
1

RNA secondary structure

Lecture 1 - Introduction
Lecture 2 - Hashing and BLAST
Lecture 3 - Combinatorial Motif Finding
Lecture 4 - Statistical Motif Finding
Lecture 5 - Sequence alignment and Dynamic Programming

6.096 – Algorithms for Computational Biology Challenges in Computational Biology

DNA

4 Genome Assembly

1 Gene Finding5 Regulatory motif discovery

Database lookup3

Gene expression analysis9

RNA transcript

Sequence alignment

Evolutionary Theory7

TCATGCTAT
TCGTGATAA
TGAGGATAT
TTATCATAT
TTATGATTT

Cluster discovery10 Gibbs sampling11
Protein network analysis12

Emerging network properties14

13 Regulatory network inference

Comparative Genomics6

2

RNA folding8

The world before DNA or Protein

RNA

RNA Folding

Self-modification

RNA-mediated
Replication

RNA

RNA

RNA World
• RNA can be protein-like

– Ribozymes can catalyze enzymatic reactions by RNA secondary fold
– Small RNAs can play structural roles within the cell
– Small RNAs play versatile roles in gene regulatory

• RNA can be DNA-like
– Made of digital information, can transfer to progeny by 

complementarity
– Viruses with RNA genomes (single/double stranded)
– RNA can catalyze RNA replication

• RNA world is possible
– Proteins are more efficient (larger alphabet)
– DNA is more stable (double helix, less flexible)

RNA invented its successors
• RNA invents protein

– Ribosome precise structure was solved this past year
– Core is all RNA.  Only RNA makes DNA contact
– Protein component only adds structural stability

• RNA and protein invent DNA
– Stable, protected, specialized structure (no catalysis)
– Proteins catalyze: RNAÆDNA reverse transcription
– Proteins catalyze: DNAÆDNA replication
– Proteins catalyze: DNAÆRNA transcription

• Viruses still preserved from those early days of life
– Any type genome:  dsDNA, ssRNA, dsRNA, hybrid
– Simplest self-replicating life form

Example:  tRNA secondary and tertiary structure

Primary Structure

Secondary Structure

Tertiary Structure

Adaptor molecule between DNA and protein
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Hairpin Loops

Stems

Bulge loop

Interior loops

Multi-branched loop

Most common folds More complex folds

Pseudoknot Kissing Hairpins

Hairpin-bulge interaction

Dynamic programming algorithm
for secondary structure determination

First DP Algorithm: Nussinov

• one possible technique: base pair maximization

• Algorithms for Loop Matching
(Nussinov et al., 1978)

• too simple for accurate prediction, but stepping-
stone for later algorithms

The Nussinov Algorithm

Problem:
Find the RNA structure with the 

maximum (weighted) 
number of nested pairings
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Matrix representation for RNA folding



3

The Nussinov Algorithm
Given sequence X = x1…xN,
Define DP matrix:

F(i, j) = maximum number of bonds if xi…xj folds 
optimally

Two cases, if i < j:

1. xi is paired with xj

F(i, j) = s(xi, xj) + F(i+1, j-1)

• xi is not paired with xj

F(i, j) = max{ k:  i ≤ k < j }   F(i, k) + F(k+1, j)
i j

i j

k

F(i, j)

F(i, k) F(k+1, j)

Initial Concepts

• only consider base pairs

• folding of an N nucleotide sequence can be 
specified by a symmetric N × N matrix 

• Mij=1 if bases form a pair
• Mij=0 otherwise

C G A U UG

Naïve Example 1

1 2 3 4 5 6 7 8 9
G G G A A A U C C

1 G 0 0 0 0 0 0 1 1 1
2 G 0 0 0 0 0 0 1 1 1
3 G 0 0 0 0 0 0 1 1 1
4 A 0 0 0 0 0 0 1 0 0
5 A 0 0 0 0 0 0 1 0 0
6 A 0 0 0 0 0 0 1 0 0
7 U 1 1 1 1 1 1 0 0 0
8 C 1 1 1 0 0 0 0 0 0
9 C 1 1 1 0 0 0 0 0 0

A AG U CAG G C
4 61 7 852 3 9

Matching “blocks”

• visually inspect matrices for diagonal lines of 1’s

• manually piece them together into an optimal 
folded shape

Naïve Example 1

1 2 3 4 5 6 7 8 9
G G G A A A U C C

1 G 0 0 0 0 0 0 1 1 1
2 G 0 0 0 0 0 0 1 1 1
3 G 0 0 0 0 0 0 1 1 1
4 A 0 0 0 0 0 0 1 0 0
5 A 0 0 0 0 0 0 0 0 0
6 A 0 0 0 0 0 0 0 0 0
7 U 1 1 1 1 0 0 0 0 0
8 C 1 1 1 0 0 0 0 0 0
9 C 1 1 1 0 0 0 0 0 0

A AG U CAG G C
4 61 7 852 3 9

Naïve Example 1

1 2 3 4 5 6 7 8 9
G G G A A A U C C

1 G 0 0 0 0 0 0 1 1 1
2 G 0 0 0 0 0 0 1 1 1
3 G 0 0 0 0 0 0 1 1 1
4 A 0 0 0 0 0 0 1 0 0
5 A 0 0 0 0 0 0 1 0 0
6 A 0 0 0 0 0 0 1 0 0
7 U 1 1 1 1 1 1 0 0 0
8 C 1 1 1 0 0 0 0 0 0
9 C 1 1 1 0 0 0 0 0 0

A AG U CAG G C
4 61 7 852 3 9
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Naïve Example 1

1 2 3 4 5 6 7 8 9
G G G A A A U C C

1 G 0 0 0 0 0 0 1 1 1
2 G 0 0 0 0 0 0 1 1 1
3 G 0 0 0 0 0 0 1 1 1
4 A 0 0 0 0 0 0 1 0 0
5 A 0 0 0 0 0 0 1 0 0
6 A 0 0 0 0 0 0 1 0 0
7 U 1 1 1 1 1 1 0 0 0
8 C 1 1 1 0 0 0 0 0 0
9 C 1 1 1 0 0 0 0 0 0

A AG U CAG G C
4 61 7 852 3 9

Refinement

• unfortunately, this finds chemically infeasible 
structures 

• i.e. insufficient space, inflexibility of paired base 
regions

• next step is to specify better constraints
• solution: a dynamic programming algorithm 

[Nussinov et al., 1978]

Structure Representation
• secondary structure described as a graph
• base pairs are described via pairs of indices 
(i, j), indicating links between base vertices

ACUAG U UC A UG G C
84321 5 76 11 129 10 13

AC

U
G

A
C

U G

U

C
A

G
U

S={(1,13), (2,12), (3,11), (4,10)}

Basic Constraints

1. Each edge contains vertices (bases) linking 
compatible base pairs

2. No vertex can be in more than one edge
3. Edges must be drawn without crossing

A AG U CAG G C
ji g h

Edges (g, h) and (i, j)

if i < g < j < h or g < i < h < j, both 
edges cannot belong to the same 
“matching.”

Basic Constraints

1. Each edge contains vertices (bases) linking 
compatible base pairs

2. No vertex can be in more than one edge
3. Edges must be drawn without crossing

A AG U CAG G C
jig h

Edges (g, h) and (i, j)

if i < g < j < h or g < i < h < j, both 
edges cannot belong to the same 
“matching.”

Circular Representation

Image source: Zuker, M. (2002) “Lectures on RNA Secondary Structure Prediction” http://www.bioinfo.rpi.edu/~zukerm/lectures/RNAfold-html/node1.html

Courtesy of Michael Zuker. Used with permission.
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Energy Minimization

• objective is a folded shape for a given nucleotide 
chain such that the energy is minimized

• Eij = 1 for each possible compatible base pair, Eij = 
0 otherwise

The Nussinov Algorithm

Initialization:
F(i, i-1) = 0; for i = 2  to  N
F(i, i)    = 0; for i = 1  to  N

Iteration:
For i = 2 to N:

For i = 1 to N – l
j = i + l – 1

F(i+1, j  -1) + s(xi, xj)
F(i, j) = max

max{ i ≤ k < j } F(i, k) + F(k+1, j)

Termination: 
Best structure is given by F(1, N)
(Need to trace back)

Algorithm Behavior

• recursive computation, finding the best structure for 
small subsequences

• works outward to larger subsequences

• four possible ways to get the best RNA structure:

Case 1: Adding unpaired base i

• Add unpaired position i onto best structure for 
subsequence i+1, j

Case 2: Adding unpaired base j

• Add unpaired position i onto best structure for 
subsequence i+1, j

Case 3: Adding (i, j) pair

• Add base pair (i, j) onto best structure found for 
subsequence i+1, j-1

Durbin, Richard, et. al.

 

Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids

. 

Cambridge, UK: Cambridge University Press, 1999. ISBN: 0521629713. 

. . 

Durbin, Richard, et. al. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids

. 

Cambridge, UK: Cambridge University Press, 1999. ISBN: 0521629713. 
Durbin, Richard, et. al. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids

. 

Cambridge, UK: Cambridge University Press, 1999. ISBN: 0521629713. 

Image removed due to copyright considerations.

Please see: 

Image removed due to copyright considerations.

Please see: 

Image removed due to copyright considerations.

Please see: 
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Case 4: Bifurcation

• combining two optimal substructures i, k and k+1, j

Nussinov RNA Folding Algorithm

• Initialization:
γ(i, i-1) = 0 for I = 2 to L;
γ(i, i) = 0 for I = 2 to L.

Nussinov RNA Folding Algorithm

• Initialization:
γ(i, i-1) = 0 for I = 2 to L;
γ(i, i) = 0 for I = 2 to L.

Nussinov RNA Folding Algorithm

• Initialization:
γ(i, i-1) = 0 for I = 2 to L;
γ(i, i) = 0 for I = 2 to L.

Nussinov RNA Folding Algorithm

• Recursive Relation:

• For all subsequences from length 2 to length L:
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Durbin, Richard, et. al. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids

. 

Cambridge, UK: Cambridge University Press, 1999. ISBN: 0521629713. 

Image removed due to copyright considerations.

Please see: 

Image removed due to copyright considerations.

Please see: 

Image removed due to copyright considerations.

Please see: 

Image removed due to copyright considerations.

Please see: 

Image removed due to copyright considerations.

Please see: 

Durbin, Richard, et. al. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. 
Cambridge, UK: Cambridge University Press, 1999. ISBN: 0521629713. 

Durbin, Richard, et. al. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. 
Cambridge, UK: Cambridge University Press, 1999. ISBN: 0521629713. 

Durbin, Richard, et. al. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. 
Cambridge, UK: Cambridge University Press, 1999. ISBN: 0521629713.

Durbin, Richard, et. al. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. 
Cambridge, UK: Cambridge University Press, 1999. ISBN: 0521629713.
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Nussinov RNA Folding Algorithm











++
+−+
−

+

=

<< )],1(),([max
),()1,1(

)1,(
),1(

max),(

jkki
jiji

ji
ji

ji

jki γγ
δγ

γ
γ

γ

Nussinov RNA Folding Algorithm
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Example Computation
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8

Example Computation
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Traceback

• value at γ(1, L) is the total base pair count in the 
maximally base-paired structure

• as in other DP, traceback from γ(1, L) is necessary 
to recover the final secondary structure

• pushdown stack is used to deal with bifurcated 
structures

Traceback Pseudocode

Initialization: Push (1,L) onto stack
Recursion: Repeat until stack is empty:
• pop (i, j).
• If i >= j continue; // hit diagonal

else if γ(i+1,j) = γ(i, j) push (i+1,j); // case 1
else if γ(i, j-1) = γ(i, j) push (i,j-1); // case 2
else if γ(i+1,j-1)+δi,j = γ(i, j): // case 3

record i, j base pair
push (i+1,j-1);

else for k=i+1 to j-1:if γ(i, k)+γ(k+1,j)=γ(i, j): // case 4
push (k+1, j).
push (i, k).
break

Retrieving the Structure

STACK

(1,9)

CURRENTPAIRS

Image removed due to copyright considerations.
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Image removed due to copyright considerations.
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Image removed due to copyright considerations.
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Durbin, Richard, et. al. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. 
Cambridge, UK: Cambridge University Press, 1999. ISBN: 0521629713. 

Durbin, Richard, et. al. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. 
Cambridge, UK: Cambridge University Press, 1999. ISBN: 0521629713. 

Durbin, Richard, et. al. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. 
Cambridge, UK: Cambridge University Press, 1999. ISBN: 0521629713. 

Durbin, Richard, et. al. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. 
Cambridge, UK: Cambridge University Press, 1999. ISBN: 0521629713. 
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Retrieving the Structure

STACK

(2,9)

CURRENT

(1,9)

PAIRS

Retrieving the Structure

STACK

(3,8)

CURRENT

(2,9)
C

G
G

PAIRS

(2,9)

Retrieving the Structure

STACK

(4,7)

CURRENT

(3,8)
C

G
G

CG

PAIRS

(2,9)

(3,8)

Retrieving the Structure

I

STACK

(5,6)

CURRENT

(4,7)U

C
G

A

G
CG

PAIRS

(2,9)

(3,8)

(4,7)

Retrieving the Structure

STACK

(6,6)

CURRENT

(5,6)

A

U

C
G

A

G
CG

PAIRS

(2,9)

(3,8)

(4,7)

Retrieving the Structure

STACK

-

CURRENT

(6,6)
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A PAIRS

(2,9)

(3,8)

(4,7)
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Retrieving the Structure

A

U
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G

A

G
CG

A

Evaluation of Nussinov

• unfortunately, while this does maximize the base 
pairs, it does not create viable secondary 
structures

• in Zuker’s algorithm, the correct structure is 
assumed to have the lowest equilibrium free 
energy (∆G) (Zuker and Stiegler, 1981; Zuker
1989a)

Minimizing free energy

The Zuker algorithm – main ideas
Models energy of an RNA fold

1. Instead of base pairs, pairs of base pairs (more accurate)

2. Separate score for bulges

3. Separate score for different-size & composition loops

4. Separate score for interactions between stem & beginning of loop

Can also do all that with a SCFG, and train it on real data

Free Energy (∆G)

• ∆G approximated as the sum of contributions from 
loops, base pairs and other secondary structures

Basic Notation

• secondary structure of sequence s is a set S of 
base pairs i • j, 1 ≤ i < j  ≤ |s|

• we assume:
– each base is only in one base pair
– no pseudoknots
– sharp “U-turns” prohibited; a hairpin loop must 

contain at least 3 bases

Image removed due to copyright considerations.

Please see: 

Durbin, Richard, et. al. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. 
Cambridge, UK: Cambridge University Press, 1999. ISBN: 0521629713. 

Durbin, Richard, et. al. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. 
Cambridge, UK: Cambridge University Press, 1999. ISBN: 0521629713. 

Image removed due to copyright considerations.

Please see: 
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Secondary Structure Representation

• can view a structure S as a collection of loops 
together with some external unpaired bases

Accessible Bases

i

j

i’ j’

i’’ j’’

• Let i < k < j with i•j ∈ S
• k is accessible from i•j if for all i′•j′ ∈ S if it is not the 

case that i<i′<k<j′<j

k

Exterior Base Pairs

• base pair i•j is the exterior base pair of (or closing) 
the loop consisting of i•j and all bases accessible 
from it

i j

Interior Base Pairs
• if i′ and j′ are accessible from i•j
• and i′•j′ ∈ S
• then i′•j′ is an interior base pair, and is accessible from i•j

i j

i’ j’

Hairpin Loop

• if there are no interior base pairs in a loop, it is a 
hairpin loop

i j

i’ j’

Stacked Pair

• a loop with one interior base pair is a stacked pair if 
i′ = i+1 and j′ = j-1

i j

i’ = i+1 j’ = j+1 



12

Internal Loop

• if it is not true that the interior base pair i•j that
i′ = i+1 and j′ = j-1, it is an internal loop

i’

j’

i

j

Multibranch Loops

• loops with more than one interior base pair are 
multibranched loops

External Bases and Base Pairs

• any bases or base pairs not accessible from any 
base pair are called external

Assumptions

• structure prediction determines the most stable 
structure for a given sequence

• stability of a structure is based on free energy

• energy of secondary structures is the sum of 
independent loop energies

Recursion Relation

• four arrays are used to hold the minimal free 
energy of specific structures of subsequences of s

• arrays are computed interdependently

• calculated recursively using pre-specified free 
energy functions for each type of loop

V(i,j)

• energy of an optimal structure of subsequence i
through j closed by i•j:










−++

=

),(
),(

)1,1(),(
),(

min),(

jiVM
jiVBI

jiVjieS
jieH

jiV



13

eH(i,j)

• energy of hairpin loop closed by i•j
• computed with: 
• R = universal gas constant (1.9872 cal/mol/K). 
• T = absolute temperature
• ls = total single-stranded (unpaired) bases in loop

eS(i,j)

• energy of stacking base pair i•j with i+1•j-1

• sample free energies in kcal/mole for CG base pairs stacked over all 
possible base pairs, XY

• ‘.’ entries are undefined, and can be assumed as ∞

eL(i,j,i′,j′)

• energy of a bulge or internal loop with exterior base 
pair i•j and interior base pair i′•j′

• free energies for all 1 x 2 interior loops in RNA closed by a CG and an AU base 
pair, with a single stranded U 3' to the double stranded U.

eM(i,j,i1,j1,…,ik,jk)

• energy of a multibranched loop with exterior base 
pair i•j and interior base pairs i1•j1,…,ik•jk

• simplification: linear contributions from number of 
unpaired bases in loop, number of branches and a 
constant

),,...,,,,( 11 kk jijijieM

∑
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+−++−−+−−++=
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1
1 ))11(11(

k

l
llk jijjiicbka

Assembling the Pieces

Hairpin Loop

Multi-loop

Internal Loop

Bulge

External Base{ )},(),,,(min),(
2
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Stacking Base Pairs
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2
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<′<′<

Comparative methods for 
RNA structure prediction
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Multiple alignment and RNA folding
Given K homologous aligned RNA sequences:

Human aagacuucggaucuggcgacaccc
Mouse uacacuucggaugacaccaaagug
Worm aggucuucggcacgggcaccauuc
Fly ccaacuucggauuuugcuaccaua
Yeast aagccuucggagcgggcguaacuc

If ith and jth positions are always base paired and covary, then they are 
likely to be paired

Mutual information

fab(i,j)

Mij = Σa,b∈{a,c,g,u}fab(i,j) log2––––––––––
fa(i) fb(j)

Where fab(i,j) is the # of times the pair a, b are in positions i, j

Given a multiple alignment, can infer structure that maximizes the sum of mutual information, by 
DP

In practice:
1. Get multiple alignment
2. Find covarying bases – deduce structure
3. Improve multiple alignment (by hand)
4. Go to 2

A manual EM process!!

Results for tRNA

• Matrix of co-variations in tRNA molecule

Context Free Grammars for representing 
RNA folds

A Context Free Grammar
S → AB Nonterminals: S, A, B
A → aAc  |  a Terminals: a, b, c, d
B → bBd  |  b

Derivation:

S → AB → aAcB → … → aaaacccB → aaaacccbBd → … →
aaaacccbbbbbbddd

Produces all strings ai+1cibj+1dj, for i, j ≥ 0

Example: modeling a stem loop

S   → a W1 u
W1 → c W2 g
W2 → g W3 c
W3 → g  L  c
L   → agucg

What if the stem loop can have other 
letters in place of the ones shown?

ACGG
UGCC

AG
U

CG
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Example: modeling a stem loop
S   → a W1 u |    g W1 u 
W1 → c W2 g
W2 → g W3 c |    g W3 u
W3 → g  L  c |    a  L  u
L   → agucg |    agccg     |     cugugc

More general: Any 4-long stem, 3-5-long loop:

S   → aW1u  |  gW1u  |  gW1c  | cW1g  |  uW1g  |  uW1a
W1 → aW2u  |  gW2u  |  gW2c  | cW2g  |  uW2g  |  uW2a
W2 → aW3u  |  gW3u  |  gW3c  | cW3g  |  uW3g  |  uW3a
W3 → aLu    |  gLu     |  gLc     | cLg     |  uLg    |  uLa

L → aL1 | cL1 | gL1 | uL1

L1 → aL2 | cL2 | gL2 | uL2

L2 → a | c | g | u | aa | … | uu | aaa | … | uuu

ACGG
UGCC

AG
U

CG

GCGA
UGCU

AG
C

CG

GCGA
UGUU

CUG
U

CG

A parse tree: alignment of CFG to sequence

ACGG
UGCC

AG
U

CG

A C G G A G U G C C C G U

S

W1

W2

W3

L

• S   → a W1 u
• W1 → c W2 g
• W2 → g W3 c
• W3 → g  L  c
• L   → agucg

Alignment scores for parses
We can define each rule X → s, where s is a string,
to have a score.

Example:

W → a W’ u: 3 (forms 3 hydrogen bonds)
W → g W’ c: 2 (forms 2 hydrogen bonds)
W → g W’ u: 1 (forms 1 hydrogen bond)
W → x W’ z -1, when (x, z) is not an a/u, g/c, g/u pair

Questions:
- How do we best align a CFG to a sequence?

(DP)
- How do we set the parameters? (Stochastic CFGs)

The Nussinov Algorithm and CFGs
Define the following grammar, with scores:

S   → a S u  : 3 |    u S a  : 3
g S c  : 2     |    c S g  : 2
g S u  : 1     |    u S g  : 1

S S : 0   |

a S : 0   |   c S : 0   |   g S : 0   |   u S : 0   | ε : 0 

Note: ε is the “” string

Then, the Nussinov algorithm finds the optimal parse of a string with this grammar

Reformulating the Nussinov Algorithm
Initialization:

F(i, i-1) = 0; for i = 2  to  N
F(i, i)    = 0; for i = 1  to  N S → a | c | g | u

Iteration:
For i = 2 to N:

For i = 1 to N – l
j = i + l – 1

F(i+1, j  -1) + s(xi, xj) S → a S u | …
F(i, j) = max

max{ i ≤ k < j } F(i, k) + F(k+1, j) 
S → S S

Termination: 
Best structure is given by F(1, N)

Stochastic Context Free Grammars
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Stochastic Context Free Grammars
In an analogy to HMMs, we can assign probabilities to transitions:

Given grammar

X1 → s11 | … | sin

…
Xm → sm1 | … | smn

Can assign probability to each rule, s.t.

P(Xi → si1) + … + P(Xi → sin) = 1

Computational Problems
• Calculate an optimal alignment of a sequence and a SCFG

(DECODING)

• Calculate Prob[ sequence | grammar ]

(EVALUATION)

• Given a set of sequences, estimate parameters of a SCFG

(LEARNING)

Normal Forms for CFGs
Chomsky Normal Form:

X → YZ
X → a

All productions are either to 2 nonterminals, or to 1 terminal

Theorem (technical)

Every CFG has an equivalent one in Chomsky Normal Form

(That is, the grammar in normal form produces exactly the 
same set of strings)

Example of converting a CFG to C.N.F.
S → ABC
A → Aa   |   a
B → Bb   |   b
C → CAc   |   c

Converting:

S → AS’
S’ → BC
A → AA | a
B → BB | b
C → DC’ |  c
C’ → c
D → CA

S

A B C

A a

a

B b

B b

b

C A c

c a

S

A S’

B CA A

a a B B

B B

b b

b

D C’

C A c

c a

Another example

S → ABC
A → C   |   aA
B → bB   |   b
C → cCd   |   c

Converting:
S → AS’
S’ → BC
A → C’C’’ |   c   |   A’A
A’ → a
B → B’B   |   b
B’ → b
C → C’C’’ |   c
C’ → c
C’’ → CD
D → d

Algorithms for learning Grammars
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Decoding: the CYK algorithm
Given x = x1....xN, and a SCFG G,

Find the most likely parse of x
(the most likely alignment of G to x)

Dynamic programming variable:

γ(i, j, V): likelihood of the most likely parse of xi…xj,
rooted at nonterminal V

Then,

γ(1, N, S): likelihood of the most likely parse of x by the 
grammar

The CYK algorithm (Cocke-Younger-Kasami)

Initialization:
For i = 1 to N, any nonterminal V,
γ(i, i, V) = log P(V → xi)

Iteration:
For i = 1 to N-1

For j = i+1 to N
For any nonterminal V,

γ(i, j, V) = maxXmaxYmaxi≤k<j γ(i,k,X) + γ(k+1,j,Y) + log P(V→XY)

Termination:
log P(x | θ, π*) = γ(1, N, S) 

Where π* is the optimal parse tree (if traced back appropriately from above)

A SCFG for predicting RNA structure

S  → a S   |   c S   |   g S   |   u S   |   ε
→ S a   |   S c   |   S g   |   S u
→ a S u   |   c S g   |   g S u   |   u S g   |   g S c   |   u S a
→ SS

• Adjust the probability parameters to reflect bond strength etc

• No distinction between non-paired bases, bulges, loops
• Can modify to model these events

– L: loop nonterminal
– H: hairpin nonterminal
– B: bulge nonterminal
– etc

CYK for RNA folding

Initialization:
γ(i, i-1) = log P(ε)

Iteration:
For i = 1 to N

For j = i to N
γ(i+1, j–1) + log P(xi S xj)
γ(i, j–1) + log P(S xi)

γ(i, j) = max 
γ(i+1, j) + log P(xi S)
maxi < k < j γ(i, k) + γ(k+1, j) + log P(S S)

Evaluation
Recall HMMs:

Forward: fl(i) = P(x1…xi, πi = l) 
Backward: bk(i) = P(xi+1…xN | πi = k)

Then,
P(x) = Σk fk(N) ak0 = Σl a0l el(x1) bl(1)

Analogue in SCFGs:

Inside: a(i, j, V) =  P(xi…xj is generated by 
nonterminal V)
Outside: b(i, j, V)  = P(x, excluding xi…xj is generated by 
S and the excluded part is rooted 
at V)

The Inside Algorithm

To compute

a(i, j, V) = P(xi…xj, produced by V)

a(i, j, v) = ΣX ΣY Σk a(i, k, X) a(k+1, j, Y) P(V → XY)

k k+1i j

V

X Y
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Algorithm: Inside
Initialization:

For i = 1 to N, V a nonterminal,
a(i, i, V) = P(V → xi)

Iteration:

For i = 1 to N-1
For j = i+1 to N

For V a nonterminal
a(i, j, V) = ΣX ΣY Σk a(i, k, X) a(k+1, j, X) P(V → XY)

Termination:

P(x | θ) = a(1, N, S)

The Outside Algorithm

b(i, j, V) = Prob(x1…xi-1, xj+1…xN, where the “gap” is rooted at V)

Given that V is the right-hand-side nonterminal of a production,

b(i, j, V) = ΣX ΣY Σk<i a(k, i-1, X) b(k, j, Y) P(Y → XV)

i j

V

k

X

Y

Algorithm: Outside
Initialization:

b(1, N, S) = 1
For any other V, b(1, N, V) = 0

Iteration:

For i = 1 to N-1
For j = N down to i

For V a nonterminal
b(i, j, V) = ΣX ΣY Σk<i a(k, i-1, X) b(k, j, Y) P(Y → XV) +

ΣX ΣY Σk<i a(j+1, k, X) b(i, k, Y) P(Y → VX)

Termination:
It is true for any i, that:

P(x | θ) = ΣX b(i, i, X) P(X → xi)

Learning for SCFGs

We can now estimate 

c(V) = expected number of times V is used in the parse of x1….xN

1

c(V) = –––––––– Σ1≤i≤NΣi≤j≤N a(i, j, V) b(i, j, v)
P(x | θ)

1

c(V→XY) = ––––––––Σ1≤i≤NΣi<j≤N Σi≤k<j b(i,j,V) a(i,k,X) a(k+1,j,Y) P(V→XY)
P(x | θ)

Learning for SCFGs
Then, we can re-estimate the parameters with EM, by:

c(V→XY)
Pnew(V→XY) = ––––––––––––

c(V)

c(V → a)             Σi: xi = a b(i, i, V) P(V → a)
Pnew(V → a) = –––––––––– = ––––––––––––––––––––––––––––––––

c(V) Σ1≤i≤NΣi<j≤N a(i, j, V) b(i, j, V)

Summary: SCFG and HMM algorithms
GOAL HMM algorithm SCFG algorithm

Optimal parse Viterbi CYK

Estimation Forward Inside
Backward Outside

Learning EM: Fw/Bck EM: Ins/Outs

Memory Complexity O(N K) O(N2 K)
Time Complexity O(N K2) O(N3 K3)

Where K: # of states in the HMM
# of nonterminals in the SCFG


