Lab 1 - Revisited

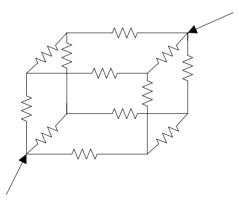
- Display signals on scope
- Measure the time, frequency, voltage visually and with the scope
- Voltage measurement*
- Build simple circuits on a protoboard.*

Oscilloscope demo

RMS Voltage

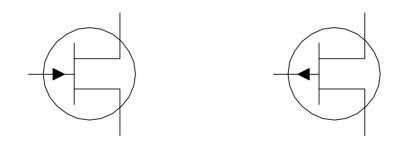
- 0-5v square wave (50%) duty cycle has a rms value of $5/\sqrt{2} = 3.54v$
- 5v peak-peak square wave (-2.5v to +2.5v 50% duty cycle) has a rms value of 2.5v

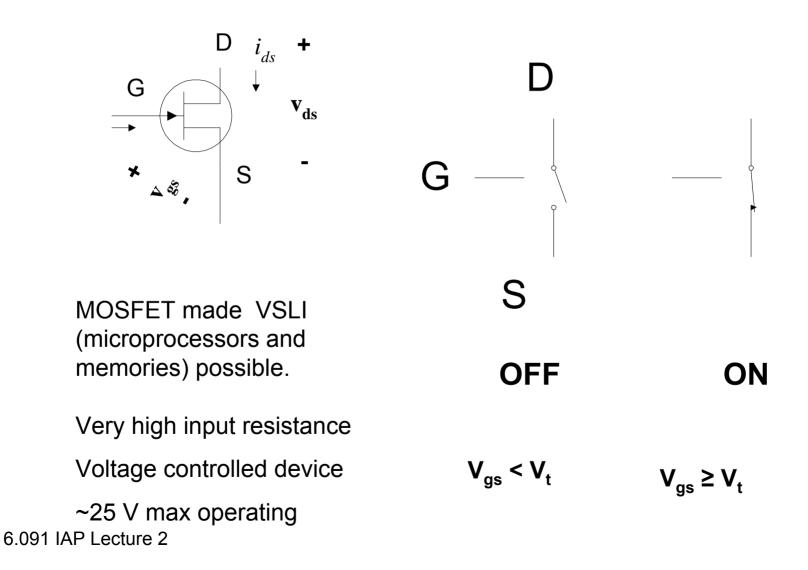
General Conventions


- Wire coding
 - red: positive or signal source
 - black: ground or common reference point
- Circuit flow, signal flow left to right
- Higher voltage on top, ground negative voltage on bottom

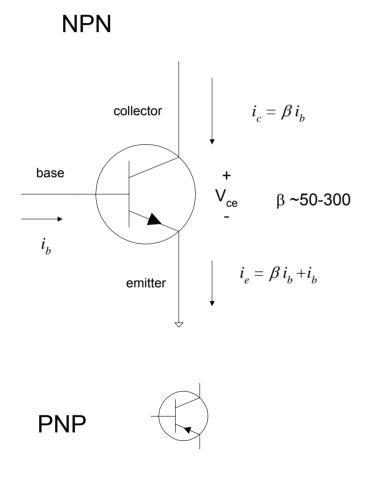
Lab Hints & Cautions

- Current measure must be taken in series not parallel.
- There are tools for most situations: wire strippers, de-soldering tool, etc..
- Power ratings of components must not be exceeded
- Polarity of electrolytic capacitors must be observed.

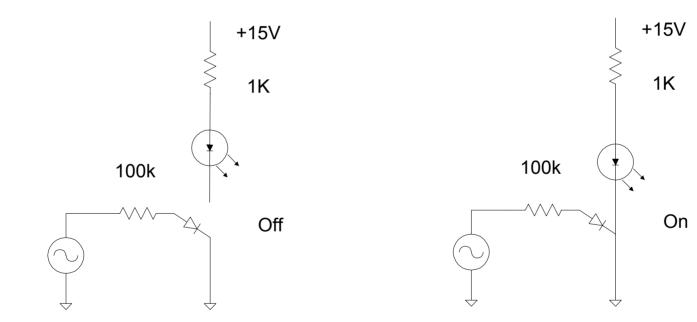

Lab 1 Circuits



Field Effect Transistors (FET)

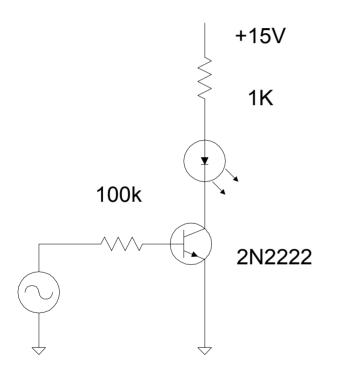

- MOSFET: Metal Oxide Semiconductor FET
- JFET: Junction FET
- FETs are voltage controlled device with very high input impedance (little current)

Simple Model of MOSFET

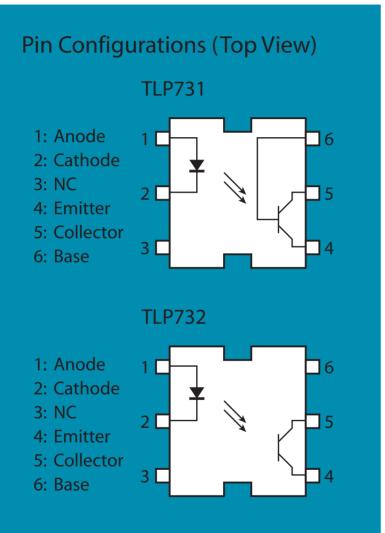


Bipolar Junction Transistors

- BJT can operate in a linear mode (amplifier) or can operate as a digital switch.
- Current controlled device
- Two families: npn and pnp.
- BJT's are current controlled devices
- NPN 2N2222
- PNP 2N2907
- V_{CE} ~30V, 500 mw power


BJT Switching Models

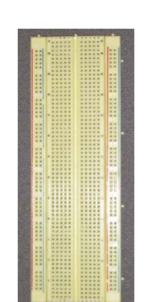
Light Emitting Diode


- LED's are pn junction devices which emit light. The frequency of the light is determined by a combination of gallium, arsenic and phosphorus.
- Red, yellow and green LED's are in the lab
- Diodes have polarity
- Typical forward current 10-20ma

Lab Exercise

- Wire up protoboard.
- Turn on function generator and using a ramp signal try to get a pulsing light

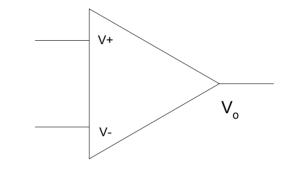
Optical Isolators

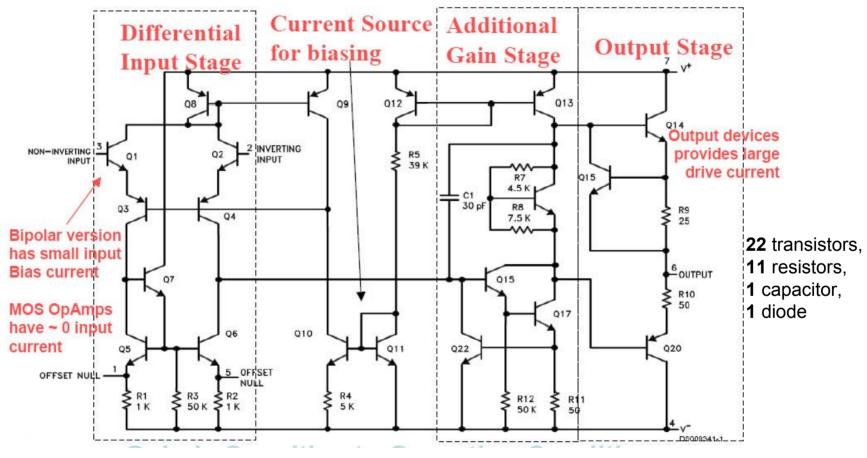


- Optical Isolators are used to transmit information optically without physical contact.
- Single package with LED and photosensor (BJT, thyristor, etc.)
- Isolation up to 4000 Vrms

Figure by MIT OpenCourseWare.

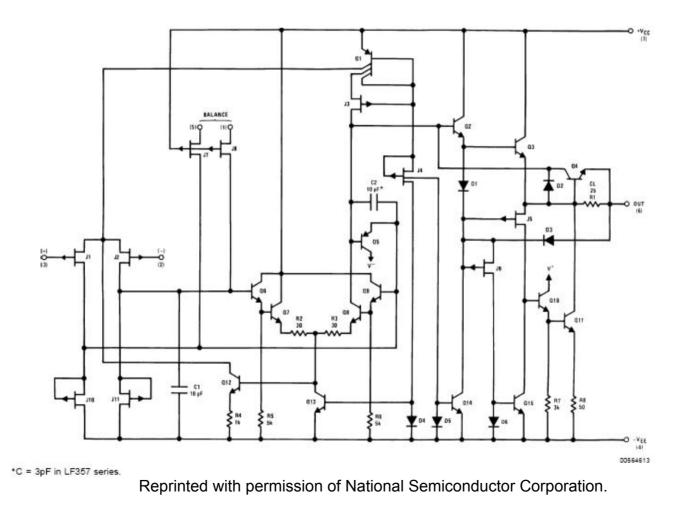
Proto-Board


- +5v, +15v, -15v available
- Pins within row or column connected
- Use bypass capacitors liberally


Op-Amps

 Active device: V₀ = A(V₊-V₋); note that it is the difference of the input voltage!

- A=open loop gain ~ $10^{5} 10^{6}$
- Most applications use negative feedback.
- Comparator: no feedback
- Active device requires power. No shown for simplicity.
- Classics op-amps: 741, 357 ~ \$0.20


741 Circuit

Reprinted with permission of National Semiconductor Corporation.

6.091 IAP Lecture 2

356 JFET Input Op-amp

741 Op Amp Max Ratings

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC} , V _{EE}	±18	Vdc
Input Differential Voltage	VID	V _{ID} ±30	
Input Common Mode Voltage (Note 1.)	VICM	±15	V
Output Short Circuit Duration (Note 2.)	tsc	Continuous	-
Operating Ambient Temperature Range	T _A	0 to +70	°C
Storage Temperature Range	T _{stg}	-55 to +125	°C

1. For supply voltages less than +15 V, the absolute maximum input voltage is equal to the supply voltage.

2. Supply voltage equal to or less than 15 V.

Reprinted with permission of National Semiconductor Corporation.

741 Electrical Characteristics

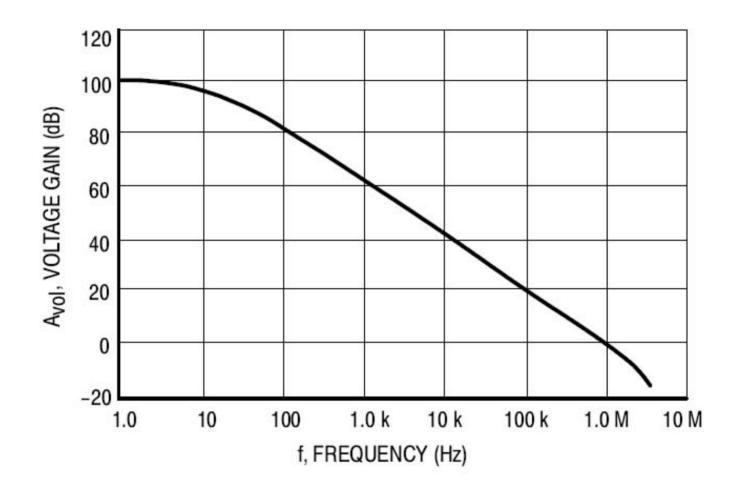
Characteristic	Symbol	Min	Тур	Max	Unit
Input Offset Voltage (R _S ≤ 10 k)	Vio	-	2.0	6.0	mV
Input Offset Current	l _{io}	-	20	200	nA
Input Bias Current	IIB	=	80	500	nA
Input Resistance	r,	0.3	2.0	572	MΩ
Input Capacitance	Ci	<u></u>	1.4	2.3	pF
Offset Voltage Adjustment Range	VIOR	-	±15	148 1	mV
Common Mode Input Voltage Range	VICR	±12	±13	-	V
Large Signal Voltage Gain ($V_0 = \pm 10 \text{ V}, \text{ R}_L \ge 2.0 \text{ k}$)	Avol	20	200		V/mV
Output Resistance	г _о	5	75		Ω
Common Mode Rejection (R _S ≤ 10 k)	CMR	70	90	574)	dB
Supply Voltage Rejection ($R_S \le 10 \text{ k}$)	PSR	75		<u>ше</u>	dB
Output Voltage Swing $(R_L \ge 10 \text{ k})$ $(R_L \ge 2.0 \text{ k})$	Vo	±12 ±10	±14 ±13	-	v
Output Short Circuit Current	Isc	5	20		mA
Supply Current	ID	~	1.7	2.8	mA
Power Consumption	Pc	-	50	85	mW
Transient Response (Unity Gain, Noninverting) (V _I = 20 mV, R _L \ge 2.0 k, C _L \le 100 pF) Rise Time (V _I = 20 mV, R _L \ge 2.0 k, C _L \le 100 pF) Overshoot (V _I = 10 V, R _L \ge 2.0 k, C _L \le 100 pF) Slew Rate	t _{TLH} os SR	-	0.3 15 0.5		μs % V/μs

ELECTRICAL CHARACTERISTICS (V_{CC} = +15 V, V_{EE} = -15 V, T_A = 25°C, unless otherwise noted.)

Reprinted with permission of National Semiconductor Corporation.

Decibel (dB)

$$dB = 20\log\left(\frac{V_o}{V_i}\right)$$


$$dB = 10\log\left(\frac{P_o}{P_i}\right)$$

 $\log_{10}(2)=.301$

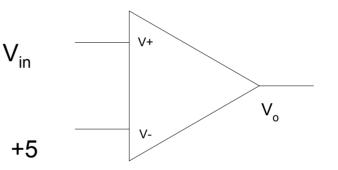
3 dB point = ?

6.091 IAP Lecture 2

741 Open Loop Frequency Gain

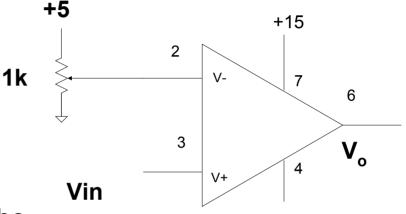
741 vs 356 Comparison

	741	356
Input device	BJT	JFET
Input bias current	0.5uA	0.0001uA
Input resistance	0.3 MΩ	10 ⁶ ΜΩ
Slew rate*	0.5 v/us	7.5 v/us
Gain Bandwidth product	1 Mhz	5 Mhz
Output short circuit duration	Continuous	continuous
Identical pin out		

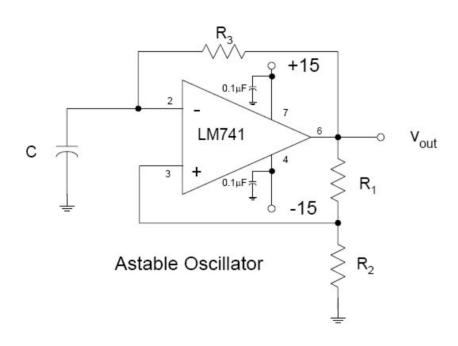

* comparators have >50 v/us slew rate 6.091 IAP Lecture 2

Comparator Operation

- Supply voltage = +15v, -15V
- V- = +5 V


• For
$$V_{in} = +4$$
, $V_o = ?$

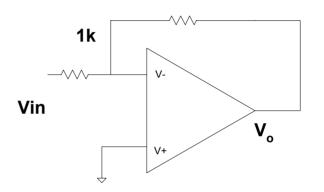
- For $V_{in} = +5.1$, $V_o = ?$
- Comparators are design for fast response time and high slew rate.



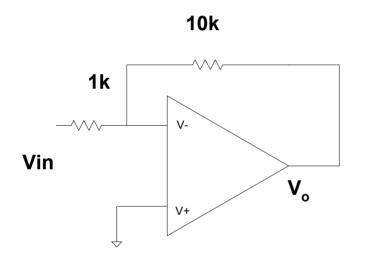
Lab Exercise - Comparator

- Wire up a comparator on the proto-board using 741 op-amp.
 Be sure to supply power and ground.
- Turn on function generator using a ramp. Display both the input and the output on an oscilloscope. Describe what is happening.
- What is the maximum output voltage (the plus rail)?
- What is the minimum output voltage (negative rail)?

Lab Exercise - Oscillator

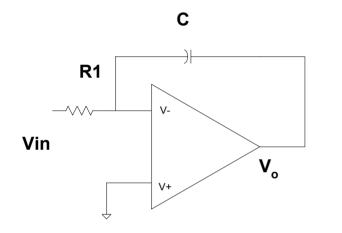


- Wire up a comparator on the proto-board using 741 op-amp.
 Be sure to supply power and ground.
- R1=10k, R2=4.7k, R3=10K, C=.33uf
- Display V- and V_{out} on the scope. Describe what is happening. Set R3=4.7k. Predict what happens to the frequency.

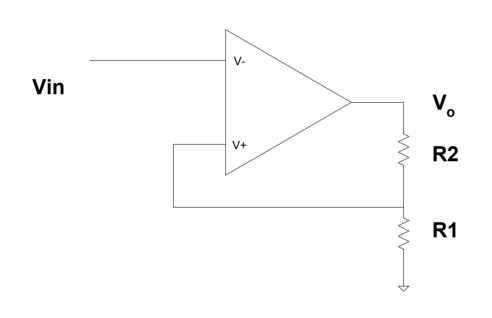

Lab Exercise – Inverting amplifier

- Wire up a comparator on the proto-board using 741 op-amp.
 Be sure to supply power and ground. Find the pin #
- Turn on function generator using a ramp. Display both the input and the output on an oscilloscope. How is the output related to the input?
- What is the peak output voltage?
- What is the minimum output voltage?
- What at frequency does the gain start to drop below ten?

10k



Negative Feedback

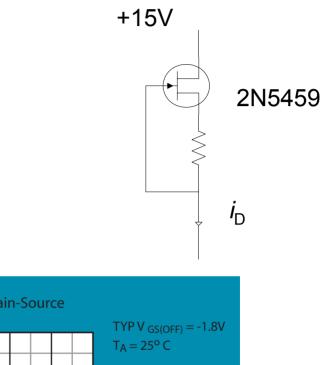

• Take product with 100,000 gain and reduce it to 10?

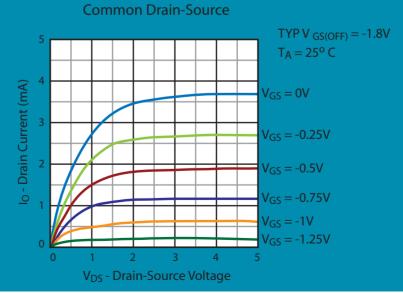
Lab Exercise – Integrator

- Op-amps are frequently used as integrators. Wire up an integrator on the proto-board using a 741 op-amp. Be sure to supply power and ground. R1=47K, C=0.1uf
- Input a square wave to the integrator. What is the minimum frequency for for which the integrates? Display both the input and the output on an oscilloscope.
- Notice that for a square wave, the output voltage is proportional to the "on" time.

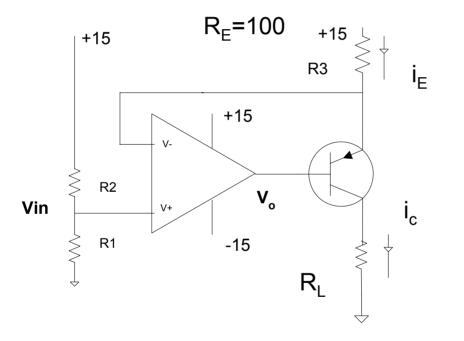
Lab Exercise - Schmitt Trigger

- Schmitt trigger have different triggers points for rising edge and falling edge.
- Can be used to reduce false triggering
- This is NOT a negative feedback circuit.


Current Source


- Household application: battery charger (car, laptop, mp3 players)
- Differential amplifier current source
- Ramp waveform generator
- High Speed DA converter using capacitors
- Simple circuit: 2N5459
 Nchannel JFET

 I_{DSS} = current with V_{GS} =0 V_P = pinchoff voltage


$$i_D = I_{DSS} \left(1 - \frac{v_{GS}}{V_P} \right)^2$$

6.091 IAP Lecture 2

Voltage Control Current Source*

- Feedback forces V₊=V₋.
- R_E=100, β_F=100, Vin=5
- i_E ~i_C
- R1=10k, R2=4.7k, R3=10K, C=.33uf
- R1, R2 can be replaced with a pot.

Lecture 2 Summary

- BJT, MOSFET
- Op Amp circuits
 - Comparator
 - Oscillator
 - Schmitt trigger
 - Current Source