6.096 — Algorithms for Computational Biology — Lecture 7

Gene Finding and HMMs

Lecture 1 - Introduction

Lecture 2 - Hashing and BLAST

Lecture 3 - Combinatorial Motif Finding

Lecture 4 - Statistical Motif Finding

Lecture 5 - Sequence alignment and Dynamic Programming
Lecture 6 - RNA structure and Context Free Grammars
Lecture 7 - Gene finding and Hidden Markov Models

Challenges in Computational Biology
@ Genome Assembly
@ Regulatory motif discovery @Gene Finding
DNA
@ Sequence alignment
O-0O-AA—A- OO0
@ Comparative Genomics

-
@Evoluuonary Theory £

@ Database lookup

@ RNA folding @ Gene expression analysis

Cluster discovery @ G\b‘k‘)’s"s;;v:p\mg

RNA transcript

@ Protein network analysis

?cw @ Regulatory network inference

* | Emerging network properties
C Ty
&Y

Outline

« Computational model
— Simple Markov Models
— Hidden Markov Models

* Working with HMMs
— Dynamic programming (Viterbi)
— Expectation maximization (Baum-Welch)

» Gene Finding in practice
— GENSCAN
— Performance Evaluation

Markov Chains & Hidden Markov Models

A:1 || A:0 (| A:0 || A: 0
C:0 [[C:1|[C:0 || C:0
G:0 [|G:0|[G:1]|G:0
T:0 |[T:0 || T:0 || T: 1
* Markov Chain * HMM

— Q: states — Q: states

— p: initial state probabilities — V: observations

— A: transition probabilities — p: initial state probabilities

— A: transition probabilities
— E: emission probabilities

Markov Chain

Definition: A Markov chain is a triplet (Q, p, A), where:

» Q is a finite set of states. Each state corresponds to a symbol in the alphabet £
» p is the initial state probabilities.

»> A is the state transition probabilities, denoted by a,, for each s, £ in Q.

» For each s, ¢ in Q the transition probability is: a, = P(x; =t|x, ;=)

Output: The output of the model is the set of states at each instant
time => the set of states are observable

Property: The probability of each symbol x; depends only on the
value of the preceding symbol x,; : P (x;| x; ..., X)) = P (x;] x;.)

Formula: The probability of the sequence:

P(x) =P(x;,X;_pyees X)) =P (x| X5) P (X 1| X1 5)s o PG5 | X)) B(X)

HMM (Hidden Markov Model)

Definition: An HMM is a 5-tuple (Q, V, p, A, E), where:

> Q is a finite set of states, |Q=N

» V is a finite set of observation symbols per state, |V|=M

> p is the initial state probabilities.

> A is the state transition probabilities, denoted by a,, for each s, ¢ in Q.
> For each s, ¢ in Q the transition probability is: a, = P(x; = tx; ;= s)

» Eisa probability emission matrix, e, = P (v, at time 7 | g, = s)

Output: Only emitted symbols are observable by the system but not the
underlying random walk between states -> “hidden”

Property: Emissions and transitions are dependent on the current state
only and not on the past.

Typical HMM Problems

Annotation Given a model M and an observed string
S, what is the most probable path through M
generating S

Classification Given a model M and an observed
string S, what is the total probability of S under M

Consensus Given a model M, what is the string
having the highest probability under M

Training Given a set of strings and a model structure,
find transition and emission probabilities assigning
high probabilities to the strings

Example 1: Finding CpG islands

What are CpG islands?

Regions of regulatory importance in promoters of many genes
— Defined by their methylation state (epigenetic information)
Methylation process in the human genome:
— Very high chance of methyl-C mutating to T in CpG
=>» CpG dinucleotides are much rarer
— BUT it is suppressed around the promoters of many genes
= CpG dinucleotides are much more frequent than elsewhere
+ Such regions are called CpG islands
« A few hundred to a few thousand bases long
* Problems:
— Given a short sequence, does it come from a CpG island or not?
— How to find the CpG islands in a long sequence

Training Markov Chains for CpG islands

« Training Set:

— set of DNA sequences w/ known CpG islands
« Derive two Markov chain models:

— ‘“+’ model: from the CpG islands

— ‘““ model: from the remainder of sequence
« Transition probabilities for each model:

Probability of C following A o
o cxt Cyt is the number of times
+|A|C|G|T 4, = = letter ¢ followed letter s
A | 180 | 274 | 426 | 120 Zt, Cor inside the CpG islands
Cc | 171 368 | 274 | 188
G | 161|339 | 375 | 125 - _
T = Cy CY - is the number of times
T | ; - : st z @ “" letter t followed letter s
st outside the CpG islands

Using Markov Models for CpG classification

Q1: Given a short sequence x, does it come from CpG island (Yes-No question)
« To use these models for discrimination, calculate the log-odds ratio:

=
L a

S(9 = log P(xmodel +) _ log 1%

P(x|model -) i=l T g

Xi-1%i

Histogram of log odds scores

CpG
islands

04 -03 -02 -0.1 0 01 02 03 04

Using Markov Models for CpG classification

Q2: Given a long sequence x, how do we find CpG islands in it
(Where question)

¢ Calculate the log-odds score for a window of, say, 100 nucleotides around every
nucleotide, plot it, and predict CpG islands as ones w/ positive values

+ Drawbacks: Window size

Use a hidden state: CpG (+) or non-CpG (-)

HMM for CpG islands

» Build a single model that combines both
Markov chains:
— ‘¢’ states: A,,C,,G,, T,
« Emit symbols: A, C, G, T in CpG islands
— ‘““states:A,C,G, T.
« Emit symbols: A, C, G, T in non-islands
« Emission probabilities distinct for the ‘+
and the ‘-’ states
— Infer most likely set of states, giving rise
to observed emissions
=> ‘Paint’ the sequence with + and - states

Finding most likely state path

» Given the observed emissions, what was the path?

Probability of given path p & observations x

® @
Q

F-POOO®E®

* Known observations: CGCG

« Known sequence path: C+, G-, C-, G+

Probability of given path p & observations x

@/@

rd © ©
& ©

* Known observations: CGCG
« Known sequence path: C+, G-, C-, G+

(=

Probability of given path p & observations x

* P@px)=(ayc.* 1) (@cic™ 1) * (ae._c.* 1) " (ac. g™ 1) * (@g+p)

But in general, we don’t know the path!

The three main questions on HMMs

1. Evaluation

GIVEN aHMM M, and a sequence X,

FIND Prob[x |M]
2. Decoding

GIVEN aHMM M, and a sequence X,

FIND the sequence r of states that maximizes P[x, = | M]
3. Learning

GIVEN a HMM M, with unspecified transition/emission probs.,

and a sequence X,

FIND parameters 0 = (g(.), a;) that maximize P[x | 6]

Problem 1: Decoding

Find the best parse of a
sequence

Decoding

GIVEN X = X;X,...... Xy

We want to find x = my,) T
such that P[x, n] is maximized

n° = argmax, P[X, n]

We can use dynamic programming!

X4

Let V(i) = maxy, i PIXq.. Xiq, 7, ooy Mg, X 1 = K]

= Probability of most likely sequence of states ending at
state m; = k

".\@D.

Xk

Decoding — main idea

Given that for all states k,
and for a fixed position i,

V(i) = maXgy i1y PlXq... X4, T .oy g, X5 @ = K]
What is V,(i+1)?

From definition,

Vi(i+1) = maxg gPLXq Xy Ty ey Ty Xipq, Taq = 1]
=maxg P, Mg = Xqe Xm0 1) PIXG0oX s, 1]
=maXyy pPXir Ty = 1) P X, T e, T, X,)

= max, P(Xi1q, msq = 1| = K) max(ﬂ‘,_”i_ﬂP[x‘...xi_1,n1,...,ni_1, X, m=K]
= €(Xjq) max, ay V(i)

The Viterbi Algorithm

Input: x = X;...... Xy

Initialization:
Vo(0) =1 (0 is the imaginary first position)
V,(0)=0, forallk >0

Iteration:
V(i) = ej(x;) x max, ag Vi (i-1)

Ptr(i) = argmax, a; V,(i-1)

P(x, *) = max, Vi (N)

Traceback:
my* = argmax, Vi (N)
mat = Piry ()

The Viterbi Algorithm

State 1
2

Similar to “aligning” a set of states to a sequence

Time:

O(K2N)
Space:
O(KN)

Viterbi Algorithm — a practical detail

Underflows are a significant problem
PLXpyeoes X5 gy oo] = 8o Bz A €rq(Xy).onn (%)

These numbers become extremely small — underflow

Solution: Take the logs of all values

V(i) = log e,(x) + max, [V,(i-1) + log ay]

Example

Let x be a sequence with a portion of ~ 1/6 6's, followed by a portion of ~ %2
(Foo

x = 123456123456...12345 6626364656...1626364656

Then, it is not hard to show that optimal parse is (exercise):

6 nucleotides “123456" parsed as F, contribute .956x(1/6)8 =1.6x105
parsed as L, contribute .956x(1/2)x(1/10)5 = 0.4x10-5

“162636" parsed as F, contribute .956x(1/6)8 =1.6x105
parsed as L, contribute .956x(1/2)%x(1/10)3 = 9.0x10%

Problem 2: Evaluation

Find the likelihood a sequence
is generated by the model

Generating a sequence by the model

Given a HMM, we can generate a sequence of length n as follows:

1. Start at state n; according to prob ag_,
2. Emit letter x, according to prob e_;(x,)
3. Go to state n, according to prob a,,,
4. ... until emitting x,

A couple of questions

Given a sequence X,
« What is the probability that x was generated by the model?

« Given a position i, what is the most likely state that emitted

x?

Example: the dishonest casino
Say x = 12341623162616364616234161221341

Most likely path: = = FF...... F

However: marked letters more likely to be L than
unmarked letters

Evaluation

We will develop algorithms that allow us to compute:
P(x) Probability of x given the model
P(x;...x) Probability of a substring of x given the model
P(m, =k | x) Probability that the it state is k, given x

A more refined measure of which states x may be in

The Forward Algorithm

We want to calculate
P(x) = probability of x, given the HMM
Sum over all possible ways of generating x:
P(x) = =, P(x,) = = P(x|) P(r)

To avoid summing over an exponential number of paths T,
define

f (i) = P(X4...x;, m = k) (the forward probability)

The Forward Algorithm — derivation

Define the forward probability:
fi(i) = P(x;...x;, ;= 1)
= Zoq it PR Xig, Ty, Mg, = 1) €4(X)
=5 X i Py Xig, T, Mg, g = K) @ €4(X)

=g (%) 2 fi(i-1) ag

The Forward Algorithm

We can compute f(i) for all k, i, using dynamic programming!
Initialization:

f(0)=1

£(0)=0, forall k > 0

Iteration:
fi(i) = ex) 2 fi(i-1) ag

P(x) = Z, f(N) ao

Where, a,, is the probability that the terminating state is k (usually = a,,)

Relation between Forward and Viterbi

VITERBI FORWARD
Initialization: Initialization:
Vo(0) =1 f,(0) =1
V,(0) =0, forall k >0 f(0) =0, forallk >0
Iteration: Iteration:

fi(i) = fi(i-1
Vi) = ex) max, Vii-1) a (1) = e(x) Zy fi(i-1) ay

Termination:
Termination:
P(x) = Z, f(N) a,
P(x, n*) = max, V,(N)

Motivation for the Backward Algorithm

We want to compute
P(m =k | x),
the probability distribution on the it position, given x
We start by computing
P(m =k, X) = P(Xy..X;, T = K, Xj4q...Xy)

= P(Xq... X, = K) P(Xiaqo- Xy | X4 %, 1 = K)
= P(Xye X, 7 = K) Py | 7= K)

]

Forward, f(i) Backward, b, (i)

The Backward Algorithm — derivation

Define the backward probability:

Dy(i) = P(Xiss... Xy | ;= k)

= 2t Pt Xiazs ooes Xo Tty oes Ty | 1 = K)
= %) i, an PXiaa:Xis o0 Xpo T =, Mgy oy iy | = K)
=3, €(Xiv1) 8 Zier_an PXiszs - X Tiags woor oy | g =)

=3, €(X;e1) @y by(i+1)

The Backward Algorithm

We can compute b,(i) for all k, i, using dynamic programming
Initialization:
b,(N) = a,, for all k
Iteration:
by(i) = =, €((X.1) @y bi(i+1)
Termination:

P(x) = 2, ag € (x;) b(1)

Computational Complexity
What is the running time, and space required, for Forward, and Backward?

Time: O(K2N)
Space: O(KN)

Useful implementation technique to avoid underflows

Viterbi: sum of logs
Forward/Backward: rescaling at each position by multiplying by a
constant

Posterior Decoding

We can now calculate

fili) b(i)
P(m=k|x)= _
P(x)
Then, we can ask
What is the most likely state at position i of sequence x:

Define " by Posterior Decoding:

n'; = argmax, P(m, = k | X)

Posterior Decoding

» For each state,

— Posterior Decoding gives us a curve of likelihood of
state for each position

— That is sometimes more informative than Viterbi path

s

» Posterior Decoding may give an invalid sequence
of states

— Why?

Maximum Weight Trace

< Another approach is to find a sequence of states under

some constraint, and maximizing expected accuracy of state
assignments

— A((i) = MaXx, gcn that condition(k, j) Ali=1) + Plm =i x)

« We will revisit this notion again

Problem 3: Learning

Re-estimate the parameters of the
model based on training data

Two learning scenarios

1. Estimation when the “right answer” is known

Examples:
GIVEN: agenomic region X = Xy...X4 go0,000 Where we have good
(experimental) annotations of ﬂ‘le CpG islands

GIVEN: the casino player allows us to observe him one evening,
as he changes dice and produces 10,000 rolls

2. Estimation when the “right answer” is unknown

Examples:
GIVEN: the porcupine genome; we don't know how frequent are the
CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don’t see when he
changes dice

QUESTION: Update the parameters 6 of the model to maximize P(x|6)

Case 1. When the right answer is known

Given X = X;...Xy
for which the true © = n,...my is known,

Define:
Ay = # times k- transition occurs in ©
E.(b) = # times state k in © emits b in x

We can show that the maximum likelihood parameters 0 are:

Case 1. When the right answer is known

Intuition: When we know the underlying states,
Best estimate is the average frequency of
transitions & emissions that occur in the training data

Drawback:
Given little data, there may be overfitting:
P(x|0) is maximized, but 6 is unreasonable
0 probabilities — VERY BAD

Example:
Given 10 casino rolls, we observe
X = 2, 1S 6 T R O P
n=F F, F, F, F, F, F, F, F, F
Then:
a=1, ay=0
ex(1)=ex(3) = .2;
e:(2) = .3; ex(4) = 0; e(5) = e(6) = .1

Ay E(b)
A = e (b) =
% Ag %, Ec)
Pseudocounts

Solution for small training sets:
Add pseudocounts

Ay = # times k-l transition occurs in .+
E.(b) =#times statekinmtemitsbinx +r(b)

I N(b) are pseudocounts representing our prior belief
Larger pseudocounts = Strong priof belief

Small pseudocounts (g < 1): just to avoid 0 probabilities

Pseudocounts

Example: dishonest casino
We will observe player for one day, 500 rolls

Reasonable pseudocounts:

foF =ToL =Tro=fo =1
T SMe =T = =1

re(1) =re(2) = ... = rg(6) = 20 (strong belief fair is
fair)

re(1) =re(2)= ... =r(6) =5 (wait and see for
loaded)

Above #s pretty arbitrary — assigning priors is an art

Case 2. When the right answer is unknown

We don'’t know the true Ay, E,(b)

Idea:

« We estimate our “best guess” on what A, E,(b) are

* We update the parameters of the model, based on our guess

* We repeat

Case 2. When the right answer is unknown

Starting with our best guess of a model M, parameters 0:

Given x = X;...Xy
for which the true © = m,...my is unknown,

We can get to a provably more likely parameter set 6
Principle: EXPECTATION MAXIMIZATION
1. Estimate Ay, E,(b) in the training data

2. Update 6 according to A, E(b)
3. Repeat 1 & 2, until convergence

Estimating new parameters

To estimate A;:

At each position i of sequence X,

Find probability transition k—l is used:

P(m =k, myq = 1] %) = [1/P(X)] x P(m; = K, 7,y = 1, X4...Xy) = Q/P(X)

where Q = P(X;...X;, T =K, Tq = 1, Xppqo..Xy) =
= P(mq = 1, Xppqo Xy | 1 = K) P(Xq...%, 1 = K) =
= P(Mq = | XiqXiape- Xy | = K) fi(i) =
= P(Xpug XN | Mg = 1) P(Xq | g = 1) Py = 1] =) £ (i) =
= by(i+1) €(X.1) ay fi(i)

fili) ay e(xi.q) by(i+1)
So: P(m, =k, m,, =1|x,0)= —M ——
P(x]6)

Estimating new parameters

So,
fili) ag (1) by(i+1)
Ay =2 Pln =k, mug =1 %, 8)= 2

Estimating new parameters

If we have several training sequences, x', ..., xM, each of length N,

fili) @ €(Xi.q) by(i+1)
Ag=2y ZiP(m =k myy =1 x,0)=2, %
P(x | 6)

Similarly,

Eulb) = Zy (PN 4| xi = by full) by(i)

P(x | 6)
Similarly,
Ex(b) = [P g | i = by Fll) bili)
The Baum-Welch Algorithm
Initialization:

Pick the best-guess for model parameters
(or arbitrary)

Iteration:
1. Forward
2. Backward
3. Calculate A, E,(b)
4. Calculate new model parameters a, e,(b)
5. Calculate new log-likelihood P(x | 6)

GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION

Until P(x | 6) does not change much

The Baum-Welch Algorithm — comments

Time Complexity:
iterations x O(K2N)
« Guaranteed to increase the log likelihood of the model
P(6 | x) = P(x, 8) / P(x) = P(x | 8) / (P(x) P(6))
* Not guaranteed to find globally best parameters
Converges to local optimum, depending on initial conditions

« Too many parameters / too large model: Overtraining

Alternative: Viterbi Training

Initialization: Same

Iteration:
1. Perform Viterbi, to find ©*
2. Calculate A, E,(b) according to ©" + pseudocounts
3. Calculate the new parameters a,;, e,(b)

Until convergence

Notes:
— Convergence is guaranteed — Why?
— Does not maximize P(x | 6)
— In general, worse performance than Baum-Welch

How to Build an HMM

» General Scheme:
— Architecture/topology design
— Learning/Training:
 Training Datasets
» Parameter Estimation
— Recognition/Classification:
« Testing Datasets
+ Performance Evaluation

Parameter Estimation for HMMs (case 1)

» Case 1: All the paths/labels in the set of training
sequences are known:

— Use the Maximum Likelihood (ML) estimators for:
__Au ___Exx)
> Z,,Akl' o ZX,EI((X')
— Where A, and E,(x) are the number of times each

transition or emission is used in training sequences
— Drawbacks of ML estimators:
« Vulnerable to overfitting if not enough data

« Estimations can be undefined if never used in training set
(add pseudocounts to reflect a prior biases about probability
values)

Parameter Estimation for HMMs (case 2)

+ Case 2: The paths/labels in the set of training
sequences are UNknown:

— Use lterative methods (e.g., Baum-Welch):
1. Initialize a, and e, (e.g., randomly)
2. Estimate A, and E,(x) using current values of a,; and e,
3. Derive new values for a,, and e,,
4. lterate Steps 2-3 until some stopping criterion is met (e.g.,

change in the total log-likelihood is small)

— Drawbacks of Iterative methods:
» Converge to local optimum
+ Sensitive to initial values of a,; and e, (Step 1)
« Convergence problem is getting worse for large HMMs

HMM Architectural/Topology Design

* In general, HMM states and transitions are
designed based on the knowledge of the problem
under study

» Special Class: Explicit State Duration HMMs:

— Self-transition state to itself: sﬁ a;

« The probability of staying in the state for d residues:
p; (d residues) = (a;)%'(1-a;) — exponentially decaying
« Exponential state duration density is often inappropriate
—=Need to explicitly model duration density in some form

— Specified state density:

 Used in GenScan pi(d) PI(d)
q; q;

HMM-based Gene Finding

« GENSCAN (Burge 1997)

+ FGENESH (Solovyev 1997)

* HMMgene (Krogh 1997)

+ GENIE (Kulp 1996)

+ GENMARK (Borodovsky & Mclninch 1993)

» VEIL (Henderson, Salzberg, & Fasman 1997)

VEIL: Viterbi Exon-Intron Locator

« Contains 9 hidden states or features
« Each state is a complex internal Markovian model of the feature
* Features:

— Exons, introns, intergenic regions, splice Sit?}hﬁt‘i{MM Model

3" Splice Site

'l e
‘ Exon ‘ Intron ‘ h !
f 0
B > s
‘ Stop Codon ‘ 5° Splice Site l ¥ dghee Se NG e
Downstream }n—' 5’ Poly-A Site Deeamean|
‘ 2 ‘ « Enter: start codon or intron (3 Splice Site)
VEIL Architecture

« Exit: 5° Splice site or three stop codons
(taa, tag, tga)

Genie

» Uses a generalized HMM (GHMM)
« Edges in model are complete HMMs
- States can be any arbitrary program

» States are actually neural networks specially
designed for signal finding

*J5’ -5’ UTR
Begin Stat Donor Accept Stop End
« EI — Initial Exon Sequence Translatio ~splice B or Translatio Sequence
» A m site 5 lics“ LI
* E — Exon, Internal Exon E:—-E —|-|B
1
« [- Intron ™
* EF — Final Exon

* ES — Single Exon

«J3’-3’UTR

Genscan Overview

Developed by Chris Burge (Burge 1997), in the research group of
Samuel Karlin, Dept of Mathematics, Stanford Univ.
Characteristics:
— Designed to predict complete gene structures

« Introns and exons, Promoter sites, Polyadenylation signals
— Incorporates:

« Descriptions of transcriptional, translational and splicing signal

« Length distributions (Explicit State Duration HMMs)

« Compositional features of exons, introns, intergenic, C+G regions
— Larger predictive scope

+ Deal w/ partial and complete genes

« Multiple genes separated by intergenic DNA in a seq

« Consistent sets of genes on either/both DNA strands
Based on a general probabilistic model of genomic sequences
composition and gene structure

Genscan Architecture

Itis based on Generalized HMM
(GHMM)
Model both strands at once

— Other models: Predict on one
strand first, then on the other strand

— Avoids prediction of overlapping
genes on the two strands (rare) _.

Each state may output a string of ®evess
symbols (according to some
probability distribution).

Explicit intron/exon length modeling

Special sensors for Cap-site and
TATA-box

Advanced splice site sensors

Fig. 3, Burge and Karlin 1997

GenScan States

N - intergenic region

P - promoter

F - 5" untranslated region

Eqpg — single exon (intronless) (translation
start -> stop codon)

E,; — initial exon (translation start ->
donor splice site)

E, — phase k internal exon (acceptor
splice site -> donor splice site)

Eorm — terminal exon (acceptor splice site
-> stop codon)
I, — phase k intron: 0 — between codons; 1
— after the first base of a codon; 2 — after

the second base of a codon
Forward {+) strand

Reverse (- strand

Accuracy Measures

sensitivity VS. SpeCIfICIty (adapted from Burset&Guigo 1996)

P P TN [FN | TP FIV [T

Actual
Coding / No Coding

TPE

Predicted
——

No Coding/ Coding

FN | TN
+Sensitivity (Sn) Fraction of actual coding regions that are correctly predicted as
coding
~Specificity (Sp) Fraction of the prediction that is actually correct
Ce i Combined measure of itivity & i

Coefficient (CC) Range: -1 (always wrong) - +1 (always right)

Test Datasets

« Sample Tests reported by Literature
— Test on the set of 570 vertebrate gene seqs
(Burset&Guigo 1996) as a standard for comparison
of gene finding methods.

— Test on the set of 195 seqgs of human, mouse or rat
origin (named HMR195) (Rogic 2001).

Results: Accuracy Statistics

Table: Relative Performance (adgapted from Rogic 2001)

Test By Rogie 2001 Complicating Factors for Comparison
Nucleotide Exon
#of accuracy accuracy « Gene finders were trained on data that
= seq had genes homologous to test seq.
sn | Sp | cc | ESn | ESp
n (1953 095030 091 | 070 | 070 * Percentage of overlap is varied
HMMgene |195(5) 0.93 0.93 091 078 | 077 + Some gene finders were able to tune
MZEF |119(8) 0.70 [0.73 0.6 | 0.58 | 059 their methods for particular data
of seqs - number of seqs effectively analyzed * Methods continue to be developed

by each program; in parentheses is the number
of seqs where the absence of gene was Needed
predicted;
. e . « Train and test methods on the same data.
Sn -nucleotide level sensitivity; Sp - nucleotide

level specificity; * Do cross-validation (10% leave-out)

CC - correlation coefficient;

ESn - exon level sensitivity; ESp - exon level
specificity

Why not Perfect?

Gene Number
usually approximately correct, but may not

Organism

primarily for human/vertebrate segs; maybe lower accuracy for non-
vertebrates. ‘Glimmer’ & ‘GeneMark’ for prokaryotic or yeast seqs

Exon and Feature Type
Internal exons: predicted more accurately than Initial or Terminal exons;
Exons: predicted more accurately than Poly-A or Promoter signals

Biases in Test Set (Resulting statistics may not be representative)
The Burset/Guigé (1996) dataset:
> Biased toward short genes with relatively simple exon/intron structure
The Rogic (2001) dataset:
> DNA seqgs: GenBank r-111.0 (04/1999 <- 08/1997);
» source organism specified;
» consider genomic seqs containing exactly one gene;

> seqs>200kb were discarded; mRNA segs and segs containing pseudo genes or
alternatively spliced genes were excluded.

What We Learned...

« Genes are complex structures which are difficult to predict
with the required level of accuracy/confidence

Different HMM-based approaches have been successfully
used to address the gene finding problem:

— Building an architecture of an HMM is the hardest part, it should
be biologically sound & easy to interpret

— Parameter estimation can be trapped in local optimum

< Viterbi algorithm can be used to find the most probable
path/labels

« These approaches are still not perfect

