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Markov Chains & Hidden Markov Models

• Markov Chain
– Q: states
– p: initial state probabilities
– A: transition probabilities

• HMM
– Q: states
– V: observations
– p: initial state probabilities
– A: transition probabilities
– E: emission probabilities
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Markov Chain

Definition: A Markov chain is a triplet (Q, p, A), where:

¾ Q is a finite set of states. Each state corresponds to a symbol in the alphabet Σ

¾ p is the initial state probabilities.

¾ A is the state transition probabilities, denoted by ast for each s, t in Q.

¾ For each s, t in Q the transition probability is:   ast ≡ P(xi = t|xi-1 = s)

Property: The probability of each symbol xi depends only on the 
value of the preceding symbol xi-1 :  P (xi | xi-1,…, x1) = P (xi | xi-1)

Formula: The probability of the sequence:

P(x) = P(xL,xL-1,…, x1) = P (xL | xL-1) P (xL-1 | xL-2)… P (x2 | x1) P(x1) 

Output: The output of the model is the set of states at each instant 
time => the set of states are observable

HMM (Hidden Markov Model)

Definition: An HMM is a 5-tuple (Q, V, p, A, E), where:
¾ Q is a finite set of states, |Q|=N

¾ V is a finite set of observation symbols per state, |V|=M

¾ p is the initial state probabilities.

¾ A is the state transition probabilities, denoted by ast for each s, t in Q.

¾ For each s, t in Q the transition probability is:   ast ≡ P(xi = t|xi-1 = s)

¾ E is a probability emission matrix, esk ≡ P (vk at time t | qt = s)

Property: Emissions and transitions are dependent on the current state 
only and not on the past.

Output: Only emitted symbols are observable by the system but not the 
underlying random walk between states -> “hidden”



Typical HMM Problems

Annotation Given a model M and an observed string 
S, what is the most probable path through M
generating S

Classification Given a model M and an observed 
string S, what is the total probability of S under M

Consensus Given a model M, what is the string 
having the highest probability under M

Training Given a set of strings and a model structure, 
find transition and emission probabilities assigning 
high probabilities to the strings

Example 1:  Finding CpG islands

What are CpG islands?

• Regions of regulatory importance in promoters of many genes
– Defined by their methylation state (epigenetic information)

• Methylation process in the human genome:
– Very high chance of methyl-C mutating to T in CpG
Î CpG dinucleotides are much rarer

– BUT it is suppressed around the promoters of many genes
Î CpG dinucleotides are much more frequent than elsewhere

• Such regions are called CpG islands
• A few hundred to a few thousand bases long

• Problems: 
– Given a short sequence, does it come from a CpG island or not?
– How to find the CpG islands in a long sequence

Training Markov Chains for CpG islands

• Training Set: 
– set of DNA sequences w/ known CpG islands

• Derive two Markov chain models:
– ‘+’ model: from the CpG islands
– ‘-’ model: from the remainder of sequence 

• Transition probabilities for each model:

∑ +

+
+ =

t' st'

st
st c

ca
+
stc is the number of times 

letter t followed letter s
inside the CpG islands

TGCA+

.182.384.355.079T

.125.375.339.161G

.188.274.368.171C

.120.426.274.180A

A T

GC
aGTaAC

aGC

aAT

∑ −

−
− =

t' st'

st
st c

ca
−
stc is the number of times 

letter t followed letter s
outside the CpG islands

Probability of C following A

Using Markov Models for CpG classification

-0.4    -0.3    -0.2    -0.1    0    0.1    0.2    0.3    0.4
0

5

10

CpG 
islands

Non-
CpG

Q1: Given a short sequence x, does it come from CpG island (Yes-No question)
• To use these models for discrimination, calculate the log-odds ratio:

−

+

=
−

−∑=
−
+

=
ii

ii

xx

xxL

i a

a
)P(x|
)P(x|S(x)

1

1

1
log

model
modellog

Histogram of log odds scores

Using Markov Models for CpG classification

Q2: Given a long sequence x, how do we find CpG islands in it
(Where question)

• Calculate the log-odds score for a window of, say, 100 nucleotides around every 
nucleotide, plot it, and predict CpG islands as ones w/ positive values

• Drawbacks: Window size

Use a hidden state:  CpG (+) or non-CpG (-)



HMM for CpG islands

• Build a single model that combines both 
Markov chains:
– ‘+’ states: A+, C+, G+, T+

• Emit symbols: A, C, G, T in CpG islands
– ‘-’ states: A-, C-, G-, T-

• Emit symbols: A, C, G, T in non-islands

• Emission probabilities distinct for the ‘+’ 
and the ‘-’ states
– Infer most likely set of states, giving rise 

to observed emissions
Î ‘Paint’ the sequence with + and - states
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Finding most likely state path

• Given the observed emissions, what was the path?
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But in general, we don’t know the path!

The three main questions on HMMs

1. Evaluation

GIVEN a HMM M, and a sequence x,
FIND Prob[ x | M ]

2. Decoding

GIVEN a HMM M, and a sequence x,
FIND the sequence π of states that maximizes P[ x, π | M ]

3. Learning

GIVEN a HMM M, with unspecified transition/emission probs.,
and a sequence x,

FIND parameters θ = (ei(.), aij) that maximize P[ x | θ ]



Problem 1: Decoding

Find the best parse of a 
sequence

Decoding
GIVEN x = x1x2……xN

We want to find π = π1, ……, πN,
such that P[ x, π ] is maximized

π* = argmaxπ P[ x, π ]

We can use dynamic programming!

Let Vk(i) = max{π1,…,i-1} P[x1…xi-1, π1, …, πi-1, xi, πi = k]

= Probability of most likely sequence of states ending at 
state πi = k
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Decoding – main idea

Given that for all states k, 
and for a fixed position i,

Vk(i) = max{π1,…,i-1} P[x1…xi-1, π1, …, πi-1, xi, πi = k]

What is Vk(i+1)?

From definition, 
Vl(i+1) = max{π1,…,i}P[ x1…xi, π1, …, πi, xi+1, πi+1 = l ]

= max{π1,…,i}P(xi+1, πi+1 = l | x1…xi,π1,…, πi) P[x1…xi, π1,…, πi]
= max{π1,…,i}P(xi+1, πi+1 = l | πi ) P[x1…xi-1, π1, …, πi-1, xi, πi]
= maxk P(xi+1, πi+1 = l | πi = k) max{π1,…,i-1}P[x1…xi-1,π1,…,πi-1, xi,πi=k]
= el(xi+1) maxk akl Vk(i)

The Viterbi Algorithm

Input: x = x1……xN

Initialization:
V0(0) = 1 (0 is the imaginary first position)
Vk(0) = 0, for all k > 0

Iteration:
Vj(i) = ej(xi) × maxk akj Vk(i-1)

Ptrj(i) = argmaxk akj Vk(i-1)

Termination:
P(x, π*) = maxk Vk(N)

Traceback:
πN* = argmaxk Vk(N)
πi-1*  = Ptrπi (i)

The Viterbi Algorithm

Similar to “aligning” a set of states to a sequence

Time:
O(K2N)

Space:
O(KN)

x1 x2 x3 ………………………………………..xN

State 1
2

K

Vj(i)

Viterbi Algorithm – a practical detail
Underflows are a significant problem

P[ x1,…., xi, π1, …, πi ] =  a0π1 aπ1π2……aπi eπ1(x1)……eπi(xi)

These numbers become extremely small – underflow 

Solution: Take the logs of all values

Vl(i) = log ek(xi) + maxk [ Vk(i-1) + log akl ]



Example
Let x be a sequence with a portion of ~ 1/6 6’s, followed by a portion of ~ ½ 

6’s…

x = 123456123456…12345 6626364656…1626364656

Then, it is not hard to show that optimal parse is (exercise):

FFF…………………...F LLL………………………...L

6 nucleotides “123456” parsed as F, contribute .956×(1/6)6 = 1.6×10-5

parsed as L, contribute .956×(1/2)1×(1/10)5 = 0.4×10-5

“162636” parsed as F, contribute .956×(1/6)6 = 1.6×10-5

parsed as L, contribute .956×(1/2)3×(1/10)3 =  9.0×10-5

Problem 2: Evaluation

Find the likelihood a sequence 
is generated by the model

Generating a sequence by the model

Given a HMM, we can generate a sequence of length n as follows:

1. Start at state π1 according to prob a0π1

2. Emit letter x1 according to prob eπ1(x1)
3. Go to state π2 according to prob aπ1π2

4. … until emitting xn
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A couple of questions
Given a sequence x,

• What is the probability that x was generated by the model?

• Given a position i, what is the most likely state that emitted 
xi?

Example: the dishonest casino

Say x = 12341623162616364616234161221341

Most likely path: π = FF……F
However: marked letters more likely to be L than 
unmarked letters

Evaluation

We will develop algorithms that allow us to compute:

P(x) Probability of x given the model

P(xi…xj) Probability of a substring of x given the model

P(πI = k | x) Probability that the ith state is k, given x

A more refined measure of which states x may be in

The Forward Algorithm
We want to calculate

P(x) = probability of x, given the HMM

Sum over all possible ways of generating x:

P(x) =  Σπ P(x, π)  =  Σπ P(x | π) P(π) 

To avoid summing over an exponential number of paths π, 
define 

fk(i) = P(x1…xi, πi = k) (the forward probability)



The Forward Algorithm – derivation
Define the forward probability:

fl(i) = P(x1…xi, πi = l) 

= Σπ1…πi-1 P(x1…xi-1, π1,…, πi-1, πi = l) el(xi)

= Σk Σπ1…πi-2 P(x1…xi-1, π1,…, πi-2, πi-1 = k) akl el(xi)

= el(xi) Σk fk(i-1) akl

The Forward Algorithm

We can compute fk(i) for all k, i, using dynamic programming!

Initialization:
f0(0) = 1
fk(0) = 0, for all k > 0

Iteration:
fl(i) = el(xi) Σk fk(i-1) akl

Termination:
P(x) = Σk fk(N) ak0

Where, ak0 is the probability that the terminating state is k (usually = a0k)

Relation between Forward and Viterbi

VITERBI

Initialization:
V0(0) = 1
Vk(0) = 0, for all k > 0

Iteration:

Vj(i) = ej(xi)  maxk Vk(i-1) akj

Termination:

P(x, π*) =  maxk Vk(N)

FORWARD

Initialization:
f0(0) = 1
fk(0) = 0, for all k > 0

Iteration:

fl(i) = el(xi) Σk fk(i-1) akl

Termination:

P(x) = Σk fk(N) ak0

Motivation for the Backward Algorithm

We want to compute

P(πi = k | x),

the probability distribution on the ith position, given x

We start by computing

P(πi = k, x) = P(x1…xi, πi = k, xi+1…xN)
= P(x1…xi, πi = k) P(xi+1…xN | x1…xi, πi = k) 
= P(x1…xi, πi = k) P(xi+1…xN | πi = k) 

Forward, fk(i) Backward, bk(i)

The Backward Algorithm – derivation
Define the backward probability:

bk(i) = P(xi+1…xN | πi = k) 
= Σπi+1…πN P(xi+1,xi+2, …, xN, πi+1, …, πN | πi = k)
= Σl Σπi+1…πN P(xi+1,xi+2, …, xN, πi+1 = l, πi+2, …, πN | πi = k)
= Σl el(xi+1) akl Σπi+1…πN P(xi+2, …, xN, πi+2, …, πN | πi+1 = l)
= Σl el(xi+1) akl bl(i+1)

The Backward Algorithm

We can compute bk(i) for all k, i, using dynamic programming

Initialization:

bk(N) = ak0, for all k

Iteration:

bk(i) = Σl el(xi+1) akl bl(i+1)

Termination:

P(x) = Σl a0l el(x1) bl(1)



Computational Complexity

What is the running time, and space required, for Forward, and Backward?

Time:   O(K2N)
Space: O(KN)

Useful implementation technique to avoid underflows

Viterbi: sum of logs
Forward/Backward: rescaling at each position by multiplying by a

constant

Posterior Decoding
We can now calculate

fk(i) bk(i)
P(πi = k | x) = –––––––

P(x)

Then, we can ask

What is the most likely state at position i of sequence x:

Define π^ by Posterior Decoding:

π^
i = argmaxk P(πi = k | x)  

Posterior Decoding

• For each state, 

– Posterior Decoding gives us a curve of likelihood of 
state for each position

– That is sometimes more informative than Viterbi path 
π*

• Posterior Decoding may give an invalid sequence 
of states

– Why?

Maximum Weight Trace

• Another approach is to find a sequence of states under 
some constraint, and maximizing expected accuracy of state 
assignments

– Aj(i) = maxk such that Condition(k, j) Ak(i-1) + P(πi = j | x)

• We will revisit this notion again

Problem 3: Learning

Re-estimate the parameters of the 
model based on training data

Two learning scenarios

1. Estimation when the “right answer” is known

Examples: 
GIVEN: a genomic region x = x1…x1,000,000 where we have good 

(experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening, 
as he changes dice and produces 10,000 rolls

2. Estimation when the “right answer” is unknown

Examples:
GIVEN: the porcupine genome; we don’t know how frequent are the 

CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don’t see when he 
changes dice

QUESTION: Update the parameters θ of the model to maximize P(x|θ)



Case 1. When the right answer is known
Given x = x1…xN
for which the true π = π1…πN is known,

Define:

Akl = # times k→l transition occurs in π
Ek(b) = # times state k in π emits b in x

We can show that the maximum likelihood parameters θ are:

Akl Ek(b)
akl = ––––– ek(b) =   –––––––

Σi  Aki Σc Ek(c)

Case 1. When the right answer is known
Intuition: When we know the underlying states,

Best estimate is the average frequency of 
transitions & emissions that occur in the training data

Drawback:
Given little data, there may be overfitting:
P(x|θ) is maximized, but θ is unreasonable
0 probabilities – VERY BAD

Example:
Given 10 casino rolls, we observe 

x = 2, 1, 5, 6, 1, 2, 3, 6, 2, 3
π = F, F, F, F, F, F, F, F, F, F

Then:
aFF = 1; aFL = 0
eF(1) = eF(3) = .2; 
eF(2) = .3; eF(4) = 0; eF(5) = eF(6) = .1 

Pseudocounts
Solution for small training sets:

Add pseudocounts

Akl = # times k→l transition occurs in π + rkl
Ek(b) = # times state k in π emits b in x + rk(b)

rkl, rk(b) are pseudocounts representing our prior belief

Larger pseudocounts ⇒ Strong priof belief

Small pseudocounts (ε < 1): just to avoid 0 probabilities

Pseudocounts
Example: dishonest casino

We will observe player for one day, 500 rolls 

Reasonable pseudocounts: 

r0F = r0L = rF0 = rL0 = 1;
rFL = rLF = rFF = rLL = 1;
rF(1) = rF(2) = … = rF(6) = 20 (strong belief fair is 
fair)
rF(1) = rF(2) = … = rF(6) = 5 (wait and see for 
loaded)

Above #s pretty arbitrary – assigning priors is an art

Case 2. When the right answer is unknown
We don’t know the true Akl, Ek(b)

Idea:

• We estimate our “best guess” on what Akl, Ek(b) are

• We update the parameters of the model, based on our guess

• We repeat

Case 2. When the right answer is unknown
Starting with our best guess of a model M, parameters θ:

Given x = x1…xN

for which the true π = π1…πN is unknown,

We can get to a provably more likely parameter set θ

Principle: EXPECTATION MAXIMIZATION

1. Estimate Akl, Ek(b) in the training data
2. Update θ according to Akl, Ek(b)
3. Repeat 1 & 2, until convergence



Estimating new parameters

To estimate Akl:

At each position i of sequence x,

Find probability transition k→l is used:

P(πi = k, πi+1 = l | x) = [1/P(x)] × P(πi = k, πi+1 = l, x1…xN) = Q/P(x)

where Q = P(x1…xi, πi = k, πi+1 = l, xi+1…xN) =
= P(πi+1 = l, xi+1…xN | πi = k) P(x1…xi, πi = k) =
= P(πi+1 = l, xi+1xi+2…xN | πi = k) fk(i) =
= P(xi+2…xN | πi+1 = l) P(xi+1 | πi+1 = l) P(πi+1 = l | πi = k) fk(i) =
= bl(i+1) el(xi+1) akl fk(i)

fk(i) akl el(xi+1) bl(i+1)
So: P(πi = k, πi+1 = l | x, θ) =   ––––––––––––––––––

P(x | θ)

Estimating new parameters

So,

fk(i) akl el(xi+1) bl(i+1)

Akl = Σi P(πi = k, πi+1 = l | x, θ) = Σi –––––––––––––––––
P(x | θ)

Similarly,

Ek(b) = [1/P(x)]Σ {i | xi = b} fk(i) bk(i)

Estimating new parameters

If we have several training sequences, x1, …, xM, each of length N,

fk(i) akl el(xi+1) bl(i+1)

Akl = Σx Σi P(πi = k, πi+1 = l | x, θ) = Σx Σi ––––––––––––––––
P(x | θ)

Similarly,

Ek(b) = Σx (1/P(x))Σ {i | xi = b} fk(i) bk(i)

The Baum-Welch Algorithm
Initialization:

Pick the best-guess for model parameters
(or arbitrary)

Iteration:
1. Forward
2. Backward
3. Calculate Akl, Ek(b)
4. Calculate new model parameters akl, ek(b)
5. Calculate new log-likelihood P(x | θ)

GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION

Until P(x | θ) does not change much

The Baum-Welch Algorithm – comments
Time Complexity:

# iterations × O(K2N)

• Guaranteed to increase the log likelihood of the model

P(θ | x) = P(x, θ) / P(x) = P(x | θ) / ( P(x) P(θ) )

• Not guaranteed to find globally best parameters

Converges to local optimum, depending on initial conditions

• Too many parameters / too large model: Overtraining

Alternative: Viterbi Training

Initialization: Same

Iteration:
1. Perform Viterbi, to find π*

2. Calculate Akl, Ek(b) according to π* + pseudocounts
3. Calculate the new parameters akl, ek(b)

Until convergence

Notes:
– Convergence is guaranteed – Why?
– Does not maximize P(x | θ)
– In general, worse performance than Baum-Welch



How to Build an HMM

• General Scheme:
– Architecture/topology design
– Learning/Training:

• Training Datasets
• Parameter Estimation

– Recognition/Classification:
• Testing Datasets
• Performance Evaluation

Parameter Estimation for HMMs (Case 1)

• Case 1: All the paths/labels in the set of training 
sequences are known:
– Use the Maximum Likelihood (ML) estimators for:

– Where Akl and Ek(x) are the number of times each 
transition or emission is used in training sequences

– Drawbacks of ML estimators:
• Vulnerable to overfitting if not enough data
• Estimations can be undefined if never used in training set 

(add pseudocounts to reflect a prior biases about probability 
values)
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Parameter Estimation for HMMs (Case 2)

• Case 2: The paths/labels in the set of training 
sequences are UNknown:
– Use Iterative methods (e.g., Baum-Welch):

1. Initialize akl and ekx (e.g., randomly)
2. Estimate Akl and Ek(x) using current values of akl and ekx 

3. Derive new values for akl and ekx 

4. Iterate Steps 2-3 until some stopping criterion is met (e.g., 
change in the total log-likelihood is small)

– Drawbacks of Iterative methods:
• Converge to local optimum
• Sensitive to initial values of akl and ekx (Step 1)
• Convergence problem is getting worse for large HMMs

HMM Architectural/Topology Design
• In general, HMM states and transitions are 

designed based on the knowledge of the problem 
under study

• Special Class: Explicit State Duration HMMs:
– Self-transition state to itself:

• The probability of staying in the state for d residues:
pi (d residues) = (aii)d-1(1-aii) – exponentially decaying

• Exponential state duration density is often inappropriate
⇒Need to explicitly model duration density in some form

– Specified state density:
• Used in GenScan

qi

aii
qj

ajj

qi qj

… …pi(d) pj(d)

HMM-based Gene Finding

• GENSCAN (Burge 1997)
• FGENESH (Solovyev 1997)
• HMMgene (Krogh 1997)
• GENIE (Kulp 1996)
• GENMARK (Borodovsky & McIninch 1993)
• VEIL (Henderson, Salzberg, & Fasman 1997)

VEIL: Viterbi Exon-Intron Locator

• Contains 9 hidden states or features
• Each state is a complex internal Markovian model of the feature
• Features:

– Exons, introns, intergenic regions, splice sites, etc.
Exon HMM Model

Upstream

Start Codon

Exon

Stop Codon

Downstream

3’ Splice Site

Intron

5’ Poly-A Site

5’ Splice Site

• Enter: start codon or intron (3’ Splice Site)

• Exit: 5’ Splice site or three stop codons 
(taa, tag, tga)

VEIL Architecture



Genie

• Uses a generalized HMM (GHMM)
• Edges in model are complete HMMs
• States can be any arbitrary program
• States are actually neural networks specially 

designed for signal finding

• J5’ – 5’ UTR

• EI – Initial Exon

• E – Exon, Internal Exon

• I – Intron

• EF – Final Exon

• ES – Single Exon

• J3’ – 3’UTR

Begin 
Sequence

Start 
Translatio

n

Donor 
splice 
site

Accept
or 

splice 
site

Stop 
Translatio

n

End 
Sequence

Genscan Overview

• Developed by Chris Burge (Burge 1997), in the research group of 
Samuel Karlin, Dept of Mathematics, Stanford Univ.

• Characteristics:
– Designed to predict complete gene structures 

• Introns and exons, Promoter sites, Polyadenylation signals
– Incorporates:

• Descriptions of transcriptional, translational and splicing signal
• Length distributions (Explicit State Duration HMMs)
• Compositional features of exons, introns, intergenic, C+G regions

– Larger predictive scope 
• Deal w/ partial and complete genes
• Multiple genes separated by intergenic DNA in a seq
• Consistent sets of genes on either/both DNA strands 

• Based on a general probabilistic model of genomic sequences 
composition and gene structure 

Genscan Architecture

• It is based on Generalized HMM 
(GHMM)

• Model both strands at once
– Other models: Predict on one 

strand first, then on the other strand
– Avoids prediction of overlapping 

genes on the two strands (rare)
• Each state may output a string of 

symbols (according to some 
probability distribution).

• Explicit intron/exon length modeling
• Special sensors for Cap-site and 

TATA-box
• Advanced splice site sensors

Fig. 3, Burge and Karlin 1997

GenScan States
• N - intergenic region
• P - promoter
• F - 5’ untranslated region
• Esngl – single exon (intronless) (translation 

start -> stop codon)
• Einit – initial exon (translation start -> 

donor splice site)
• Ek – phase k internal exon (acceptor 

splice site -> donor splice site)
• Eterm – terminal exon (acceptor splice site 

-> stop codon)
• Ik – phase k intron: 0 – between codons; 1 

– after the first base of a codon; 2 – after 
the second base of a codon

Accuracy Measures

Sensitivity vs. Specificity (adapted from Burset&Guigo 1996)

Combined measure of Sensitivity & Specificity 
Range: -1 (always wrong) Æ +1 (always right)

•Correlation
Coefficient (CC)

Fraction of the prediction that is actually correct•Specificity (Sp)

Fraction of actual coding regions that are correctly predicted as 
coding

•Sensitivity (Sn)
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Test Datasets

• Sample Tests reported by Literature
– Test on the set of 570 vertebrate gene seqs

(Burset&Guigo 1996) as a standard for comparison 
of gene finding methods. 

– Test on the set of 195 seqs of human, mouse or rat 
origin (named HMR195) (Rogic 2001). 



Table: Relative Performance (adapted from Rogic 2001)

# of seqs - number of seqs effectively analyzed 
by each program; in parentheses is the number 
of seqs where the absence of gene was 
predicted; 

Sn -nucleotide level sensitivity; Sp - nucleotide 
level specificity; 

CC - correlation coefficient; 

ESn - exon level sensitivity; ESp - exon level 
specificity

Results: Accuracy Statistics

Complicating Factors for Comparison

• Gene finders were trained on data that 
had genes homologous to test seq.

• Percentage of overlap is varied

• Some gene finders were able to tune 
their methods for particular data

• Methods continue to be developed

Needed

• Train and test methods on the same data.

• Do cross-validation (10% leave-out)

Why not Perfect?
• Gene Number

usually approximately correct, but may not

• Organism
primarily for human/vertebrate seqs; maybe lower accuracy for non-
vertebrates. ‘Glimmer’ & ‘GeneMark’ for prokaryotic or yeast seqs

• Exon and Feature Type
Internal exons: predicted more accurately than Initial or Terminal exons;
Exons: predicted more accurately than Poly-A or Promoter signals

• Biases in Test Set (Resulting statistics may not be representative)
The Burset/Guigó (1996) dataset:
¾ Biased toward short genes with relatively simple exon/intron structure

The Rogic (2001) dataset:
¾ DNA seqs: GenBank r-111.0 (04/1999 <- 08/1997); 
¾ source organism specified; 
¾ consider genomic seqs containing exactly one gene; 
¾ seqs>200kb were discarded; mRNA seqs and seqs containing pseudo genes or 

alternatively spliced genes were excluded.

What We Learned…
• Genes are complex structures which are difficult to predict 

with the required level of accuracy/confidence
• Different HMM-based approaches have been successfully 

used to address the gene finding problem:
– Building an architecture of an HMM is the hardest part, it should 

be biologically sound & easy to interpret
– Parameter estimation can be trapped in local optimum

• Viterbi algorithm can be used to find the most probable 
path/labels

• These approaches are still not perfect


