.087/Lab1/) into
your working directory. When compiling, you need to compile lab1a.c and lifegame.c together
to generate a single executable file (let’s call it lab1a.o) with all the code in it (otherwise, you’ll
get “undefined reference” errors). Here’s an example command line for compiling this code:

athena% gcc -g -O0 -Wall lab1a.c lifegame.c -o lab1a.o

athena%

Start by examining the contents of lifegame.h and lab1a.c. You need to fill in a few lines in
main() and complete the functions next generation(), get next state(x,y), and
num neighbors(x,y). There is no need to modify the files lifegame.h or lifegame.c in this part.

(a) How will you initialize the world for the Game of Life?	 Write the appropriate code in the

main() function.

(b) How will you output the final state of the world once all the evolutions are done? Write the

appropriate function call in main().

(c) The	main() function calls next generation() for each generation to handle the evolution

process. Your code should set each cell’s state in the next generation according to the rules

specified in the Overview of this handout. Once the states of all the cells have been set

for the next generation, calling finalize evolution() will set the current world state to

the next generation and reset the next generation state. Your code should make use of the

get next state(x,y) function to compute the next state of each cell.

(d) Write the code for get next state(x,y), so the function returns the next state (ALIVE or

DEAD) of the cell at the specified coordinates using the number of live neighbors (returned

by the num neighbors(x,y) function) and the Game of Life rules.

(e) Fill in the function	 num neighbors(x,y), so it returns the number of live neighbors (cells

vertically, horizontally, or diagonally adjacent) for the specified cell. Since our world is finite,

adjacent cells which are beyond the edge of the world are presumed DEAD.

Now that you’re done, compile and run the program. Feel free to change the definition of NUM GENERATIONS,
but when you’re ready to be checked off, make sure NUM GENERATIONS = 50 and show your program’s
output to the Lab Assistant.

Check off:

Part B: The World in a File

In the first part of this lab, the initial state of the world was hard-coded into lifegame.c and the
final state of the world was output to the console. In this part, we will modify the code so that the
initial state of the world can be read from a file, and the final state is output to a file.

First, let’s examine lifegame.c. Notice the functions you need to implement:
initialize world from file(filename) and save world to file(filename).

Athena is MIT's UNIX-based computing environment. OCW does not provide access to it.

2

1

1

(a) The first of these, initialize world from file(filename), reads the file specified by filename
and initializes the world from the pattern specified in the file. Basically, the file is a matrix of
characters, ’*’ to specify a live cell, and ’ ’ (space) to specify a dead cell. The ith character
of the jth line (zero-indexed) represents the initial state of the cell located at (i,j). If the line
doesn’t contain enough characters or the file doesn’t contain enough lines, the unspecified
cells are presumed dead. Fill in the function to read the file and initialize the world. Don’t
forget to reset all the next generation states to DEAD. Use appropriate error handling.

(b) The other function, save world to file(filename), saves the final state of the world to the
file filename in the same format as used in the initialization function: the ith character of
the jth line (zero-indexed) represents the state of the cell located at (i,j) in the world.

(c) Fill in the	 contents of lab1b.c using the code from Part A (lab1a.c) and modifying to
call these functions. The name of the file to load will be specified in the first command line
argument passed to the executable. If no file is specified, you should default to initializing the
world to the hard-coded default “glider” pattern. Save the final output to the file “world.txt.”

To help you test your code, we’ve provided a couple test files: glider.txt (should match your
output from Part A) and sship.txt (output in sshipout.txt).

To finish, write a brief (1 page max.) lab report describing your experience completing this lab,
what challenges you faced and how you addressed them, and what you learned from this lab. Turn
in a zip file containing all your code (lab1a.c, lab1b.c, lifegame.h, and lifegame.c), and your
lab report, using the online submission system on Stellar.

Congratulations, you’re done!

3

MIT OpenCourseWare
http://ocw.mit.edu

6.087 Practical Programming in C
January (IAP) 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

