
Classes &
Interfaces

Java’s Object Oriented System

Justin Mazzola Paluska



Keywords
Class – a template of a data object
Interface – a specification
Instance – an instantiation of a Class or Interface 
physically represented in memory

Method – a set sequence of instructions

Instance Field – variable associated with a 
particular instance.
Static Field – variable shared among all instances 
of a Class

class m
em

bers



Data Types

There are two types in Java
Primitive types
Reference types

Most of your time is spent using Reference 
types.



Reference Types

Also known as Objects
To create an instance of a reference type, 
use the new keyword in Java
The new keyword:
1. Makes space for the new object in memory
2. Calls the constructor you specify
3. Returns a reference to the new object



Example Instantiation of a Class

BankAccount account = new BankAccount();

Class 
Name Instance 

Variable 
Name

Class 
Constructor



Use of instances
Call methods off of instances:

account.withdraw(amount);
account.deposit(amount);

Access its instance variables:
account.id
account.balance

When we're done with an object, we just stop 
using it.

Java will garbage collect the object when there 
are no more references to it.



Defining a Class

The template for a class definition follows:
[access] [abstract/final] class className 

[extends superClassName]
[implements interfaceNames…] {
//constructors
//member functions
//member variables

}



Simple Example

public class BankAccount {
…

}



Class Members

In class definitions we can define the 
following members:

Constructors
Instance and static methods
Instance and static fields
Nested classes



Constructors

Must have the same name of the Class that 
they are in
Can have multiple constructors per Class
Handles initialization of your class
Template:
[access] className ([arguments…]) {

//constructor body
}



Example:
Single Constructor
public class BankAccount {

public BankAccount () {
…

}
} Notice that the name of 

the constructor is the 
same as the class



Example:
Multiple Constructors

public class BankAccount {
public BankAccount () {

…
}
public BankAccount (int initialAmount) {

…
}

}
These are different 

constructors because they 
take in different arguments



Methods
Methods perform functions
Methods work on the state of the class
Like Scheme, methods can take in multiple 
arguments, and return up to one value
If no value is to be returned, use the keyword void
A class can have as many methods as needed
Template:
[access] returnType methodName ([arguments…]) {

//method body
}



Example Methods

public class BankAccount {
public void withdraw (int amount) {

…
}
public int getAmount () {

…
}

}



Method Overloading
A class can have two functions with the same 
name in a class as long as their arguments 
differ.
Example:

void foo () {…}
void foo (int bar) {…}

Java knows which method to call based on 
the method signature
Example: myClass.foo(7) //calls 2nd method



Fields

A field is like a variable, it stores state
A field has a associated data type which 
determines the type of data that this field will 
hold
Template:
[access] dataType fieldName [= value];



Example Fields

public class BankAccount {
public int balance;
public Date lastWithdrawal;
public List transactions;

}



Bringing It Together
public class BankAccount {

private int balance;
public BankAccount () {

balance = 0;
}
public void withdraw (int amount) {

balance = balance – amount;
}
public void deposit (int amount) {

balance = balance + amount;
}

}

Field

Constructor

Methods



Accessors

Before we saw the placeholder [access].
There are 4 types of access keywords to 
describe which classes have access:

public – any other class in any package
protected – any subclass has access
(default) – only classes within the same package
private – only accessible from within a class

Good for keeping data abstraction intact



Inheritance
Allows classes to inherit functionality from 
other classes
Allows data and procedural abstraction
Decreases complexity of large software 
systems



Checking and Savings
Two separate ideas with different behaviors, 
but there exists overlap of functionality

BankAccount

CheckingAccount SavingsAccount



Interfaces
An interface is a specification of a Class
Declares methods but does not define them
Interfaces do not have constructors
Template:
[access] interface interfaceName

[extends interfaceNameList…] {
//method declarations

}



Example Interface
public interface BankAccount {

public void withdraw (int amount);
public void deposit (int amount);
public int getBalance ();

}

Notice that for method 
declarations, the method 

body is not defined.



How do we use the Interface?
We make classes or other interface 
implement or extend the interface.
If a class implements an interface, that class 
must provide an implementation (a method 
body) for every method specified by the 
interface

If a class implements multiple interfaces, it must 
implement all methods of every interface it 
chooses to implement



Example Interface Use
public class CheckingAccount implements BankAccount {

private int balance;
public CheckingAccount (int initial) {

balance = initial;
}

//implemented methods from BankAccount
public void withdraw (int amount) {

balance = balance – amount;
}
public void deposit (int amount) {

balance = balance + amount;
}
public int getBalance () {

return balance;
}

}

Since 
CheckingAccount 
implements 
BankAccount, it 
must provide 
implementations 
for these methods



Abstract Classes
Abstract classes are a mix between 
interfaces and classes

can have defined method bodies
can have fields

Helps to capture the idea of state as well as 
functionality
Template:
See Class template (use keyword abstract)



Advantage of Abstract Classes
For our BankAccount example we can 
choose to provide implementations for 
methods we know is common, and 
declarations for methods that might differ
Let’s build an abstract class for BankAccount



Example:
Abstract Class
public abstract class BankAccount {

protected int balance;
public int getBalance () {

return balance;
}
public void deposit (int amount) {

balance = balance + amount;
}
public void withdraw (int amount);

}



Example:
Class Extension
public class CheckingAccount extends BankAccount {

public CheckingAccount () {
balance = 0;

}
public void withdraw (int amount) {

balance = balance – amount;
}

}



Example:
Class Extension
public class SavingsAccount extends BankAccount {

private int numberOfWithdrawals;
public SavingsAccount () {

balance = 0;
numberOfWithdrawals = 0;

}
public void withdraw (int amount) {

if (numberOfWithdrawals > 5) {
throw new RuntimeException (“Cannot make >5 withdrawals a month”);

} else {
balance = balance – amount;
numberOfWithdrawals++;

}
}
public void resetNumOfWithdrawals () {…}

}



Break


	Classes &Interfaces
	Keywords
	Data Types
	Reference Types
	Example Instantiation of a Class
	Use of instances
	Defining a Class
	Simple Example
	Class Members
	Constructors
	Example:Single Constructor
	Example:Multiple Constructors
	Methods
	Example Methods
	Method Overloading
	Fields
	Example Fields
	Bringing It Together
	Accessors
	Inheritance
	Checking and Savings
	Interfaces
	Example Interface
	How do we use the Interface?
	Example Interface Use
	Abstract Classes
	Advantage of Abstract Classes
	Example:Abstract Class
	Example:Class Extension
	Example:Class Extension
	Break

