
6.087 Lecture 2 – January 12, 2010

Review

Variables and data types

Operators

Epilogue

1

Review: C Programming language

•	 C is a fast, small,general-purpose,platform independent
programming language.

•	 C is used for systems programming (e.g., compilers and
interpreters, operating systems, database systems,
microcontrollers etc.)

•	 C is static (compiled), typed, structured and imperative.
•	 "C is quirky, flawed, and an enormous success."–Ritchie

1

Review: Basics

• Variable declarations: int i ; float f ;

• Intialization: char c=’A’; int x=y=10;

• Operators: +,−,∗,/,%

• Expressions: int x,y,z; x=y∗2+z∗3;

• Function: int factorial (int n); /∗ function takes int , returns int ∗/

2

6.087 Lecture 2 – January 12, 2010

Review

Variables and data types

Operators

Epilogue

3

Definitions

Datatypes:
•	 The datatype of an object in memory determines the set

of values it can have and what operations that can be
performed on it.

•	 C is a weakly typed language. It allows implicit conversions
as well as forced (potentially dangerous) casting.

Operators:
•	 Operators specify how an object can be manipulated

(e.g.,, numeric vs. string operations).

•	 operators can be unary(e.g., -,++),binary (e.g.,

+,-,*,/),ternary (?:)

3

Definitions (contd.)

Expressions:
•	 An expression in a programming language is a

combination of values, variables, operators, and functions
Variables:
•	 A variable is as named link/reference to a value stored in

the system’s memory or an expression that can be
evaluated.

Consider: int x=0,y=0; y=x+2;.
•	 x, y are variables
• y = x + 2 is an expression

• + is an operator.

4

Variable names

Naming rules:
•	 Variable names can contain letters,digits and _

Variable names should start with letters.
•
•	 Keywords (e.g., for,while etc.) cannot be used as variable

names
•	 Variable names are case sensitive. int x; int X declares

two different variables.
Pop quiz (correct/incorrect):
•	 int money$owed; (incorrect: cannot contain $)
•	 int total_count (correct)
•	 int score2 (correct)
•	 int 2ndscore (incorrect: must start with a letter)
•	 int long (incorrect: cannot use keyword)

5

Data types and sizes

C has a small family of datatypes.
• Numeric (int,float,double)
• Character (char)
• User defined (struct,union)

6

Numeric data types

Depending on the precision and range required, you can use
one of the following datatypes.

signed unsigned
short short int x;short y; unsigned short x;unsigned short int y;

default int x; unsigned int x;

long long x; unsigned long x;

float float x; N/A
double double x; N/A
char char x; signed char x; unsigned char x;

•	 The unsigned version has roughly double the range of its
signed counterparts.

•	 Signed and unsigned characters differ only when used in
arithmetic expressions.

•	 Titbit: Flickr changed from unsigned long (232 − 1) to string
two years ago.

7

Big endian vs. little endian

The individual sizes are machine/compiler dependent.
However, the following is guaranteed:
sizeof(char)<sizeof(short)<=sizeof(int)<=sizeof(long) and
sizeof(char)<sizeof(short)<=sizeof(float)<=sizeof(double)
"NUXI" problem: For numeric data types that span multiple
bytes, the order of arrangement of the individual bytes is
important. Depending on the device architecture, we have "big
endian" and "little endian" formats.

8

Big endian vs. little endian (cont.)

•	 Big endian: the most significant bits (MSBs) occupy the

lower address. This representation is used in the powerpc
processor. Networks generally use big-endian order, and
thus it is called network order.

•	 Little endian : the least signficant bits (LSBs) occupy the
lower address. This representation is used on all x86
compatible processors.

Figure: (from http://en.wikipedia.org/wiki/Little_endian)

9

http://en.wikipedia.org/wiki/Little_endian

Constants

Constants are literal/fixed values assigned to variables or used
directly in expressions.

Datatype example meaning
int i=3; integer

long l=3; long integer
integer unsigned long ul= 3UL; unsigned long

int i=0xA; hexadecimal
int i=012; octal number

float pi=3.14159 float
floating point float pi=3.141F float

double pi=3.1415926535897932384L double

10

Constants (contd.)

Datatype example meaning

character
’A’

’\x41’

’\0101’

character
specified in hex
specified in octal

string
"hello world"

"hello""world"

string literal
same as "hello world"

enumeration
enum BOOL {NO,YES}

enum COLOR {R=1,G,B,Y=10}
NO=0,YES=1

G=2,B=3

11

Declarations

The general format for a declaration is

type variable-name [=value] .

Examples:

• char x; /∗ uninitialized ∗/

• char x=’A’; /∗ intialized to ’A’∗/

• char x=’A’,y=’B’; /∗multiple variables initialized ∗/

• char x=y=’Z’;/∗multiple initializations ∗/

12

Pop quiz II

• int x=017;int y=12; /∗ is x>y?∗/

• short int s=0xFFFF12; /∗correct?∗/

• char c=−1;unsigned char uc=−1; /∗correct?∗/

• puts("hel"+"lo");puts("hel""lo");/∗which is correct?∗/

• enum sz{S=0,L=3,XL}; /∗what is the value of XL?∗/

• enum sz{S=0,L=−3,XL}; /∗what is the value of XL?∗/

13

6.087 Lecture 2 – January 12, 2010

Review

Variables and data types

Operators

Epilogue

14

Arithmetic operators

operator meaning examples

+ addition
x=3+2; /∗constants∗/
y+z; /∗variables∗/

x+y+2; /∗both∗/

- subtraction
3−2; /∗constants∗/

int x=y−z; /∗variables∗/
y−2−z; /∗both∗/

* multiplication
int x=3∗2; /∗constants∗/
int x=y∗z; /∗variables∗/

x∗y∗2; /∗both∗/

14

Arithmetic operators (contd.)

operator meaning examples

/ division
float x=3/2; /∗produces x=1 (int /) ∗/

float x=3.0/2 /∗produces x=1.5 (float /) ∗/
int x=3.0/2; /∗produces x=1 (int conversion)∗/

%
modulus

(remainder)

int x=3%2; /∗produces x=1∗/
int y=7;int x=y%4; /∗produces 3∗/

int y=7;int x=y%10; /∗produces 7∗/

15

Relational Operators

Relational operators compare two operands to produce a
’boolean’ result. In C any non-zero value (1 by convention) is
considered to be ’true’ and 0 is considered to be false.
operator meaning examples

> greater than
3>2; /∗evaluates to 1 ∗/

2.99>3 /∗evaluates to 0 ∗/

>=
greater than or
equal to

3>=3; /∗evaluates to 1 ∗/
2.99>=3 /∗evaluates to 0 ∗/

< lesser than
3<3; /∗evaluates to 0 ∗/
’A’<’B’/∗evaluates to 1∗/

<=
lesser than or equal
to

3<=3; /∗evaluates to 1 ∗/
3.99<3 /∗evaluates to 0 ∗/

16

Relational Operators

Testing equality is one of the most commonly used relational

operator

== operator.

!=

Gotchas:

meaning

equal to

not equal to

examples

3==3; /∗evaluates to 1 ∗/

’A’==’a’/∗evaluates to 0 ∗/

3!=3; /∗evaluates to 0 ∗/

2.99!=3 /∗evaluates to 1 ∗/

Note that the "==" equality operator is different from the •
"=", assignment operator.

Note that the "==" operator on float variables is tricky
•
because of finite precision.

17

Logical operators

operator meaning examples

&& AND
((9/3)==3) && (2∗3==6); /∗evaluates to 1 ∗/
(’A’==’a’) && (3==3) /∗evaluates to 0 ∗/

|| OR
2==3 || ’A’==’A’; /∗evaluates to 1 ∗/

2.99>=3 || 0 /∗evaluates to 0 ∗/

! NOT
!(3==3); /∗evaluates to 0 ∗/

!(2.99>=3) /∗evaluates to 1 ∗/
Short circuit: The evaluation of an expression is discontinued if

the value of a conditional expression can be determined early.

Be careful of any side effects in the code.

Examples:

•	 (3==3) || ((c=getchar())==’y’). The second expression is not

evaluated.
•	 (0) && ((x=x+1)>0) . The second expression is not evaluated.

18

Increment and decrement operators

Increment and decrement are common arithmetic operation. C
provides two short cuts for the same.
Postfix

x++ is a short cut for x=x+1•
•	 x−− is a short cut for x=x−1

•	 y=x++ is a short cut for y=x;x=x+1. x is evaluated before it is
incremented.

•	 y=x−− is a short cut for y=x;x=x−1. x is evaluated before it is
decremented.

19

Increment and decrement operators

Prefix:
++x is a short cut for x=x+1•

•	 −−x is a short cut for x=x−1

•	 y=++x is a short cut for x=x+1;y=x;. x is evaluate after it is
incremented.

•	 y=−−x is a short cut for x=x−1;y=x;. x is evaluate after it is
decremented.

20

Bitwise Operators

operator meaning examples

& AND
0x77 & 0x3; /∗evaluates to 0x3 ∗/
0x77 & 0x0; /∗evaluates to 0 ∗/

| OR
0x700 | 0x33; /∗evaluates to 0x733 ∗/

0x070 | 0 /∗evaluates to 0x070 ∗/

ˆ XOR
0x770 ^ 0x773; /∗evaluates to 0x3 ∗/

0x33 ^ 0x33; /∗evaluates to 0 ∗/

« left shift
0x01<<4; /∗evaluates to 0x10 ∗/

1<<2; /∗evaluates to 4 ∗/

» right shift
0x010>>4; /∗evaluates to 0x01 ∗/

4>>1 /∗evaluates to 2 ∗/
Notes:
• AND is true only if both operands are true.
• OR is true if any operand is true.
• XOR is true if only one of the operand is true.

21

Assignment Operators

Another common expression type found while programming in
C is of the type var = var (op) expr

x=x+1•
• x=x∗10

• x=x/2

C provides compact assignment operators that can be used
instead.
• x+=1 /∗is the same as x=x+1∗/

• x−=1 /∗is the same as x=x−1∗/

• x∗=10 /∗is the same as x=x∗10 ∗/

• x/=2 /∗ is the same as x=x/2

• x%=2 /∗is the same as x=x%2

22

Conditional Expression

A common pattern in C (and in most programming) languages
is the following:

i f (cond)
x=<expra >;

else
x=<exprb >;

C provides syntactic sugar to express the same using the
ternary operator ’?:’

s ign=x>0?1:−1; isodd=x%2==1?1:0;
i f (x >0) i f (x%2==1)

s ign =1 isodd=1
else else

s ign=−1 isodd=0

Notice how the ternary operator makes the code shorter and
easier to understand (syntactic sugar).

23

6.087 Lecture 2 – January 12, 2010

Review

Variables and data types

Operators

Epilogue

24

Type Conversions

When variables are promoted to higher precision, data is
preserved. This is automatically done by the compiler for mixed
data type expressions.

i n t i ;

f l o a t f ;

f = i +3.14159; / ∗ i i s promoted to f l o a t , f =(f l o a t) i +3.14159 ∗ /

Another conversion done automatically by the compiler is ’char’
’int’. This allows comparisons as well as manupilations of →

character variables.

isupper =(c>=’A’ && c<=’Z’) ? 1 : 0 ; / ∗ c and l i t e r a l constants
are converted to i n t ∗ /

i f (! i supper)
c=c−’a’+’A’ ; / ∗ s u b t r a c t i o n i s poss ib le

because o f i n t e g e r convers ion ∗ /

As a rule (with exceptions), the compiler promotes each term in
an binary expression to the highest precision operand.

24

Precedence and Order of Evaluation

• ++,–,(cast),sizeof have the highest priority

• *,/,% have higher priority than +,­

• ==,!= have higher priority than &&,||
• assignment operators have very low priority

Use () generously to avoid ambiguities or side effects
associated with precendence of operators.

• y=x∗3+2 /∗same as y=(x∗3)+2∗/

• x!=0 && y==0 /∗same as (x!=0) && (y==0)∗/

• d= c>=’0’&& c<=’9’/∗same as d=(c>=’0’) && (c<=’9’)∗/

25

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MIT OpenCourseWare
http://ocw.mit.edu

6.087 Practical Programming in C
IAP 2010

For information about citing these materials or our Terms of Use,visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Review
	Variables and data types
	Operators
	Epilogue

