Gene Finding and HMMs

Lecture 1 - Introduction
Lecture 2 - Hashing and BLAST
Lecture 3 - Combinatorial Motif Finding
Lecture 4 - Statistical Motif Finding
Lecture 5 - Sequence alignment and Dynamic Programming
Lecture 6 - RNA structure and Context Free Grammars
Lecture 7 - Gene finding and Hidden Markov Models

Markov Chains \& Hidden Markov Models

- Markov Chain
- Q: states
- p : initial state probabilities
- A: transition probabilities

- HMM
- Q: states
- V: observations
- p : initial state probabilities
- A: transition probabilities
- E: emission probabilities

Markov Chain

Definition: A Markov chain is a triplet ($Q, p, A)$, where:
$>Q$ is a finite set of states. Each state corresponds to a symbol in the alphabet Σ
$>p$ is the initial state probabilities.
$>\boldsymbol{A}$ is the state transition probabilities, denoted by $\boldsymbol{a}_{\boldsymbol{s t}}$ for each $\boldsymbol{s , t} \boldsymbol{t}$ in \boldsymbol{Q}.
$>$ For each s, t in Q the transition probability is: $a_{s t} \equiv P\left(x_{i}=t \mid x_{i-1}=s\right)$
Output: The output of the model is the set of states at each instant time $=>$ the set of states are observable

Property: The probability of each symbol x_{i} depends only on the value of the preceding symbol $x_{i-1}: P\left(x_{i} \mid x_{i-1}, \ldots, x_{j}\right)=P\left(x_{i} \mid x_{i-1}\right)$

Formula: The probability of the sequence:

$$
P(x)=P\left(x_{L}, x_{L-p}, \ldots, x_{\nu}\right)=P\left(x_{L} \mid x_{L-l}\right) P\left(x_{L-1} \mid x_{L-2}\right) \ldots P\left(x_{2} \mid x_{\nu}\right) P\left(x_{\nu}\right)
$$

HMM (Hidden Markov Model)

Definition: An $H M M$ is a 5-tuple (Q, V, p, A, E), where:
$>\boldsymbol{Q}$ is a finite set of states, $|\mathbf{Q}|=\mathbf{N}$
$>\mathbf{V}$ is a finite set of observation symbols per state, $|\mathbf{V}|=\mathbf{M}$
$>\boldsymbol{p}$ is the initial state probabilities.
$>A$ is the state transition probabilities, denoted by $a_{s t}$ for each s, t in \boldsymbol{Q}.
$>$ For each s, t in Q the transition probability is: $a_{s t} \equiv P\left(x_{i}=t \mid x_{i-1}=s\right)$
$>\mathrm{E}$ is a probability emission matrix, $e_{s k} \equiv P\left(v_{k}\right.$ at time $\left.t \mid q_{t}=s\right)$
Output: Only emitted symbols are observable by the system but not the underlying random walk between states -> "hidden"

Property: Emissions and transitions are dependent on the current state only and not on the past.

Typical HMM Problems

Annotation Given a model M and an observed string S, what is the most probable path through M generating S

Classification Given a model M and an observed string S, what is the total probability of S under M

Consensus Given a model M, what is the string having the highest probability under M

Training Given a set of strings and a model structure, find transition and emission probabilities assigning high probabilities to the strings

What are CpG islands?

- Regions of regulatory importance in promoters of many genes
- Defined by their methylation state (epigenetic information)
- Methylation process in the human genome:
- Very high chance of methyl-C mutating to T in CpG
\rightarrow CpG dinucleotides are much rarer
- BUT it is suppressed around the promoters of many genes
$\rightarrow \mathrm{CpG}$ dinucleotides are much more frequent than elsewhere
- Such regions are called CpG islands
- A few hundred to a few thousand bases long
- Problems:
- Given a short sequence, does it come from a CpG island or not?
- How to find the CpG islands in a long sequence

Example 1: Finding CpG islands

Training Markov Chains for CpG islands

- Training Set:
- set of DNA sequences w/ known CpG islands
- Derive two Markov chain models:
- '+' model: from the CpG islands
- ' - ' model: from the remainder of sequence
- Transition probabilities for each model:

Probability of C following A

Using Markov Models for CpG classification

Q2: Given a long sequence x, how do we find CpG islands in it (Where question)

- Calculate the log-odds score for a window of, say, 100 nucleotides around every nucleotide, plot it, and predict CpG islands as ones w/ positive values
- Drawbacks: Window size

Use a hidden state: $\mathrm{CpG}(+)$ or non-CpG (-)

HMM for CpG islands

- Build a single model that combines both Markov chains:
_ '+' states: $A_{+}, C_{+}, G_{+}, T_{+}$
- Emit symbols: A, C, G, T in CpG islands
- ' - ' states: A, C, G_, T.
- Emit symbols: A, C, G, T in non-islands
- Emission probabilities distinct for the ' + ' and the '-' states
- Infer most likely set of states, giving rise to observed emissions
\rightarrow 'Paint' the sequence with + and - states

- Given the observed emissions, what was the path?

Probability of given path p \& observations \boldsymbol{x}

Probability of given path p \& observations x

- $\mathrm{P}(p, x)=\left(\mathrm{a}_{0, \mathrm{C}+}{ }^{*} 1\right)^{*}\left(\mathrm{a}_{\mathrm{C}+, \mathrm{G}-}{ }^{*} 1\right)^{*}\left(\mathrm{a}_{\mathrm{G}-\mathrm{C}-}{ }^{*} 1\right)^{*}\left(\mathrm{a}_{\mathrm{C}-\mathrm{G}+} * 1\right)^{*}\left(\mathrm{a}_{\mathrm{G}+, 0}\right)$

But in general, we don't know the path!

The three main questions on HMMs

1. Evaluation

GIVEN
FIND
$\operatorname{a~HMM~M,} \quad$ and a sequence x,
$\operatorname{Prob}[x \mid M]$
2. Decoding

GIVEN a HMM M, and a sequence x
FIND the sequence π of states that maximizes $P[x, \pi \mid M]$
3. Learning

GIVEN a HMM M, with unspecified transition/emission probs., and a sequence x,

FIND parameters $\theta=\left(e_{i}(),. a_{i j}\right)$ that maximize $P[x \mid \theta]$

Problem 1: Decoding

Find the best parse of a sequence

Decoding

GIVEN $x=x_{1} x_{2} \ldots \ldots x_{N}$

We want to find $\pi=\pi_{1}, \ldots \ldots, \pi_{\mathrm{N}}$, such that $P[x, \pi]$ is maximized
$\pi^{*}=\operatorname{argmax}_{\pi} \mathrm{P}[\mathrm{x}, \pi]$

We can use dynamic programming!

Let $V_{k}(i)=\max _{\{\pi 1, \ldots, i-1\}} P\left[x_{1} \ldots x_{i-1}, \pi_{1}, \ldots, \pi_{i-1}, x_{i}, \pi_{i}=k\right]$
$=$ Probability of most likely sequence of states ending at state $\pi_{\mathrm{i}}=\mathrm{k}$

Decoding - main idea

Given that for all states k,
and for a fixed position i,

$$
V_{k}(i)=\max _{\{\pi 1, \ldots, i-1\}} P\left[x_{1} \ldots x_{i-1}, \pi_{1}, \ldots, \pi_{i-1}, x_{i}, \pi_{i}=k\right]
$$

What is $\mathrm{V}_{\mathrm{k}}(\mathrm{i}+1)$?
From definition,
$\mathrm{V}_{\mathrm{l}}(\mathrm{i}+1)=\max _{\{\pi 1, \ldots, i\}} \mathrm{P}\left[\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{i}}, \pi_{1}, \ldots, \pi_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}+1}, \pi_{\mathrm{i}+1}=\mathrm{I}\right]$
$=\max _{\{\pi 1, \ldots, i\}} P\left(x_{i+1}, \pi_{i+1}=I \mid x_{1} \ldots x_{i}, \pi_{1}, \ldots, \pi_{i}\right) P\left[x_{1} \ldots x_{i}, \pi_{1}, \ldots, \pi_{i}\right]$
$=\max _{\{\pi 1, \ldots, i\}} P\left(x_{i+1}, \pi_{i+1}=1 \mid \pi_{i}\right) P\left[x_{1} \ldots x_{i-1}, \pi_{1}, \ldots, \pi_{i-1}, x_{i}, \pi_{i}\right]$
$=\max _{k} \mathrm{P}\left(\mathrm{x}_{\mathrm{i}+1}, \pi_{\mathrm{i}+1}=\mathrm{I} \mid \pi_{\mathrm{i}}=\mathrm{k}\right) \max _{\{\pi 1, \ldots, \mathrm{i}-1\}} \mathrm{P}\left[\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{i}-1}, \pi_{1}, \ldots, \pi_{\mathrm{i}-1}, \mathrm{x}_{\mathrm{i}}, \pi_{\mathrm{i}}=\mathrm{k}\right]$
$=\mathrm{e}_{\mathrm{l}}\left(\mathrm{x}_{\mathrm{i}+1}\right) \max _{\mathrm{k}} \mathrm{a}_{\mathrm{kl}} \mathrm{V}_{\mathrm{k}}(\mathrm{i})$

The Viterbi Algorithm

Input: $x=x_{1} \ldots \ldots x_{N}$
Initialization:
$V_{0}(0)=1$
$V_{k}(0)=0$, for all $k>0$
Iteration:
$\mathrm{V}_{\mathrm{j}}(\mathrm{i}) \quad=\mathrm{e}_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{i}}\right) \times \max _{\mathrm{k}} \mathrm{a}_{\mathrm{kj}} \mathrm{V}_{\mathrm{k}}(\mathrm{i}-1)$
$\operatorname{Ptr}_{\mathrm{j}}(\mathrm{i})=\operatorname{argmax}_{\mathrm{k}} \mathrm{a}_{\mathrm{kj}} \mathrm{V}_{\mathrm{k}}(\mathrm{i}-1)$
Termination:
$\mathrm{P}\left(\mathrm{x}, \pi^{*}\right)=\max _{\mathrm{k}} \mathrm{V}_{\mathrm{k}}(\mathrm{N})$
Traceback:
$\pi_{\mathrm{N}}{ }^{*}=\operatorname{argmax} \mathrm{V}_{\mathrm{k}}(\mathrm{N})$
$\pi_{i-1}{ }^{*}=\operatorname{Ptr}_{\pi i}(\mathrm{i})$

The Viterbi Algorithm

Similar to "aligning" a set of states to a sequence
Time:
$\mathrm{O}\left(\mathrm{K}^{2} \mathrm{~N}\right)$
Space:
O(KN)

Viterbi Algorithm - a practical detail

Underflows are a significant problem
$\mathrm{P}\left[\mathrm{x}_{1}, \ldots ., \mathrm{x}_{\mathrm{i}}, \pi_{1}, \ldots, \pi_{\mathrm{i}}\right]=\mathrm{a}_{0 \pi 1} \mathrm{a}_{\pi 1 \pi 2} \ldots \ldots \mathrm{a}_{\pi \mathrm{i}} \mathrm{e}_{\pi 1}\left(\mathrm{x}_{1}\right) \ldots \ldots \mathrm{e}_{\pi \mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}\right)$

These numbers become extremely small - underflow

Solution: Take the logs of all values
$\mathrm{V}_{\mathrm{l}}(\mathrm{i})=\log \mathrm{e}_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{i}}\right)+\max _{\mathrm{k}}\left[\mathrm{V}_{\mathrm{k}}(\mathrm{i}-1)+\log \mathrm{a}_{\mathrm{kl}}\right]$

Example

```
Let x be a sequence with a portion of ~ 1/6 6's, followed by a portion of ~ 1/2
    6's..
x = 123456123456\ldots12345 6626364656\ldots1626364656
```

Then, it is not hard to show that optimal parse is (exercise):

FFF.
...F LLL.
6 nucleotides " 123456 " parsed as F, contribute $.95^{6} \times(1 / 6)^{6} \quad=1.6 \times 10^{-5}$ parsed as L, contribute $.95^{6} \times(1 / 2)^{1} \times(1 / 10)^{5}=0.4 \times 10^{-5}$
" 162636 " parsed as F, contribute $.95^{6} \times(1 / 6)^{6}=1.6 \times 10^{-5}$ parsed as L, contribute $.95^{6} \times(1 / 2)^{3} \times(1 / 10)^{3}=9.0 \times 10^{-5}$

Problem 2: Evaluation

Find the likelihood a sequence is generated by the model

Generating a sequence by the model

Given a HMM, we can generate a sequence of length n as follows:

1. Start at state π_{1} according to prob $a_{0 \pi 1}$
2. Emit letter x_{1} according to prob $\mathrm{e}_{\pi 1}\left(\mathrm{x}_{1}\right)$
3. Go to state π_{2} according to prob $\mathrm{a}_{\pi 1 \pi 2}$
4. ... until emitting x_{n}

A couple of questions

Given a sequence x,

- What is the probability that x was generated by the model?
- Given a position i , what is the most likely state that emitted x_{i} ?

Example: the dishonest casino

Say $x=12341623162616364616234161221341$
Most likely path: $\pi=$ FF......F However: marked letters more likely to be L than unmarked letters

Evaluation

We will develop algorithms that allow us to compute:
$P(x) \quad$ Probability of x given the model
$P\left(x_{i} \ldots x_{j}\right) \quad$ Probability of a substring of x given the model
$\mathrm{P}\left(\pi_{\mathrm{I}}=\mathrm{k} \mid \mathrm{x}\right)$ Probability that the $\mathrm{i}^{\text {th }}$ state is k , given x
A more refined measure of which states x may be in

The Forward Algorithm

We want to calculate
$P(x)=$ probability of x, given the HMM

Sum over all possible ways of generating x :

$$
P(x)=\Sigma_{\pi} P(x, \pi)=\Sigma_{\pi} P(x \mid \pi) P(\pi)
$$

To avoid summing over an exponential number of paths π, define

$$
f_{k}(i)=P\left(x_{1} \ldots x_{i}, \pi_{i}=k\right) \text { (the forward probability) }
$$

The Forward Algorithm - derivation

Define the forward probability:

$$
\begin{aligned}
\mathrm{f}_{\mathrm{l}}(\mathrm{i}) & =\mathrm{P}\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{i}}, \pi_{\mathrm{i}}=\mathrm{I}\right) \\
& =\Sigma_{\pi 1 \ldots \pi i-1} \mathrm{P}\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{i}-1}, \pi_{1}, \ldots, \pi_{\mathrm{i}-1}, \pi_{\mathrm{i}}=\mathrm{I}\right) \mathrm{e}_{\mathrm{l}}\left(\mathrm{x}_{\mathrm{i}}\right) \\
& =\Sigma_{\mathrm{k}} \Sigma_{\pi 1 \ldots \pi \mathrm{i}-2} \mathrm{P}\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{i}-1}, \pi_{1}, \ldots, \pi_{\mathrm{i}-2}, \pi_{i-1}=\mathrm{k}\right) \mathrm{a}_{\mathrm{kl}} \mathrm{e}_{\mathrm{l}}\left(\mathrm{x}_{\mathrm{i}}\right) \\
& =\mathrm{e}_{\mathrm{l}}\left(\mathrm{x}_{\mathrm{i}}\right) \Sigma_{\mathrm{k}} \mathrm{f}_{\mathrm{k}}(\mathrm{i}-1) \mathrm{a}_{\mathrm{kl}}
\end{aligned}
$$

The Forward Algorithm

We can compute $f_{k}(i)$ for all k, i, using dynamic programming!

```
Initialization:
    f
    fk
Iteration:
    f
Termination:
    P(x)= 胀 fk (N) ako
```

 Where, \(a_{k 0}\) is the probability that the terminating state is \(k\) (usually \(=a_{0 k}\))
 Relation between Forward and Viterbi

VITERBI

Initialization:
$V_{0}(0)=1$
$V_{k}(0)=0$, for all $k>0$
Iteration:
$\mathrm{V}_{\mathrm{j}}(\mathrm{i})=\mathrm{e}_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{i}}\right) \max _{\mathrm{k}} \mathrm{V}_{\mathrm{k}}(\mathrm{i}-1) \mathrm{a}_{\mathrm{kj}}$

Termination:
$\mathrm{P}\left(\mathrm{x}, \pi^{*}\right)=\max _{\mathrm{k}} \mathrm{V}_{\mathrm{k}}(\mathrm{N})$

Motivation for the Backward Algorithm

We want to compute

$$
\mathrm{P}\left(\pi_{\mathrm{i}}=\mathrm{k} \mid \mathrm{x}\right),
$$

the probability distribution on the $i^{\text {th }}$ position, given x

We start by computing
$P\left(\pi_{i}=k, x\right)=P\left(x_{1} \ldots x_{i}, \pi_{i}=k, x_{i+1} \ldots x_{N}\right)$
$=P\left(x_{1} \ldots x_{i}, \pi_{i}=k\right) P\left(x_{i+1} \ldots x_{N} \mid x_{1} \ldots x_{i}, \pi_{i}=k\right)$
$=P\left(x_{1} \ldots x_{i}, \pi_{i}=k\right) P\left(x_{i+1} \ldots x_{N} \mid \pi_{i}=k\right)$

The Backward Algorithm - derivation
Define the backward probability:

$$
\begin{aligned}
& b_{k}(i)=P\left(x_{i+1} \ldots x_{N} \mid \pi_{i}=k\right) \\
& =\Sigma_{\pi i+1 \ldots \pi \mathrm{~N}} \mathrm{P}\left(\mathrm{x}_{\mathrm{i}+1}, \mathrm{x}_{\mathrm{i}+2}, \ldots, \mathrm{x}_{\mathrm{N}}, \pi_{\mathrm{i}+1}, \ldots, \pi_{\mathrm{N}} \mid \pi_{\mathrm{i}}=\mathrm{k}\right) \\
& =\Sigma_{1} \Sigma_{\pi i+1 \ldots \pi N} \mathrm{P}\left(\mathrm{x}_{\mathrm{i}+1}, \mathrm{x}_{\mathrm{i}+2}, \ldots, \mathrm{X}_{\mathrm{N}}, \pi_{i+1}=\mathrm{I}, \pi_{i+2}, \ldots, \pi_{N} \mid \pi_{i}=k\right) \\
& =\Sigma_{l} \mathrm{e}_{\mathrm{l}}\left(\mathrm{x}_{\mathrm{i}+1}\right) \mathrm{a}_{\mathrm{kl}} \Sigma_{\pi i+1 \ldots \pi \mathrm{~N}} \mathrm{P}\left(\mathrm{x}_{\mathrm{i}+2}, \ldots, \mathrm{x}_{\mathrm{N}}, \pi_{\mathrm{i}+2}, \ldots, \pi_{\mathrm{N}} \mid \pi_{i+1}=\mathrm{l}\right) \\
& =\Sigma_{1} \mathrm{e}_{1}\left(\mathrm{x}_{\mathrm{i}+1}\right) \mathrm{a}_{\mathrm{k} \mid} \mathrm{b}_{\mathrm{l}}(\mathrm{i}+1)
\end{aligned}
$$

The Backward Algorithm

We can compute $b_{k}(i)$ for all k, i, using dynamic programming
Initialization:

$$
b_{k}(N)=a_{k 0} \text {, for all } k
$$

Iteration:

$$
b_{k}(i)=\Sigma_{1} e_{1}\left(x_{i+1}\right) a_{k l} b_{l}(i+1)
$$

Termination:

$$
P(x)=\Sigma_{1} a_{01} e_{1}\left(x_{1}\right) b_{1}(1)
$$

Computational Complexity

What is the running time, and space required, for Forward, and Backward?

Time: $\mathrm{O}\left(\mathrm{K}^{2} \mathrm{~N}\right)$
Space: O(KN)

Useful implementation technique to avoid underflows

Viterbi:
sum of logs
Forward/Backward: rescaling at each position by multiplying by a constant

Posterior Decoding

We can now calculate

Then, we can ask
What is the most likely state at position i of sequence x :
Define π^{\wedge} by Posterior Decoding:

$$
\pi_{i}^{\wedge}=\operatorname{argmax}_{k} P\left(\pi_{i}=k \mid x\right)
$$

Maximum Weight Trace

- Another approach is to find a sequence of states under some constraint, and maximizing expected accuracy of state assignments
$-A_{j}(i)=$ max $_{k \text { such that }}$ Condition $(k, j) A_{k}(i-1)+P\left(\pi_{i}=j \mid x\right)$
- We will revisit this notion again
- Posterior Decoding may give an invalid sequence of states
- Why?

Two learning scenarios

1. Estimation when the "right answer" is known

Examples:
GIVEN: $\begin{aligned} & \text { a genomic region } x=x_{1} \ldots x_{1,000,000} \text { where we have good } \\ & \text { (experimental) annotations of the CpG islands }\end{aligned}$ (experimental) annotations of the CpG islands
Problem 3: Learning

Re-estimate the parameters of the model based on training data

Case 1. When the right answer is known

Given $\mathrm{x}=\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{N}}$
for which the true $\pi=\pi_{1} \ldots \pi_{\mathrm{N}}$ is known,

Define:

$$
\begin{array}{ll}
\mathrm{A}_{\mathrm{kl}} & =\# \text { times } \mathrm{k} \rightarrow \text { transition occurs in } \pi \\
\mathrm{E}_{\mathrm{k}}(\mathrm{~b}) & =\# \text { times state } \mathrm{k} \text { in } \pi \text { emits } \mathrm{b} \text { in } \mathrm{x}
\end{array}
$$

We can show that the maximum likelihood parameters θ are:

$$
a_{k l}=\frac{A_{k l}}{\sum_{i} A_{k i}} \quad e_{k}(b)=\frac{E_{k}(b)}{\sum_{c} E_{k}(c)}
$$

$r_{k}, r_{k}(b)$ are pseudocounts representing our prior belief

Larger pseudocounts \Rightarrow Strong priof belief

Small pseudocounts $(\varepsilon<1)$: just to avoid 0 probabilities

Pseudocounts

```
Solution for small training sets:
Add pseudocounts
\(\mathrm{A}_{\mathrm{kl}} \quad=\) \# times \(\mathrm{k} \rightarrow\) l transition occurs in \(\pi+\mathrm{r}_{\mathrm{kl}}\)
\(E_{k}(b) \quad=\#\) times state \(k\) in \(\pi\) emits \(b\) in \(x \quad+r_{k}(b)\)
```


Case 1. When the right answer is known

Intuition: When we know the underlying states, Best estimate is the average frequency of transitions \& emissions that occur in the training data

Drawback:

Given little data, there may be overfitting:
$P(x \mid \theta)$ is maximized, but θ is unreasonable
0 probabilities - VERY BAD
Example:
Given 10 casino rolls, we observe
$x=2,1,5,6,1,2,3,6,2,3$
Then:

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{FF}}=1 ; \quad \mathrm{a}_{\mathrm{FL}}=0 \\
& \mathrm{e}_{\mathrm{F}}(1)=\mathrm{e}_{\mathrm{F}}(3)=.2 ; \\
& \mathrm{e}_{\mathrm{F}}(2)=.3 ; \mathrm{e}_{\mathrm{F}}(4)=0 ; \mathrm{e}_{\mathrm{F}}(5)=\mathrm{e}_{\mathrm{F}}(6)=.1
\end{aligned}
$$

Pseudocounts

Example: dishonest casino

We will observe player for one day, 500 rolls

Reasonable pseudocounts:
$r_{0 F}=r_{0 L}=r_{F O}=r_{L O}=1$;
$r_{\mathrm{FL}}=r_{\mathrm{LF}}=r_{\mathrm{FF}}=r_{\mathrm{LL}}=1$;
$r_{F}(1)=r_{F}(2)=\ldots=r_{F}(6)=20 \quad$ (strong belief fair is
fair)
$r_{F}(1)=r_{F}(2)=\ldots=r_{F}(6)=5 \quad$ (wait and see for
loaded)
Above \#s pretty arbitrary - assigning priors is an art

Case 2. When the right answer is unknown

Starting with our best guess of a model M, parameters θ :

Given $\mathrm{x}=\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{N}}$
for which the true $\pi=\pi_{1} \ldots \pi_{N}$ is unknown,
We can get to a provably more likely parameter set θ
Principle: EXPECTATION MAXIMIZATION

1. Estimate $A_{k l}, E_{k}(b)$ in the training data
2. Update θ according to $A_{k}, E_{k}(b)$
3. Repeat $1 \& 2$, until convergence

Estimating new parameters

To estimate A_{k} :
At each position i of sequence x ,
Find probability transition $\mathrm{k} \rightarrow$ is used:
$P\left(\pi_{i}=k, \pi_{i+1}=I \mid x\right)=[1 / P(x)] \times P\left(\pi_{i}=k, \pi_{i+1}=I, x_{1} \ldots x_{N}\right)=Q / P(x)$
where $\mathrm{Q}=\mathrm{P}\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{i}}, \pi_{\mathrm{i}}=\mathrm{k}, \pi_{\mathrm{i}+1}=\mathrm{I}, \mathrm{x}_{\mathrm{i}+1} \ldots \mathrm{x}_{\mathrm{N}}\right)=$
$=P\left(\pi_{i+1}=I, x_{i+1} \ldots x_{N} \mid \pi_{i}=k\right) P\left(x_{1} \ldots x_{i}, \pi_{i}=k\right)=$
$=P\left(\pi_{i+1}=I, x_{i+1} x_{i+2} \cdots x_{N} \mid \pi_{i}=k\right) f_{k}(i)=$
$=P\left(x_{i+2} \ldots x_{N} \mid \pi_{i+1}=I\right) P\left(x_{i+1} \mid \pi_{i+1}=I\right) P\left(\pi_{i+1}=1 \mid \pi_{i}=k\right) f_{k}(i)=$
$=b_{1}(i+1) e_{1}\left(x_{i+1}\right) a_{k l} f_{k}(i)$
So: $\quad P\left(\pi_{i}=k, \pi_{i+1}=l \mid x, \theta\right)=\frac{f_{k}(i) a_{k l} e_{1}\left(x_{i+1}\right) b_{1}(i+1)}{P(x \mid \theta)}$

Estimating new parameters

If we have several training sequences, x^{1}, \ldots, x^{M}, each of length N,

$$
f_{k}(i) a_{k l} e_{1}\left(x_{i+1}\right) b_{l}(i+1)
$$

$A_{k l}=\Sigma_{x} \Sigma_{i} P\left(\pi_{i}=k, \pi_{i+1}=1 \mid x, \theta\right)=\Sigma_{x} \Sigma_{i} \frac{P(x \mid \theta)}{}$

Similarly,

$$
E_{k}(b)=\sum_{x}(1 / P(x)) \sum_{\{i \mid x i=b\}} f_{k}(i) b_{k}(i)
$$

Estimating new parameters

So,

$$
f_{k}(i) a_{k l} e_{l}\left(x_{i+1}\right) b_{1}(i+1)
$$

$A_{k l}=\sum_{i} P\left(\pi_{i}=k, \pi_{i+1}=1 \mid x, \theta\right)=\sum_{i}$ $P(x \mid \theta)$

Similarly,

$$
E_{k}(b)=[1 / P(x)] \sum_{\{i \mid x i=b\}} f_{k}(i) b_{k}(i)
$$

The Baum-Welch Algorithm

Initialization:

Pick the best-guess for model parameters (or arbitrary)

Iteration:

1. Forward
2. Backward
3. Calculate $A_{k}, E_{k}(b)$
4. Calculate new model parameters $\mathrm{a}_{\mathrm{k}}, \mathrm{e}_{\mathrm{k}}(\mathrm{b})$
5. Calculate new log-likelihood $P(x \mid \theta)$

GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION

Until $P(x \mid \theta)$ does not change much

The Baum-Welch Algorithm - comments
Time Complexity:
\# iterations $\times \mathrm{O}\left(\mathrm{K}^{2} \mathrm{~N}\right)$

- Guaranteed to increase the log likelihood of the model
$P(\theta \mid x)=P(x, \theta) / P(x)=P(x \mid \theta) /(P(x) P(\theta))$
- Not guaranteed to find globally best parameters

Converges to local optimum, depending on initial conditions

- Too many parameters / too large model:

Overtraining

Alternative: Viterbi Training

Initialization: Same

Iteration:

1. Perform Viterbi, to find π^{*}
2. Calculate $A_{k l}, E_{k}(b)$ according to $\pi^{*}+$ pseudocounts
3. Calculate the new parameters $a_{k}, e_{k}(b)$

Until convergence

Notes:

- Convergence is guaranteed - Why?
- Does not maximize $\mathrm{P}(x \mid \theta)$
- In general, worse performance than Baum-Welch

How to Build an HMM

- General Scheme:
- Architecture/topology design
- Learning/Training:
- Training Datasets
- Parameter Estimation
- Recognition/Classification:
- Testing Datasets
- Performance Evaluation

Parameter Estimation for HMMs (Case 1)

- Case 1: All the paths/labels in the set of training sequences are known:
- Use the Maximum Likelihood (ML) estimators for:

$$
a_{k l}=\frac{A_{k l}}{\sum_{l^{\prime}} A_{k l^{\prime}}} \text { and } e_{k x}=\frac{E_{k}(x)}{\sum_{x^{\prime}} E_{k}\left(x^{\prime}\right)}
$$

- Where $\boldsymbol{A}_{\boldsymbol{k} l}$ and $\boldsymbol{E}_{\boldsymbol{k}}(\boldsymbol{x})$ are the number of times each transition or emission is used in training sequences
- Drawbacks of ML estimators:
- Vulnerable to overfitting if not enough data
- Estimations can be undefined if never used in training set (add pseudocounts to reflect a prior biases about probability values)

Parameter Estimation for HMMs (Case 2)

- Case 2: The paths/labels in the set of training sequences are UNknown:
- Use Iterative methods (e.g., Baum-Welch):

1. Initialize $\boldsymbol{a}_{\boldsymbol{k} \boldsymbol{l}}$ and $\boldsymbol{e}_{\boldsymbol{k} x}$ (e.g., randomly)
2. Estimate $\boldsymbol{A}_{\boldsymbol{k} \boldsymbol{l}}$ and $\boldsymbol{E}_{\boldsymbol{k}}(\boldsymbol{x})$ using current values of $\boldsymbol{a}_{\boldsymbol{k} \boldsymbol{l}}$ and $\mathbf{e}_{\boldsymbol{k} \boldsymbol{x}}$
3. Derive new values for $\boldsymbol{a}_{\boldsymbol{k} \boldsymbol{l}}$ and $\mathbf{e}_{\boldsymbol{k} \boldsymbol{x}}$
4. Iterate Steps $2-3$ until some stopping criterion is met (e.g., change in the total log-likelihood is small)

- Drawbacks of Iterative methods:
- Converge to local optimum
- Sensitive to initial values of $\boldsymbol{a}_{k l}$ and $\mathbf{e}_{\boldsymbol{k x}}$ (Step 1)
- Convergence problem is getting worse for large HMMs

HMM Architectural/Topology Design

- In general, HMM states and transitions are designed based on the knowledge of the problem under study
- Special Class: Explicit State Duration HMMs:
- Self-transition state to itself:

- The probability of staying in the state for d residues: $p_{i}(d$ residues $)=\left(a_{i j}\right)^{d-1}\left(1-a_{i j}\right)-$ exponentially decaying
- Exponential state duration density is often inappropriate \Rightarrow Need to explicitly model duration density in some form
- Specified state density:
- Used in GenScan

HMM-based Gene Finding

- GENSCAN (Burge 1997)
- FGENESH (Solovyev 1997)
- HMMgene (Krogh 1997)
- GENIE (Kulp 1996)
- GENMARK (Borodovsky \& McIninch 1993)
- VEIL (Henderson, Salzberg, \& Fasman 1997)

VEIL: Viterbi Exon-Intron Locator

- Contains 9 hidden states or features
- Each state is a complex internal Markovian model of the feature
- Features:
- Exons, introns, intergenic regions, splice sites, etc. ExOn . HMM Model

Genie

- Uses a generalized HMM (GHMM)
- Edges in model are complete HMMs
- States can be any arbitrary program
- States are actually neural networks specially designed for signal finding
- J5' - 5, UTR
- EI - Initial Exon
- E - Exon, Internal Exon
- I - Intron
- EF - Final Exon
- ES - Single Exon
- J3' - 3'UTR

Genscan Overview

- Developed by Chris Burge (Burge 1997), in the research group of Samuel Karlin, Dept of Mathematics, Stanford Univ.
- Characteristics:
- Designed to predict complete gene structures
- Introns and exons, Promoter sites, Polyadenylation signals
- Incorporates:
- Descriptions of transcriptional, translational and splicing signal
- Length distributions (Explicit State Duration HMMs)
- Compositional features of exons, introns, intergenic, C+G regions
- Larger predictive scope
- Deal w/ partial and complete genes
- Multiple genes separated by intergenic DNA in a seq
- Consistent sets of genes on either/both DNA strands
- Based on a general probabilistic model of genomic sequences composition and gene structure

Genscan Architecture

It is based on Generalized HMM (GHMM)
Model both strands at once

- Other models: Predict on one strand first, then on the other strand
- Avoids prediction of overlapping genes on the two strands (rare) Fiminet (t) simid Each state may output a string of symbols (according to some probability distribution).
- Explicit intron/exon length modeling
- Special sensors for Cap-site and TATA-box
Advanced splice site sensors

Fig. 3, Burge and Karlin 1997

Accuracy Measures

Sensitivity vs. Specificity (adapted from Burset\&Guigo 1996)

-Sensitivity (Sn)
-Specificity (Sp)
-Correlation
Correlation
Coefficient (CC)

Fraction of actual coding regions that are correctly predicted as coding
Fraction of the prediction that is actually correct
Combined measure of Sensitivity \& Specificity Range: -1 (always wrong) $\rightarrow+1$ (always right)

Test Datasets

- Sample Tests reported by Literature
- Test on the set of 570 vertebrate gene seqs (Burset\&Guigo 1996) as a standard for comparison of gene finding methods.
- Test on the set of 195 seqs of human, mouse or rat origin (named HMR195) (Rogic 2001).

Results: Accuracy Statistics

Table: Relative Performance (adapted from Rogic 2001)

Programs	Test By Rogic 2001						Complicating Factors for Comparison
	$\begin{aligned} & \text { \# of } \\ & \text { seq } \end{aligned}$	Nucleotide accuracy			$\begin{aligned} & \text { Exon } \\ & \text { accuracy } \end{aligned}$		- Gene finders were trained on data that had genes homologous to test seq. - Percentage of overlap is varied
		Sn	Sp	CC	ESn	ESp	
Genscan	195(3)	0.95	0.90	0.91	0.70	0.70	
HMMgene	195(5)	0.93	0.93	0.91	0.76	0.77	- Some gene finders were able to tune
MZEF	119(\%)	0.70	0.73	0.66	0.58	0.59	their methods for particular data
\# of seqs - number of seqs effectively analyzed by each program; in parentheses is the number of seqs where the absence of gene was predicted;							- Methods continue to be developed Needed
$\mathbf{S n}$-nucleotide level sensitivity; Sp - nucleotide level specificity;							- Train and test methods on the same data. - Do cross-validation (10\% leave-out)
CC - correlation coefficient;							
ESn - exon level sensitivity; ESp - exon level specificity							

What We Learned...

- Genes are complex structures which are difficult to predict with the required level of accuracy/confidence
- Different HMM-based approaches have been successfully used to address the gene finding problem:
- Building an architecture of an HMM is the hardest part, it should be biologically sound \& easy to interpret
- Parameter estimation can be trapped in local optimum
- Viterbi algorithm can be used to find the most probable path/labels
- These approaches are still not perfect

Why not Perfect?

- Gene Number
usually approximately correct, but may not
- Organism
primarily for human/vertebrate seqs; maybe lower accuracy for nonvertebrates. 'Glimmer' \& 'GeneMark' for prokaryotic or yeast seqs
- Exon and Feature Type

Internal exons: predicted more accurately than Initial or Terminal exons; Exons: predicted more accurately than Poly-A or Promoter signals

- Biases in Test Set (Resulting statistics may not be representative)

The Burset/Guigó (1996) dataset:

> Biased toward short genes with relatively simple exon/intron structure
The Rogic (2001) dataset:
> DNA seqs: GenBank r-111.0 (04/1999 <- 08/1997);
> source organism specified;

- consider genomic seqs containing exactly one gene;
seqs $>200 \mathrm{~kb}$ were discarded; mRNA seqs and seqs containing pseudo genes or
alternatively spliced genes were excluded. alternatively spliced genes were excluded.

