6.096 - Algorithms for Computational Biology

RNA secondary structure

Lecture 1 - Introduction
Lecture 2 - Hashing and BLAST
Lecture 3 - Combinatorial Motif Finding
Lecture 4 - Statistical Motif Finding
Lecture 5 - Sequence alignment and Dynamic Programming

Challenges in Computational Biology

RNA World

- RNA can be protein-like
- Ribozymes can catalyze enzymatic reactions by RNA secondary fold
- Small RNAs can play structural roles within the cell
- Small RNAs play versatile roles in gene regulatory
- RNA can be DNA-like
- Made of digital information, can transfer to progeny by complementarity
- Viruses with RNA genomes (single/double stranded)
- RNA can catalyze RNA replication
- RNA world is possible
- Proteins are more efficient (larger alphabet)
- DNA is more stable (double helix, less flexible)

RNA invented its successors

- RNA invents protein
- Ribosome precise structure was solved this past year
- Core is all RNA. Only RNA makes DNA contact
- Protein component only adds structural stability
- RNA and protein invent DNA
- Stable, protected, specialized structure (no catalysis)
- Proteins catalyze: RNA \rightarrow DNA reverse transcription
- Proteins catalyze: DNA \rightarrow DNA replication
- Proteins catalyze: DNA \rightarrow RNA transcription
- Viruses still preserved from those early days of life
- Any type genome: dsDNA, ssRNA, dsRNA, hybrid
- Simplest self-replicating life form

Example: tRNA secondary and tertiary structure

Adaptor molecule between DNA and protein

Matching "blocks"

- visually inspect matrices for diagonal lines of 1 's
- manually piece them together into an optimal folded shape

Refinement

- unfortunately, this finds chemically infeasible structures
- i.e. insufficient space, inflexibility of paired base regions
- next step is to specify better constraints
- solution: a dynamic programming algorithm [Nussinov et al., 1978]

Basic Constraints

1. Each edge contains vertices (bases) linking compatible base pairs
2. No vertex can be in more than one edge
3. Edges must be drawn without crossing

Edges (g, h) and (i, j)

if $i<\boldsymbol{g}<\boldsymbol{j}<\boldsymbol{h}$ or $\boldsymbol{g}<\boldsymbol{i}<\boldsymbol{h}<\boldsymbol{j}$, both edges cannot belong to the same "matching."

Basic Constraints

1. Each edge contains vertices (bases) linking compatible base pairs
2. No vertex can be in more than one edge
3. Edges must be drawn without crossing

Edges (g, h) and (i, j)
if $\boldsymbol{i}<\boldsymbol{g}<\boldsymbol{j}<\boldsymbol{h}$ or $g<i<h<j$, both edges cannot belong to the same "matching."

Circular Representation

Energy Minimization

- objective is a folded shape for a given nucleotide chain such that the energy is minimized
- $E_{i j}=1$ for each possible compatible base pair, $E_{i j}=$ 0 otherwise

Algorithm Behavior

- recursive computation, finding the best structure for small subsequences
- works outward to larger subsequences
- four possible ways to get the best RNA structure:

The Nussinov Algorithm

Initialization:

$$
\begin{array}{ll}
F(i, i-1)=0 ; & \text { for } i=2 \text { to } N \\
F(i, i)=0 ; & \text { for } i=1 \text { to } N
\end{array}
$$

Iteration: For $\mathrm{i}=2$ to N : For $\mathrm{i}=1$ to $\mathrm{N}-\mathrm{I}$
$\mathrm{j}=\mathrm{i}+\mathrm{I}-1$

$$
F(i, j)=\max \quad\left\{\begin{array}{l}
F(i+1, j-1)+s\left(x_{i}, x_{j}\right) \\
\max \{i \leq k<j\} \quad F(i, k)+F(k+1, j)
\end{array}\right.
$$

Termination:

Best structure is given by $\mathrm{F}(1, \mathrm{~N})$
(Need to trace back)

Case 1: Adding unpaired base i

- Add unpaired position i onto best structure for subsequence $i+1, j$

Image removed due to copyright considerations.

Please see:
Durbin, Richard, et. al. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids Cambridge, UK: Cambridge University Press, 1999. ISBN: 0521629713.

- Add base pair (i, j) onto best structure found for subsequence $\mathrm{i}+1, \mathrm{j}-1$

Case 4: Bifurcation

- combining two optimal substructures i, k and $k+1, j$

Image removed due to copyright considerations.

Please see
Durbin, Richard, et. al. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids Cambridge, UK: Cambridge University Press, 1999. ISBN: 0521629713.

Nussinov RNA Folding Algorithm

- Initialization:

$\gamma(i, i-1)=0$	for $I=2$ to $L ;$
$\gamma(i, i)=0$	for $I=2$ to L.

Image removed due to copyright considerations.

Please see:
Durbin, Richard, et. al. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge, UK: Cambridge University Press, 1999. ISBN: 0521629713.

Nussinov RNA Folding Algorithm

- Initialization:

$$
\begin{array}{ll}
\gamma(i, i-1)=0 & \text { for } I=2 \text { to } L \\
\gamma(i, i)=0 & \text { for } I=2 \text { to } L
\end{array}
$$

Image removed due to copyright considerations.
Please see:
Durbin, Richard, et. al. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge, UK: Cambridge University Press, 1999. ISBN: 0521629713.

Nussinov RNA Folding Algorithm

- Initialization:

$$
\begin{array}{ll}
\gamma(i, i-1)=0 & \text { for } I=2 \text { to } L ; \\
\gamma(i, i)=0 & \text { for } I=2 \text { to } L .
\end{array}
$$

Image removed due to copyright considerations
Please see:
Durbin, Richard, et. al. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge, UK: Cambridge University Press, 1999. ISBN: 0521629713.

Nussinov RNA Folding Algorithm

- Recursive Relation:
- For all subsequences from length 2 to length L:

$$
\gamma(i, j)=\max \left\{\begin{array}{cc}
\gamma(i+1, j) & \text { Case 1 } \\
\gamma(i, j-1) & \text { Case 2 } \\
\gamma(i+1, j-1)+\delta(i, j) & \text { Case 3 } \\
\max _{i<k<j}[\gamma(i, k)+\gamma(k+1, j)] & \text { Case 4 }
\end{array}\right.
$$

$$
\begin{aligned}
& \text { Nussinov RNA Folding Algorithm } \\
& \gamma(i, j)=\max \left\{\begin{array}{c}
\gamma(i+1, j) \\
\gamma(i, j-1) \\
\gamma(i+1, j-1)+\delta(i, j) \\
\max _{i<k<j}[\gamma(i, k)+\gamma(k+1, j)]
\end{array}\right. \\
& \text { Image removed due to copyright considerations. }
\end{aligned}
$$

Please see:
Durbin, Richard, et. al. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge, UK: Cambridge University Press, 1999. ISBN: 0521629713.

Nussinov RNA Folding Algorithm

$$
\gamma(i, j)=\max \left\{\begin{array}{c}
\gamma(i+1, j) \\
\gamma(i, j-1) \\
\gamma(i+1, j-1)+\delta(i, j) \\
\max _{i<k<j}[\gamma(i, k)+\gamma(k+1, j)]
\end{array}\right.
$$

Image removed due to copyright considerations.

Please see:
Durbin, Richard, et. al. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge, UK: Cambridge University Press, 1999. ISBN: 0521629713.

Example Computation
$\gamma(4,7)=\max \left\{\begin{array}{c}\gamma(5,7) \\ \gamma(4,6) \\ \gamma(5,6)+\delta(4,7) \\ \max _{4<k<7}[\gamma(4, k)+\gamma(k+1,7)]\end{array}\right.$

Image removed due to copyright considerations.

Please see:
Durbin, Richard, et. al. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge, UK: Cambridge University Press, 1999. ISBN: 0521629713.

Traceback

- value at $\gamma(1, L)$ is the total base pair count in the maximally base-paired structure
- as in other DP, traceback from $\gamma(l, L)$ is necessary to recover the final secondary structure
- pushdown stack is used to deal with bifurcated structures

Traceback Pseudocode

Initialization: Push ($1, L$) onto stack
Recursion: Repeat until stack is empty:

- pop (i, j).
- If $i>=j$ continue;
// hit diagonal
else if $\gamma(i+1, j)=\gamma(i, j)$ push $(i+1, j) ; \quad / /$ case 1
else if $\gamma(i, j-1)=\gamma(i, j)$ push $(i, j-1) ; \quad / /$ case 2
else if $\gamma(i+1, j-1)+\delta_{i, j}=\gamma(i, j)$: // case 3 record i, j base pair push ($i+1, j-1$);
else for $k=i+1$ to $j-1: i f \gamma(i, k)+\gamma(k+1, j)=\gamma(i, j)$: // case 4
push $(k+1, j)$.
push (i, k).
break

Retrieving the Structure

(1,9)

Image removed due to copyright considerations.

Please see:
Durbin, Richard, et. al. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge, UK: Cambridge University Press, 1999. ISBN: 0521629713.

Retrieving the Structure

Image removed due to copyright considerations.

Please see:
Durbin, Richard, et. al. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge, UK: Cambridge University Press, 1999. ISBN: 0521629713.

The Zuker algorithm - main ideas

Models energy of an RNA fold

1. Instead of base pairs, pairs of base pairs (more accurate)
2. Separate score for bulges
3. Separate score for different-size \& composition loops
4. Separate score for interactions between stem \& beginning of loop

Can also do all that with a SCFG, and train it on real data

Evaluation of Nussinov

- unfortunately, while this does maximize the base pairs, it does not create viable secondary structures
- in Zuker's algorithm, the correct structure is assumed to have the lowest equilibrium free energy ($\Delta \mathrm{G}$) (Zuker and Stiegler, 1981; Zuker 1989a)

Free Energy ($\Delta \mathbf{G}$)

- $\Delta \mathrm{G}$ approximated as the sum of contributions from loops, base pairs and other secondary structures

Image removed due to copyright considerations.

Basic Notation

- secondary structure of sequence s is a set S of base pairs $i \cdot j, l \leq i<j \leq|s|$
- we assume:
- each base is only in one base pair
- no pseudoknots
- sharp "U-turns" prohibited; a hairpin loop must contain at least 3 bases

Please see:
Durbin, Richard, et. al. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge, UK: Cambridge University Press, 1999. ISBN: 0521629713.

Free Energy ($\Delta \mathbf{G}$)
- ΔG approximated as the sum of contributions from loops, base pairs and other secondary structures
Image removed due to copyright considerations.
Please see: Durbin, Richard, et. al. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge, UK: Cambridge University Press, 1999. ISBN: 0521629713.

Secondary Structure Representation

- can view a structure S as a collection of loops together with some external unpaired bases

Exterior Base Pairs

- base pair $i \bullet j$ is the exterior base pair of (or closing) the loop consisting of $i \cdot j$ and all bases accessible from it

Hairpin Loop

- if there are no interior base pairs in a loop, it is a hairpin loop

Accessible Bases

- Let $i<k<j$ with $i \bullet j \in S$
- k is accessible from $i \cdot j$ if for all $i^{\prime} \cdot j^{\prime} \in S$ if it is not the case that $i<i^{\prime}<k<j^{\prime}<j$

Interior Base Pairs

- if i^{\prime} and j^{\prime} are accessible from $i \bullet j$
- and $i^{\prime} \cdot j^{\prime} \in S$
- then $i^{\prime} \bullet j^{\prime}$ is an interior base pair, and is accessible from $i \bullet j$

Stacked Pair

- a loop with one interior base pair is a stacked pair if $i^{\prime}=i+1$ and $j^{\prime}=j-1$

External Bases and Base Pairs

- any bases or base pairs not accessible from any base pair are called external

Multibranch Loops

- loops with more than one interior base pair are multibranched loops

Assumptions

- structure prediction determines the most stable structure for a given sequence
- stability of a structure is based on free energy
- energy of secondary structures is the sum of independent loop energies

$V(i, j)$

- energy of an optimal structure of subsequence i through j closed by $i \bullet j$:

$$
V(i, j)=\min \left\{\begin{array}{c}
e H(i, j) \\
e S(i, j)+V(i+1, j-1) \\
\operatorname{VBI}(i, j) \\
V M(i, j)
\end{array}\right.
$$

$e H(i, j)$

- energy of hairpin loop closed by $i \cdot j$
- computed with:
- $R=$ universal gas constant ($1.9872 \mathrm{cal} / \mathrm{mol} / \mathrm{K}$).
- $\mathrm{T}=$ absolute temperature

- $l_{s}=$ total single-stranded (unpaired) bases in loop

$e L\left(i, j, i^{\prime}, j^{\prime}\right)$

- energy of a bulge or internal loop with exterior base pair $i \bullet j$ and interior base pair $i^{\prime} \cdot j^{\prime}$

- free energies for all 1×2 interior loops in RNA closed by a CG and an AU base pair, with a single stranded $U 3^{\prime}$ to the double stranded U.
$e S(i, j)$
- energy of stacking base pair $i \cdot j$ with $i+1 \cdot j-1$

- sample free energies in kcal/mole for CG base pairs stacked over all possible base pairs, XY
- '.' entries are undefined, and can be assumed as ∞

$e M\left(i, j, i_{l}, j_{l}, \ldots, i_{k} j_{k}\right)$

- energy of a multibranched loop with exterior base pair $i \bullet j$ and interior base pairs $i_{l} \bullet j_{l}, \ldots, i_{k} \bullet j_{k}$
- simplification: linear contributions from number of unpaired bases in loop, number of branches and a constant

$$
\begin{aligned}
& e M\left(i, j, i_{1}, j_{1}, \ldots, i_{k}, j_{k}\right) \\
& \quad=a+b k+c\left(i_{1}-i-1+j-j_{k}-1+\sum_{l=1}^{k-1}\left(i_{l}+1-j_{l}+1\right)\right)
\end{aligned}
$$

Comparative methods for RNA structure prediction

- Matrix of co-variations in tRNA molecule

Context Free Grammars for representing RNA folds

Example: modeling a stem loop

$\mathrm{S} \rightarrow \mathrm{aW}_{1} \mathrm{u}$	
$\mathrm{W}_{1} \rightarrow \mathrm{cW}_{2} \mathrm{~g}$	
$\mathrm{~W}_{2} \rightarrow \mathrm{~g} \mathrm{~W}_{3} \mathrm{c}$	
$\mathrm{W}_{3} \rightarrow \mathrm{~g} \mathrm{~L} \mathrm{c} \mathrm{c}^{\text {ACGG U }}$	UGCC U
$\mathrm{L} \rightarrow$ agucg	

What if the stem loop can have other letters in place of the ones shown?

Example: modeling a stem loop

```
S }->\textrm{aW
W
W
N }->\textrm{gLCc
L agucg | agccg | cugugc
ACGG AG U
```

More general: Any 4-long stem, 3-5-long loop
$\mathrm{S} \rightarrow \mathrm{aW}_{1} \mathrm{u}\left|\mathrm{gW}_{1} \mathrm{u}\right| \mathrm{gW}_{1} \mathrm{c}\left|\mathrm{cW}_{1} \mathrm{~g}\right| \mathrm{uW}_{1} \mathrm{~g} \mid \mathrm{uW}_{1} \mathrm{a}$
$W_{1} \rightarrow a W_{2} u\left|\mathrm{gW}_{2} \mathrm{u}\right| \mathrm{gW}_{2} \mathrm{c}\left|\mathrm{cW}_{2} \mathrm{~g}\right| \mathrm{uW}_{2} \mathrm{~g} \mid \mathrm{uW}_{2} \mathrm{a}$
$W_{2} \rightarrow \mathrm{aW}_{3} \mathrm{u}\left|\mathrm{gW}_{3} \mathrm{u}\right| \mathrm{gW}_{3} \mathrm{c}\left|\mathrm{cW}_{3} \mathrm{~g}\right| \mathrm{uW}_{3} \mathrm{~g} \mid \mathrm{uW}_{3} \mathrm{a}$

A parse tree: alignment of CFG to sequence

- $\mathrm{S} \rightarrow \mathrm{a}$ W1 u
- $\mathrm{W} 1 \rightarrow \mathrm{c}$ W2 g
- $\mathrm{W} 2 \rightarrow \mathrm{gW} 3 \mathrm{c}$
- $\mathrm{W} 3 \rightarrow \mathrm{~g} \mathrm{~L} \mathrm{c}$
- L \rightarrow agucg

$$
\begin{aligned}
& \text { ACGG } \begin{array}{l}
\text { AG } \\
\text { UGCC }
\end{array}{ }^{\text {UGG }}
\end{aligned}
$$

Alignment scores for parses

We can define each rule $X \rightarrow s$, where s is a string, to have a score.

Example:

$W \rightarrow a W^{\prime} u:$	3	(forms 3 hydrogen bonds)
$W \rightarrow g W^{\prime} c:$	2	(forms 2 hydrogen bonds)
$W \rightarrow g W^{\prime} u:$	1	(forms 1 hydrogen bond)
$W \rightarrow x W^{\prime} z$	-1, when (x, z) is not an $a / u, g / c, g / u$ pair	

Questions:

- How do we best align a CFG to a sequence? (DP)
- How do we set the parameters?
(Stochastic CFGs)

The Nussinov Algorithm and CFGs

Define the following grammar, with scores:

```
S }->\mathrm{ aSu:3 | uSa:3
    gSc:2 | cSg:2
    gSu:1 | uSg:1
    SS:0 |
    aS:0| cS:0 | gS:0 | uS:0 | \varepsilon:0
    Note: }\varepsilon\mathrm{ is the "n string
```

Then, the Nussinov algorithm finds the optimal parse of a string with this gramma

Reformulating the Nussinov Algorithm

Stochastic Context Free Grammars

Stochastic Context Free Grammars

In an analogy to HMMs, we can assign probabilities to transitions:

Given grammar
$X_{1} \rightarrow s_{11}|\ldots| s_{\text {in }}$
$X_{m} \rightarrow s_{m 1}|\ldots| s_{m n}$
Can assign probability to each rule, s.t.
$P\left(X_{i} \rightarrow s_{i 1}\right)+\ldots+P\left(X_{i} \rightarrow s_{i n}\right)=1$

Computational Problems

- Calculate an optimal alignment of a sequence and a SCFG
(DECODING)
- Calculate Prob[sequence | grammar]
(EVALUATION)
- Given a set of sequences, estimate parameters of a SCFG (LEARNING)

Normal Forms for CFGs

Chomsky Normal Form:
$X \rightarrow Y Z$
$X \rightarrow a$

All productions are either to 2 nonterminals, or to 1 terminal

Theorem (technical)

Every CFG has an equivalent one in Chomsky Normal Form
(That is, the grammar in normal form produces exactly the same set of strings)

Example of converting a CFG to C.N.F.

$$
\begin{aligned}
& S \rightarrow A B C \\
& A \rightarrow A a \quad a \\
& B \rightarrow B b \mid \quad b \\
& C \rightarrow C A c \quad c \\
& \text { Converting: } \\
& \\
& S \rightarrow A S^{\prime} \\
& S^{\prime} \rightarrow B C \\
& A \rightarrow A A \mid a \\
& B \rightarrow B B \mid b \\
& C \rightarrow D C^{\prime} \mid c \\
& C^{\prime} \rightarrow C \\
& D \rightarrow C A
\end{aligned}
$$

Another example

$\mathrm{S} \rightarrow \mathrm{ABC}$
$A \rightarrow C \mid a A$
$B \rightarrow b B \mid b$
$\mathrm{C} \rightarrow \mathrm{cCd} \mid \mathrm{c}$
Converting:
$\mathrm{S} \rightarrow \mathrm{AS}^{\prime}$
$S^{\prime} \rightarrow B C$
$A \rightarrow C^{\prime} C^{\prime \prime}|c| A^{\prime} A$
$\mathrm{A}^{\prime} \rightarrow \mathrm{a}$
$B \rightarrow B^{\prime} B \mid b$
B' \rightarrow b
$\mathrm{C} \rightarrow \mathrm{C}^{\prime} \mathrm{C}^{\prime \prime} \mid \mathrm{c}$
$\mathrm{C}^{\prime} \rightarrow \mathrm{c}$
$\mathrm{C}^{\prime \prime} \rightarrow \mathrm{CD}$
$\mathrm{D} \rightarrow \mathrm{d}$

Decoding: the CYK algorithm

Given $x=x_{1} \ldots x_{N}$, and a SCFG G,
Find the most likely parse of x (the most likely alignment of G to x)

Dynamic programming variable:
$\gamma(\mathrm{i}, \mathrm{j}, \mathrm{V})$: likelihood of the most likely parse of $\mathrm{x}_{\mathrm{i}} \ldots \mathrm{x}_{\mathrm{j}}$, rooted at nonterminal V

Then,
$\gamma(1, \mathbf{N}, \mathbf{S})$: likelihood of the most likely parse of \mathbf{x} by the grammar

The CYK algorithm (Cocke-Younger-Kasami)

Initialization:

For $i=1$ to N, any nonterminal V,
$\gamma(\mathrm{i}, \mathrm{i}, \mathrm{V})=\log \mathrm{P}\left(\mathrm{V} \rightarrow \mathrm{x}_{\mathrm{i}}\right)$

Iteration:

For $\mathrm{i}=1$ to $\mathrm{N}-1$
For $\mathrm{j}=\mathrm{i}+1$ to N
For any nonterminal V
$\gamma(\mathrm{i}, \mathrm{j}, \mathrm{V})=$ max $_{\mathrm{X}}$ max $_{\mathrm{Y}}$ max $_{\mathrm{isk}}{ }_{\mathrm{j}} \gamma(\mathrm{i}, \mathrm{k}, \mathrm{X})+\gamma(\mathrm{k}+1, \mathrm{j}, \mathrm{Y})+\log \mathrm{P}(\mathrm{V} \rightarrow \mathrm{XY})$
Termination:
$\log \mathrm{P}\left(\mathrm{x} \mid \theta, \pi^{*}\right)=\gamma(1, \mathrm{~N}, \mathrm{~S})$
Where π^{*} is the optimal parse tree (if traced back appropriately from above)

A SCFG for predicting RNA structure

```
S }->\mathrm{ aS | cS | gS | uS | &
    ->Sa|Sc|Sg| Su
    ->aSu|cSg|gSu|uSg|gSc|uSa
    ->SS
```

- Adjust the probability parameters to reflect bond strength etc
- No distinction between non-paired bases, bulges, loops
- Can modify to model these events
- L: loop nonterminal
- H: hairpin nonterminal
- B: bulge nonterminal
- etc

Evaluation

Recall HMMs:
Forward: $\quad \mathrm{f}_{\mathrm{l}}(\mathrm{i})=\mathrm{P}\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{i}}, \pi_{\mathrm{i}}=\mathrm{I}\right)$
Backward: $b_{k}(i)=P\left(x_{i+1} \ldots x_{N} \mid \pi_{i}=k\right)$

Then,
$\mathrm{P}(\mathrm{x})=\Sigma_{\mathrm{k}} \mathrm{f}_{\mathrm{k}}(\mathrm{N}) \mathrm{a}_{\mathrm{k} 0}=\Sigma_{1} \mathrm{a}_{01} \mathrm{e}_{\mathrm{l}}\left(\mathrm{x}_{1}\right) \mathrm{b}_{1}(1)$
Analogue in SCFGs:

$$
\begin{aligned}
& \text { Inside: } \quad a(i, j, V) \quad=P\left(x_{i} \ldots x_{j}\right. \text { is generated by } \\
& \text { nonterminal } V) \\
& \text { Outside: } \quad b(i, j, V)=P\left(x, \text { excluding } x_{i} \ldots x_{i}\right. \text { is generated by } \\
& S \text { and } \\
& \text { at } V \text {) }
\end{aligned}
$$

CYK for RNA folding

Initialization:

$\gamma(\mathrm{i}, \mathrm{i}-1)=\log \mathrm{P}(\varepsilon)$

Iteration:

For $\mathrm{i}=1$ to N

$$
\begin{aligned}
& \text { For } \mathrm{j}=\mathrm{i} \text { to } \mathrm{N} \\
& \qquad \begin{array}{l}
\gamma(\mathrm{i}+1, \mathrm{j}-1)+\log \mathrm{P}\left(\mathrm{x}_{\mathrm{i}} \mathrm{~S} \mathrm{x}_{\mathrm{j}}\right) \\
\gamma(\mathrm{i}, \mathrm{j}-1)+\log \mathrm{P}\left(\mathrm{~S} \mathrm{x}_{\mathrm{i}}\right)
\end{array} \\
& \left\{\begin{array}{l}
\gamma(\mathrm{i}+1, \mathrm{j})+\log \mathrm{P}\left(\mathrm{x}_{\mathrm{i}} \mathrm{~S}\right) \\
\max _{\mathrm{i}<\mathrm{k}<\mathrm{j}} \gamma(\mathrm{i}, \mathrm{k})+\gamma(\mathrm{k}+1, \mathrm{j})+\log \mathrm{P}(\mathrm{~S} \mathrm{~S})
\end{array}\right.
\end{aligned}
$$

Algorithm: Inside

Initialization:

For $\mathrm{i}=1$ to N, V a nonterminal,

$$
a(i, i, V)=P\left(V \rightarrow x_{i}\right)
$$

Iteration:

$$
\begin{aligned}
& \text { For } \mathrm{i}=1 \text { to } \mathrm{N}-1 \\
& \text { For } \mathrm{j}=\mathrm{i}+1 \text { to } \mathrm{N} \\
& \quad \text { For } \mathrm{V} \text { a nonterminal }
\end{aligned}
$$

$$
a(\mathrm{i}, \mathrm{j}, \mathrm{~V})=\Sigma_{\mathrm{X}} \Sigma_{Y} \Sigma_{\mathrm{k}} a(\mathrm{i}, \mathrm{k}, \mathrm{X}) \mathrm{a}(\mathrm{k}+1, \mathrm{j}, \mathrm{X}) \mathrm{P}(\mathrm{~V} \rightarrow \mathrm{XY})
$$

Termination:

$P(x \mid \theta)=a(1, N, S)$

Algorithm: Outside

Initialization:
$b(1, N, S)=1$
For any other $\mathrm{V}, \mathrm{b}(1, \mathrm{~N}, \mathrm{~V})=0$

Iteration:

$$
\begin{aligned}
& \text { For } \mathrm{i}=1 \text { to } \mathrm{N}-1 \\
& \text { For } \mathrm{j}=\mathrm{N} \text { down to } \mathrm{i} \\
& \quad \text { For } V \text { a nonterminal } \\
& \qquad b(i, j, V)=\Sigma_{X} \Sigma_{Y} \Sigma_{k \ll} a(k, i-1, X) b(k, j, Y) P(Y \rightarrow X V)+ \\
& \quad \Sigma_{X} \Sigma_{Y} \Sigma_{k<i} a(j+1, k, X) b(i, k, Y) P(Y \rightarrow V X)
\end{aligned}
$$

Termination:

It is true for any i, that:

$$
P(x \mid \theta)=\Sigma_{x} b(i, i, X) P\left(X \rightarrow x_{i}\right)
$$

The Outside Algorithm

$b(i, j, V)=\operatorname{Prob}\left(x_{1} \ldots x_{i-1}, x_{j+1} \ldots x_{N}\right.$, where the "gap" is rooted at V)
Given that V is the right-hand-side nonterminal of a production,

$$
b(i, j, V)=\Sigma_{X} \Sigma_{Y} \Sigma_{k i} a(k, i-1, X) b(k, j, Y) P(Y \rightarrow X V)
$$

Learning for SCFGs

We can now estimate

$$
\begin{aligned}
& c(V)=\text { expected number of times } V \text { is used in the parse of } x_{1} \ldots . x_{N} \\
& c(V)=\frac{1}{P(x \mid \theta)} \Sigma_{1 \leq i \leq N} \Sigma_{i \leq j \leq N} a(i, j, V) b(i, j, v) \\
& c(V \rightarrow X Y)=\frac{1}{P(x \mid \theta)} \sum_{1 \leq i \leq N} \Sigma_{i<j \leq N} \Sigma_{i \leq k<j} b(i, j, V) a(i, k, X) a(k+1, j, Y) P(V \rightarrow X Y)
\end{aligned}
$$

Learning for SCFGs

Then, we can re-estimate the parameters with EM, by:

$$
\begin{aligned}
& \operatorname{Pnew}(V \rightarrow X Y)=\frac{c(V \rightarrow X Y)}{c(V)} \\
& P^{\text {new }}(V \rightarrow a)=\frac{c(V \rightarrow a)}{c(V)}=\frac{\sum_{i: x i=a} b(i, i, V) P(V \rightarrow a)}{\sum_{1 \leq i \leq N} \Sigma_{i<j \leq N} a(i, j, V) b(i, j, V)}
\end{aligned}
$$

GOAL	HMM algorithm	SCFG algorithm
Optimal parse	Viterbi	CYK
Estimation	Forward	Inside
	Backward	Outside
Learning	EM: Fw/Bck	EM: Ins/Outs
Memory Complexity	O($\mathrm{N}_{\text {K) }}$	$\mathrm{O}\left(\mathrm{N}^{2} \mathrm{~K}\right)$
Time Complexity	$\mathrm{O}\left(\mathrm{NK}^{2}\right)$	$\mathrm{O}\left(\mathrm{N}^{3} \mathrm{~K}^{3}\right)$

Where K: \# of states in the HMM
\# of nonterminals in the SCFG

