6.092/HST.480

Bioinformatics \& Proteomics: An Engineering-Based Problem Solving Approach

Gil Alterovitz¹, Manolis Kellis², Marco Ramoni ${ }^{1}$
${ }^{1}$ Harvard/IMITI Division of Health Science and Technology (HST)
${ }^{2}$ Electrical Engineering \& Computer Science, MIT

Today

© Introduction- Gil Alterovitz

- Motivation: Why Bioinformatics?
- Course Introduction
- Introduction to Modern Biology: Part I
- Bioinformatics from Industry's Perspective: Mathworks- Rob Henson
- Bioinformatics in Industry
- Matlab Bioinformatics Toolbox
- Clustering and Related Technologies (DeRisi's Microarray Paper)

Motivation: Why Bioinformatics?

Why Engineering and Computer Science?

Robotics/Automation: For lab automation, hypothesis testing and generation

nature

Functional genomic hypothesis generation and experimentation by a robot scientist

Ross D. King ${ }^{1}$, Kenneth E. Whelan ${ }^{1}$, Ffion M. Jones ${ }^{1}$, Philip G. K. Reiser ${ }^{1}$, Clristopher H. Bryant ${ }^{2}$, Stephen H. Muggleton ${ }^{3}$, Douglas B. Kell ${ }^{4}$ \& Stephen G. Oliver ${ }^{5}$

Visualization/Image Processing: Protein Expression 3-D Heat Map

ARTIFICIAL
 INTELLIGENCE IN MEDICINE

Data mining techniques for cancer detection using serum proteomic profiling

Lihua Lia ${ }^{\text {a,* }}$, Hong Tang ${ }^{\text {a }}$, Zuobao Wu ${ }^{\text {a }}$, Jianli Gong ${ }^{\text {a }}$, Michael Gruidl ${ }^{\text {b }}$, Jun Zou ${ }^{\text {b }}$, Melvyn Tockman ${ }^{\text {b }}$, Robert A. Clark ${ }^{\text {a }}$

Network Theory: Modeling Protein Interaction

Science

A Map of the Interactome Network of the Metazoan C. elegans

New Mass Spectrometry Technologies With Clinical Applications

Annals of Surgical Oncology

Surfaced-Enhanced Laser Desorption/Ionization Time-of-Flight (SELDI-TOF) Differentiation of Serum Protein Profiles of BRCA-1 and Sporadic Breast Cancer
Stephen Becker, MD, Lisa H. Cazares, Patrice Watson, PhD, Henry Lynch, MD, O John Semmes, PhD, Richard R. Drake, PhD and Christine Laronga, MD

Signal Processing in Biology

Figure by MIT OCW

Model:

$$
\begin{aligned}
& \dot{C}=v_{i}-k_{1} \frac{X C}{C+K_{5}}-k_{d} C, \\
& M=\frac{V_{1}(1-M)}{(1-M)+K_{1}}-\frac{V_{2} M}{M+K_{2}}, \\
& \dot{X}=\frac{V_{3}(1-X)}{(1-X)+K_{3}}-\frac{V_{X} X}{X+K_{4}} \\
& V_{1}=\frac{C}{C+K_{6}} V_{1}, V_{3}=M V_{3},
\end{aligned}
$$

Figure by MIT OCW
Gardner, T. S., Dolnik, M. \& Collins, J. J. A theory for controlling cell cycle dynamics using a reversibly binding inhibitor. Proc Natl Acad Sci 95, 14190-5 (1998).

Course Introduction

Signal Processing in Bioinformatics

Genes
Expression Levels

Phase Shift
ARP7 CHS2
arp7: Component of global transcriptional activator complex (Cytoskeleton)
chs2: Chitin synthase II
(Cell wall biogenesis)
$\mathrm{r}=0.61$

Figure by MIT OCW

Butte, A. J., Bao, L., Reis, B. Y., Watkins, T. W. \& Kohane, I. S. Comparing the similarity of time-series gene expression using signal processing metrics. J Biomed Inform 34, 396-405 (2001).

Instructors

- Gill Alterovitz
- HST Medical Engineering Medical Physics-Electrical Engineering and Computer Science, Graduate Student/Whitaker Fellow.
- Proteomics \& Computational Biology, Introductory Material
- Robert Berwick
- Professor, Electrical Engineering and Computer Science, MIT
- Language/Sequence Analysis
- Rob Henson
- Director of Bioinformatics Group, Mathworks (Matlab).
- Mathematics and Signal Processing, Industrial Experience
o Manolis Kellis
- Assistant Professor, Electrical Engineering and Computer Science, MIT
- Sequence Analysis
- Nanguneri Nirmala
- Functional Genomics Group, Novartis Institutes for BioMedical Research
- Expression Analysis, Industrial Experience
\% Marco F. Ramoni
- Assistant Professor of Pediatrics and Medicine, Harvard Medical School
- Expression Analysis, Bayesian Networks
- Paola Sebastiani
- Associate Professor, Department of Biostatistics, Boston University
- Statistical Methodologies and Bioinformatics

Organization: Levels of Abstraction

- Part I: Sequence
oPart II: Expression
© Part III: Proteomics
© Part IV: Systems/Misc.

Part I / II

- Tue, January 4, 2005, 11:00am-11:45pm
- Review of Modern Biology- Gil Alterovitz

Q Tue, January 4, 2005, 11:45am-12:30pm

- Introduction to Bioinformatics Laboratory / Bioinformatics in the Computer Industry- Rob Henson / Gil Alterovitz
© Thurs, January 6, 2005, 11:00am-11:45pm
- Review of Modern Biology II- Gil Alterovitz
© Thurs, January 6, 2005, 11:45am-12:30pm
- Sequence Analysis: Motif and Regulation- Manolis Kellis
- Tue, January 11, 2005, 11:00am-11:45pm
- Sequence Analysis: Genes and Genome- Manolis Kellis

Q Tue, January 11, 2005, 11:45am-12:30pm

- Sequence Analysis: Gene Evolution- Manolis Kellis and Robert Berwick
Q. Thurs, January 13, 2005, 11:00arsi-1 1:4,5prn
- Microarray Expression Daita Arialysisj- Marco PRansionif

Q Thurs, January 13, 2005, 11:455arsi-12:30prn

- Macrinine Learning: Bayesiars Meínoclologjes- Marco Fiansionij

Part IV / III

o Tue, January 18, 2005, 11:00am-12:00pm

- Bioinformatics in the Biotech Industry- Nanguneri Nirmala

Q Tue, January 18, 2005, 12:00am-12:30pm

- Control and Feedback in Systems- Gil Alterovitz
- Thurs, January 20, 2005, 11:00am=11:45pm
- Scale-free Networks I- Paola Sebastiani
- Thurs, January 20, 2005, 11:45am-12:30pm
- Scale-free Networks II- Paola Sebastiani
- Tue, January 25, 2005, 11:00arn-11:45prn
- Statistical Models and Stochastic Processes in Proteornics- Gil Alieroviz

Q Tue, January 25, 2005, 11:45arr-12:30prrı

- Signal Processing for Proteornics - Gil Alterovitz

Q Thurs, January 27, 2005, 11:00arri-12:00prn

- Biological Methods, Autornation, F.obotics-Gill Alierovitz

Q Thurs, January 27, 2005, 12:00 prsi-12:30prr

- Project Discussion and W/ralp-up-Gil Allerovitz

Parts III/IV switched to accommodate speakers.

Class Information

o Date: Winter 2005

- Credits/Hours:
- Four weeks: TR, 11:00 am-12:30 pm

Total hours: 12 scheduled + estimated 28 outside $=40$
Weekly load: 3 scheduled + estimated 7 outside $=10$

- Units: 3 credits (1-0-2), U
- Audience: upper undergraduate/graduate.
© Student Prerequisites:
- 7.012 or equivalent recommended
- 6.003 or equivalent recommended
- 6.041 or equivalent recommended
© Grades:
- P/D/F

Q Time/Location:

- Lecture TR, 11a-12:30p
- Lab (optional), 9a-~10:40a (cluster of dual-processor, dual LCD panel Windows-based machines with Matlab pre-installed).

Resources

- Book chapter:
- G. Alterovitz, E. Afkhami, and M. Ramoni, "Robotics, Automation, and Statistical Learning for Proteomics," in Focus on Robotics and Intelligent Systems Research, vol. 1, F. Columbus, Ed. New York: Nova Science Publishers, Inc., 2005 (In press).
- Reference texts:
- A. V. Oppenheim, A. S. Willsky, and H. Nawab, Signals and Systems, 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1997.
- A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes. New York, NY: McGraw-Hill, 2002.
- I. S. Kohane, A. T. Kho, and A. J. Butte, Microarrays for an Integrative Genomics. Cambridge, MA: MIT Press, 2002.
- Other:
- 17 other papers/resources (Nature, PNAS, Machine Learning, Bioinformatics, Physical Review E, etc.)

Academic Information

Labs/Homework

Q 3 Labs (homeworks)
© Final Project- Student selected based on one of the four areas.

Grading

© Labs

- 40\%
© Final Project
- 50\%
© Participation
- 10\%

Miscellaneous

- Fill out background sheet and turn them in at the front.

Modern Biology in Two Lectures (Part I Today)

Genes to Proteins

Transcription

Translation

DNA: "Lifetime Plan"

5' ATCTACAGATCAGCTACGACGCGACGAT TTAGCAGCAGCGACGCGACAGCAGCTAGTG ACGATAGCACATAGTTAGCACAGAGCAGAC ACAGACAGCACAGCGACAGCGACGACG-3'

mRNA: "Task List"

5' AUCUACAGAUCAGCUACGACGCGACGAU UUAGCAGCAGCGACGCGACAGCAGCUAGUG ACGAUAGCACAUAGUUAGCACAGAGCAGAC ACAGACAGCACAGCGACAGCGACGACG-3'

Protein: Machines

MWTRFDSALPRSTPSTAKLVMPOILLLLEE EDTYESAQYKTWLMVCSDETTTE

Figure by MIT OCW

Identification
Post translation modification Splicing variants
Relative expression levels Harvard-MIT Division of Health Science \& Technology

Transcription

DNA \rightarrow RNA

- G=Guanine
- C=Cytosine
- A=Adenine,
- T=Thymine (DNA only)
- U=Uracil (RNA only).
- (DNA) T \rightarrow U (RNA)
- DNA, RNA= sequence of nucleotide bases
- "Parity Bit" Analogy
© Redundant information in second strand for error correction.

DNA = deoxyribonucleic acid RNA = ribonucleic acid

Translation

Figure by MIT OCW

RNA \rightarrow Protein
Protein = Sequence of Amino Acids

Name	Symbol	Mass ($-\mathrm{H}_{2} \mathrm{O}$)	Side Chain	Occurrence (\%)
Alanine	A, Ala	71.079	CH_{5} -	7.49
Arginine	R, Arg	156.188		5.22
Asparagine	N, Asn	114.104	$\mathrm{H}_{2} \mathrm{~N} \cdot \mathrm{CO}-\mathrm{CH}_{2}$	4.53
Aspartic acid	D, Asp	115.089	$\mathrm{HOOC}-\mathrm{CH}_{2}-$	5.22
Cysteine	C, Cys	103.145	$\mathrm{HS}-\mathrm{CH}_{2}{ }^{-}$	1.82
Glutamine	Q, GIn	128.131	$\mathrm{H}_{2} \mathrm{~N}-\mathrm{CO}-$ $\left(\mathrm{CH}_{2}\right)_{2}-$	4.11
Glutamic acid	E, Glu	129.116	HOOC- $\left(\mathrm{CH}_{2}\right)_{2}-$	6.26
Glycine	G, Gly	57.052	H-	7.10
Histidine	H, His	137.141	$\mathrm{N=CH-NH-CHECCOH2}$	2.23
Isoleucine	I, Ile	113.160	$\mathrm{CH}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{3}\right)$	5.45
Leucine	L, Leu	113.160	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{CH}_{2}{ }_{2}$	9.06
Lysine	K, Lys	128.17	$\mathrm{H}_{2} \mathrm{~N}_{(}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{~F}$	5.82
Methionine	M, Met	131.199	$\mathrm{CH}_{5} \mathrm{~S}-\left(\mathrm{CH}_{2}\right)_{5}$	2.27
...				

20 amino acids in total.

Genes

Communication analogy: start, message, stop.

[Slide not shown]

Rob Henson

o Rob Henson comes to us from Mathworkscreators of Matlab software. Rob studied Mathematics at Cambridge University. He spent 7 years in Japan working in the software industry before coming to the US. At Mathworks, he leads the bioinformatics group- which released the newest version of their bioinformatics toolbox a couple months ago. It is my great pleasure to introduce Rob- who will be talking about clustering technologies in bioinformatics and his perspective from industry. Thank you for coming today.

[Rob Henson's lecture (will be posted when available)]

Outline

- Bioinformatics from Industry's Perspective:

Mathworks- Rob Henson

- Bioinformatics in Industry
- Matlab Bioinformatics Toolbox
- Clustering and Related Technologies (DeRisi's Microarray Paper)

Modern Biology in Two Lectures (Part II Thurs)

Splicing, Alternative Splicing, PostTranslational Modifications, and Bioinformatics Tools and Databases

